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Traveling pulses in type-I excitable media
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We consider a general model exhibiting type-I excitability mediated by a homoclinic and a saddle node on the
invariant circle bifurcations. We show how the distinct properties of type-I with respect to type-II excitability
confer unique features to traveling pulses in excitable media. They inherit the characteristic divergence of type-
I excitable trajectories at threshold exhibiting analogous scalings in the spatial thickness of the pulses. Our
results pave the way to identify basic underlying mechanisms behind type-I excitable pulses based solely on the
characteristics of the pulse.
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Excitable media are spatially extended, nonequilibrium
systems that account for the propagation of local excitable
excursions. They are pervasive in nature with relevance in
multiple fields, such as neuroscience [1], depression waves
[2], cardiac tissue [3], reaction-diffusion systems [4–6], and
nonlinear optics [7]. In excitable media, local perturbations
may lead to a wide variety of spatial structures and patterns,
such as waves, pulses, and spirals [4,5,8,9] (Fig. 1).

Many of the dynamical properties of excitable systems can
be traced back to the kind of excitability (type-I or type-II)
they display. The type of excitability is defined by the bifurca-
tions delimiting the excitable region in parameter space. This
distinction was clearly established in electric signals propa-
gating in neurons in the form of spikes or pulses showing
a different kind of responses to electric stimuli. The link
between bifurcations and different types of excitable behavior
in axons was first shown in Ref. [11], and how the bifurcations
define the type of excitability is clearly defined in [12–14].

From a dynamical systems point of view, type-I excitability
is mediated by either a saddle node on invariant cycle (SNIC)
or a homoclinic bifurcation. In this scenario, there is a periodic
orbit, related to the connection between a stable manifold of
a stable node and the unstable manifold of a saddle, whose
remnants after it is destroyed generate the excitable excursion.
By contrast, type II is in general associated with the presence
of a single stable focus and mediated by an Andronov-Hopf
bifurcation where the cycle acquires, typically due to a slow-
fast separation of timescales, a very large amplitude just after
the bifurcation [15]. In this case, excitability is caused by
resonant perturbations causing nonlinear amplifications of the
input [13].

Despite the relation between excitable behavior and un-
derlying bifurcations, excitable media are often studied in the
framework of reaction-diffusion systems, without focusing on
the excitability type. As discussed in this Letter, the type
of excitability imprints unique features to traveling pulses,
and such connection have been largely unexplored. Studies

*damia@ifisc.uib-csic.es

of excitable media often tend to use the microscale under-
standing of the system to propose dynamical models, such
as in the case of the classical Belousov-Zhabotinskii reaction
[16]. These models are most often placed in the range that
shows type-II characteristics [5,8,17]. However, just recently,
several works in the context of vegetation dynamics have sug-
gested models that are better understood in the light of type-I
excitable media [18–21]. In contrast to the widely explored
spatiotemporal type-II excitability mechanism [7,22,23], there
is only a partial understanding of the dynamical properties of
spatial models showing type-I excitability [1,24,25].

In this Letter, we aim to address this open question char-
acterizing propagating pulses in type-I excitable media. As
our results show, important features of the spatiotemporal
dynamics, such as the shape or length of the pulses, can
be understood in the light of the excitable excursions of the
temporal system mediated by bifurcations generating type-I
behavior.

To approach this problem, we consider a normal form of
codimension-3, which is the simplest model to describe both
scenarios of type-I excitability [26], and to which we add one-
dimensional (1D) diffusion to study spatial propagation,

∂t u = v + D∂xxu,

∂tv = ε1u3 + μ2u + μ1 + v(ν + bu + ε2u2) + D∂xxv. (1)

We choose ε1 = ε2 = −1, which is the case that gives a com-
plete description of type-I excitability. The spatial coupling is
chosen diagonal and with the same strength in both equations
to avoid additional effects such as Turing instabilities. Without
loss of generality, the diffusion coefficient is fixed to one
(D = 1). The resulting system describes, excluding particular
diffusion couplings, any type-I system with a temporal part
analogous to the normal form presented in Ref. [26]. Finally,
we have fixed the parameters ν = 1 and b = 2.4, considering
μ1 and μ2 as our main control parameters. Here, u(x, t ) and
v(x, t ) are real fields.

We first consider the temporal system (D = 0), which
also describes the dynamics of the homogeneous solutions
[∂xxu = ∂xxv = 0 in (1)]. In particular, we focus on a param-
eter region in the neighborhood of a saddle-node separatrix

2470-0045/2021/104(5)/L052203(5) L052203-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8502-6725
https://orcid.org/0000-0001-7264-257X
https://orcid.org/0000-0002-3500-3434
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.L052203&domain=pdf&date_stamp=2021-11-22
https://doi.org/10.1103/PhysRevE.104.L052203


ANDREU ARINYO-I-PRATS et al. PHYSICAL REVIEW E 104, L052203 (2021)

FIG. 1. Examples of traveling pulses in excitable media.
(a) Waves in a Belousov-Zhabotinsky chemical reaction. (b) Rings
of vegetation growing radially in intertidal salt marshes in Nanhui
shoal, Shanghai. (c) Spiral formed by a seagrass traveling pulse in the
coast of Mallorca in the Mediterranean Sea, Spain. (d) Geographic
tongue caused by fungiform papillae, adapted from Ref. [10]. (e), (f)
Two kinds of Rhizocarpon lichen in rocks, Mallorca. (a) and (d) are
modeled as type-II excitable media, while (b) and (c) fit within the
type-I framework. The excitable type of (e) and (f) has not yet been
identified.

loop (SNSL) codimension-2 point of the temporal system,
from which the two bifurcations of relevance—homoclinic
and SