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Nonlinear turbulent dynamo induced by fluctuations of the Lorentz force
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The turbulent hydromagnetic dynamo is a process of magnetic field amplification by a chaotic flow of an
electrically conducting fluid, responsible for generation of the magnetic fields of planets and stars. Here we
demonstrate a curious effect of the Lorentz force, which can act to intensify the magnetic fields, counterintu-
itively in light of the Lenz law according to which the Lorentz force acts to retard motions and saturate the
dynamo-induced magnetic field. However, the net effect of its small-scale fluctuations in a turbulent flow is
far from obvious and it is shown that it can lead to amplification rather than saturation of the magnetic energy
through creation of negative turbulent diffusivity.
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I. INTRODUCTION

The typical situation for dynamo action to occur in a tur-
bulent flow of an electrically conducting fluid, that is for the
magnetic field to be amplified by the small-scale turbulence,
is when the flow field exhibits chirality (lack of reflectional
symmetry). In natural systems this is achieved by the presence
of rapid background rotation. An electromotive force E (〈B〉)
(EMF) is then generated, which in general depends nonlin-
early on the large-scale magnetic field 〈B〉, and this leads to
amplification of magnetic energy until the growing Lorentz
force reacts back upon the flow field, leading to a saturated
state [1]. However, at the initial stage of the nonlinear mag-
netic field evolution the effect of the Lorentz force can be very
complex. As mentioned, due to action of the Lorentz force at
small scales of the turbulent system, the resulting mean EMF
becomes a nonlinear function of large-scale field. In the limit
of weak seed field, the EMF can be linearized with respect
to 〈B〉, which corresponds to the very first evolutional phase
of either exponential growth or decay of the magnetic energy.
Once the field is amplified, the nonlinear effects start to play
a significant role and eventually must lead to saturation. How-
ever, it is shown here that before saturation is achieved in the
nonlinear evolution the fluctuating component of the Lorentz
force can act to create negative turbulent magnetic diffusivity,
which clearly accounts for amplification rather than saturation
of the magnetic energy. This situation may last until the mag-
nitude of the magnetic field exceeds a certain critical value
(estimated by the inverse of the square root of the magnetic
Prandtl number) above which the asymptotic structure of the
EMF is destroyed. The nonlinear effect of the Lorentz force
has been hitherto scarcely considered, but [2] showed nu-
merically that such dynamos, which they termed “essentially
nonlinear dynamos,” can indeed organize the magnetic field
on the scale of the entire system. Even earlier [3] provided
evidence, based on numerical simulations, that the mean EMF
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can be enhanced by growing magnetic field strength, contrary
to conventional EMF quenching. In addition [4,5] (see also
references therein) reported brief periods of superexponential
growth of magnetic energy just before saturation in simu-
lations of rapidly rotating turbulent convection, which also
suggests “nonintuitive” action of the Lorentz force.

We study the simplified case of turbulence stirred by a ho-
mogeneous, stationary, and isotropic but chiral forcing. This
allows one to clearly demonstrate and explain an interesting
effect, which was never studied, but numerically observed,
of the essentially nonlinear dynamo, that is amplification of
the large-scale magnetic field, by the Lorentz force acting at
small scales of the MHD turbulence. This a unique, explicit
analytic result, as hitherto such a nonlinear evolution of the
mean magnetic field under action of the fluctuational Lorentz
force has never been studied analytically.

II. MATHEMATICAL FORMULATION

In order to study the effect of the Lorentz force on the
large-scale dynamo process induced by the complex flow of
an incompressible conducting fluid, we consider the following
dynamical equations describing the evolution of the turbulent
velocity field of the fluid flow U(t, x) and the magnetic field
B(t, x):

∂U
∂t

+ (U · ∇)U = f − ∇� + (B · ∇)B + ν∇2U, (1a)

∂B
∂t

+ (U · ∇)B = (B · ∇)U + η∇2B, (1b)

∇ · U = 0, ∇ · B = 0, (1c)

where � = p/ρ + B2/2 is the total pressure and without loss
of generality we assume ∇ · f = 0; ν and η denote the vis-
cosity and magnetic diffusivity (proportional to the electrical
resistivity) of the fluid, respectively. For the sake of simplicity
we have rescaled the magnetic field in the following way:
B/

√
μ0ρ → B, so that the factor of 1/

√
μ0ρ is lost, where ρ
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denotes the fluid’s density and μ0 the magnetic permeability
of vacuum.

Next, denoting by angular brackets 〈·〉 the ensemble mean,
let us assume that the forcing f is homogeneous, stationary,
isotropic but chiral (helical) and Gaussian with zero mean,
〈f〉 = 0, and is fully defined by the following correlation func-
tion:

〈 f̂i(k, ω) f̂ j (k′, ω′)〉

=
[

D0

k3
Pi j (k) + i

D1

k5
εi jkkk

]
δ(k + k′)δ(ω + ω′), (2)

where D0 and D1 are constants, the upper hat denotes a Fourier
transform [see (3) below], and Pi j (k) = δi j − kik j/k2 is the
projection operator on a plane perpendicular to the wave vec-
tor k; δi j is the Kronecker delta, i.e., the unity matrix, and
εi jk is the Levi-Civita symbol. The D1 term is the helical part
of the forcing, introducing chirality into the flow. It can be
easily shown that D0 > 0 and D1 � kD0 for all k; cf., e.g.,
Refs. [6,7]. The nonhelical part of the correlation function is
inversely proportional to the third power of the wave number.
Such a scaling exponent was shown by Yakhot and Orszag
[8] to correspond to the Kolmogorov-type turbulence in the
absence of a magnetic field. Similar arguments can be put
forward to show that the helical part must be inversely pro-
portional to the fifth power of the wave number in order to
reproduce the helicity spectrum for an isotropic, homoge-
neous, and stationary turbulence (cf. Refs. [9], [10], and [7]).
Furthermore, we assume that the turbulence is forced only
at small scales, i.e., within the wave number band k > k
 =
2π/
, where 
 denotes the size of most energetic turbulent
eddies; in other words, the forcing does not possess the large-
scale component,

f (x, t ) =
∫ ∞

k


d3k
∫ ∞

−∞
dω f̂ (k, ω)ei(k·x−ωt ). (3)

We shall consider the situation in which U, B, and p are
turbulent fields, spatially homogeneous on scales �
. Let us
introduce the following standard decomposition for turbulent
flows into the mean and fluctuating parts:

U = 〈U〉 + u, B = 〈B〉 + b, p = 〈p〉 + p′, (4)

and assume scale separation between the slowly varying mean
and fluctuating quantities. Therefore, we treat the mean fields
such as 〈U〉, 〈B〉, and 〈p〉 as locally uniform, but varying
weakly on scales much greater than 
, that is, greatly exceed-
ing the scales of the vigorous background turbulence.

The mean induction equation takes the form

∂〈B〉
∂t

= ∇ × (〈U〉 × 〈B〉) + ∇ × 〈u × b〉 + η∇2〈B〉, (5)

and we identify the term E = 〈u × b〉 as the large-scale
electromotive force (EMF). We adopt the “first-order smooth-
ing approximation” (cf. [6]) in which squares and products
of fluctuating quantities in the dynamical equations for u
and b are ignored. For clarity we are also going to ne-
glect all effects associated with the mean flow 〈U〉, thus,
e.g., the cross-helicity dynamo or the shear-current effect (cf.
[11–13]), in order to concentrate solely on the influence of the
Lorentz force on the turbulent magnetic diffusivity (a more

detailed calculation involving the mean flow 〈U〉 is provided
in the Supplemental Material [14]). The first-order smoothing
approximation is limiting, but necessary in order to make
analytical progress. It effectively corresponds to the so-called
weak turbulence regime in which nonlinear interactions of
waves influence their evolution only very weakly and such a
state can in some cases survive for a long time (cf. [15,16]);
however, the theory predicts that eventually turbulence always
becomes strong, i.e., the terms nonlinear in the fluctuations
start to play a significant role in their dynamics. Moreover, it
should be also pointed out that extreme values of the magnetic
Prandtl number Pm = ν/η introduce additionally important
differences in the nonlinear evolution of the magnetic and
velocity fluctuations. Nevertheless, the fully nonlinear results
of numerical simulations mentioned in the Introduction, such
as [2–5], suggest that the current theory may be applicable at
least qualitatively even beyond the weak turbulence regime.

Introducing a short notation for the gradient of the mean
magnetic field

�i j = ∂〈B〉i

∂x j
, (6)

we write down the equations for the Fourier transforms of the
turbulent fluctuations û and b̂ in the form

û = 1

γu
f̂ − ik · 〈B〉

γuγη

� · û + ik · 〈B〉
γuγη

P · � · û, (7a)

b̂ = i
k · 〈B〉

γη

û − 1

γη

� · û, (7b)

k · b̂ = 0, k · û = 0, (7c)

where

γu = −iω + νk2 + (k · 〈B〉)2

γη

, γη = −iω + ηk2, (8)

and we have eliminated the pressure from the Fourier trans-
formed velocity equation with the use of the projection
operator Pi j (k) defined below (2). Next, the assumed scale
separation between the means and the fluctuations implies that
the gradients of means are small and hence will be treated in
a perturbational manner. The large scale EMF, on the basis of
iterative substitutions for û j and b̂ j from (7a) and (7b) and
neglection of higher order terms in the gradient �, can be
expressed in the following way:

εi jk〈û j b̂
′
k〉 = i

k′
n〈B〉n

γuγ ′
uγ

′
η

εi jk〈 f̂ j f̂ ′
k〉 − εi jk

γuγ ′
uγ

′
η

�kp〈 f̂ j f̂ ′
p〉

+ k′
mk′

n〈B〉m〈B〉n

γuγ ′2
u γ ′2

η

εi jk
k′

kk′
s

k′2 �sp〈 f̂ j f̂ ′
p〉

+ kmk′
n〈B〉m〈B〉n

γ 2
u γ ′

uγηγ ′
η

εi jk
k jks

k2
�sp〈 f̂ p f̂ ′

k〉, (9)

where we have used a short notation û′
j = û j (ω′, k′).

Substituting for the force correlations from (2) into (9) and
taking the double Fourier integral over (ω, k) and (ω′, k′)

Ei = εi jk

∫
d4q

∫
d4q′ei[(k+k′ )·x−(ω+ω′ )t]〈û j b̂

′
k〉, (10)
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where for short we have introduced a four-component vector
notation q = (ω, k), it is a straightforward task to calculate
the mean EMF, which yields (detailed calculation is available
in the Supplemental Material [14])

E = I1〈B〉 − [I2 − 〈B〉2I3]∇ × 〈B〉 − I4∇〈B〉2 × 〈B〉,
(11)

where the integrals I j are functions of the mean field 〈B〉, the
viscosity ν, and the magnetic diffusivity η,

I1 = 4πD1η

∫ K

k


dk
∫ 1

−1
dX

∫ ∞

−∞
dω

kX 2

|γu|2|γη|2
, (12a)

I2 = πD0η

∫ K

k


dk
∫ 1

−1
dX

∫ ∞

−∞
dω

k(1 + X 2)

|γu|2|γη|2
, (12b)

I3 = πD0η

∫ K

k


dk
∫ 1

−1
dX

∫ ∞

−∞
dω

k3Re(γuγη )

|γu|4|γη|4
F (X ),

(12c)

I4 = π

2
D0η

∫ K

k


dk
∫ 1

−1
dX

∫ ∞

−∞
dω

k3Re(γuγη )

|γu|4|γη|4
G(X ),

(12d)

with F (X ) = 13X 4 − 10X 2 + 1 and G(X ) = 9X 4 − 10X 2 +
1; since the aim here is to study the effect of the Lorentz force
on the turbulent magnetic diffusivity we will not pursue here
the analysis of the effect of unalignment between ∇〈B〉 and
〈B〉 and hence the last term in (11) will be disregarded as
irrelevant (when the field variation along the lines of force
is stronger than that in the direction normal to the lines this
term is weak, although in general it contributes to the dynamo
process in a rather nonobvious way). In the above we have
also introduced the upper cutoff K for the Fourier spectra,
which in natural systems appears due to enhanced dissipation
of energy at small scales; in particular, resistive dissipation of
magnetic energy in Kolmogorov-type turbulence introduces
cutoff K = 2π (U/η)3/4L−1/4, with L being the size of the
entire system and U the large-scale velocity magnitude, hence
typically k
 	 K .

III. NONLINEAR DYNAMO EFFECT INDUCED BY
SMALL-SCALE LORENTZ FORCE

The induction equation can now be written in the form

∂〈B〉
∂t

= ∇ × (ᾱ〈B〉) − ∇ × (η̄∇ × 〈B〉), (13)

where the so-called turbulent α effect and the total magnetic
diffusivity (molecular + turbulent) are determined by

ᾱ = I1, η̄ = η + η̄1 − η̄2, (14)

with

η̄1 = I2, η̄2 = 〈B〉2I3. (15)

In the following, we will demonstrate that the contribution
to the turbulent magnetic diffusivity η̄2, which clearly results
from action of the fluctuational Lorentz force, can be positive
and thus act to intensify the large-scale dynamo effect at least

for some time, until the growing field changes the structure of
the turbulent diffusivity.

A. Explicit form of the mean EMF

In order to explicitly calculate the integrals I1, I2, and I3

defining the turbulent coefficients ᾱ and η̄ we put forward
two assumptions, relevant to astrophysical fluid dynamics, in
particular the planetary interiors, of a small magnetic Prandtl
number Pm = ν/η 	 1 and strong (but bounded) magnetic
fields. More precisely, we assume

∀k
�k�K , M 2(k) = 〈B〉2

νηk2
� 1, PmM 2(k) 	 1 (16)

(for example, in the Earth’s liquid core 〈B〉L/
√

νη ∼ 108 and
Pm ∼ 5 × 10−7; cf. [17]). In that way the magnetic field
is bounded, i.e., 1 	 M 	 Pm−1/2 with Pm 	 1, so that
the field is assumed strong enough for the Lorentz force to
significantly influence the dynamics, in particular the turbu-
lent diffusivity, but amplification of the field above a certain
threshold value of the order Pm−1/2 will destroy the structure
of the EMF obtained below and thus alter the structure of
the turbulent magnetic diffusivity. In this asymptotic limit, at
leading order we get

ᾱ ≈ 4π2D1

k2


〈B〉2 , η̄1 ≈ π3D0

3
√

νηk3


〈B〉 > 0, (17)

η̄2 ≈ π3D0〈B〉
20(νη)3/2k5




= 3

20
M 2(k
)η̄1 � η̄1. (18)

The effect of turbulent diffusion is clearly nonlinear, as the co-
efficients η̄1 and η̄2 depend on the magnitude of the magnetic
field.

B. Toy model—evolution of energy of a force-free mode

Next, for simplicity let us consider an important class of
solutions, which are force free, that is for which the mean
Lorentz force vanishes. On the one hand, this allows one to
entirely exclude the effect of the large-scale Lorentz force and
concentrate solely on the effect of its small-scale component
present in the EMF. On the other hand, the force-free modes
do not transfer energy to the flow through the Lorentz force;
thus their magnetic energy cannot be dissipated by viscosity.
We assume, therefore, that the currents flow along the mag-
netic field lines

〈j〉 = ∇ × 〈B〉 = κ (x)〈B〉, (19)

where 〈j〉 has been rescaled with
√

μ0/ρ. This ensures 〈j〉 ×
〈B〉 = 0, i.e., vanishing of the large-scale Lorentz force. By
Gauss’s law for magnetism, which demands ∇ · 〈B〉 = 0 (and,
by the obvious fact, that ∇ · 〈j〉 = 0), the function κ (x) must
satisfy 〈B〉 · ∇κ = 0; hence κ (x) is constant on the field lines.
Such states are known to exist and have been intensively
investigated, e.g., in seminal works of [18,19] (cf. also a more
recent work of [20]).
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On defining the energy of such a force-free mode Em =
〈B〉2/2, by the use of (13), (14), and (15) one obtains

∂Em

∂t
= 2[ᾱκ (x) + 2η̄2Emκ (x)2]Em

− 2(η + η̄1)κ (x)2Em. (20)

In the asymptotic limit defined by (16) we have η̄2 � η̄1 > 0;
thus the entire term 2η̄2Emκ (x)2 which results from action
of the Lorentz force at small scales is positive definite and
clearly contributes to amplification of the magnetic energy,
with decay possible through the effects of η̄1 and the molecu-
lar diffusion.

C. Discussion

As said the mean field is required to be strong, but should
not exceed a certain threshold value, above which the asymp-
totics ceases to be valid. Once the magnitude of the field
becomes too large for the second relation in (16) to be sat-
isfied the effect of the Lorentz force becomes more complex
[terms neglected in the asymptotic limit (16) become large]
and then saturation of the magnetic energy becomes possible.
More importantly, however, the rate of energy enhancement
by negative diffusion strongly depends on the wavelength of
magnetic modes and shorter wavelengths are amplified more
vigorously. It follows that once a critical magnitude of the
mean magnetic field is reached M � 1 and the Lorentz force
becomes dynamically important the negative diffusion effects
appear and tend to destroy the dynamical structure with scale
separation between the mean and fluctuating quantities, i.e.,
scale separation tends to disappear.

IV. CONCLUSIONS

Naturally the effect of the Lorentz force in hydro-magnetic
dynamos is to saturate the magnetic energy once the magni-
tude of the growing magnetic field starts to exceed a certain
threshold value. However, it was shown here that, in the initial
period of evolution of a mean magnetic field, the small-scale
Lorentz force in a turbulent flow can participate in ampli-

fication of magnetic energy through creation of a negative
contribution to the turbulent magnetic resistivity. This can
only happen once the field becomes strong enough for the
Lorentz force to become dynamically important, but also
weaker than k
η; cf. (16). Only later, after the field reaches a
certain critical amplitude, can the Lorentz force act to saturate
the energy. This is an important, nonlinear effect, which has
been explained here via analytic methods. The results are also
interesting because they add yet another example to the class
of magnetohydrodynamic effects which prompt caution for
detail application of the famous Lenz law; cf. also [21–23].

However, it must also be emphasized that, although nega-
tive diffusion effects have been reported in physical situations,
in particular an enhancement of energy temporarily present
below a certain threshold value (cf. [24–28]), such a situa-
tion is peculiar, typically short lived, and requires great care
in interpretation. In the case at hand the negative, nonlin-
ear turbulent diffusion, which acts on the mean magnetic
field, enhances the smaller scales more rapidly, thus aiming
to destroy the dynamical structure involving a clear scale
separation between the means and the turbulent fluctuations.
Such a situation could happen in the evolution long before the
asymptotic limit (16) ceases to be valid due to amplification of
the magnetic field magnitude, and could also lead to suppres-
sion of the negative diffusion effect. In this sense the action
of the fluctuational Lorentz force may be the crucial factor
responsible for lack of scale separation in strongly developed,
low-Pm magnetohydrodynamic turbulence. The presence of
negative diffusion in the evolution of magnetic energy is
therefore expected to be rather short lived, but dynamically
significant as it leads to wavelength-dependent amplification
of the magnetic energy.
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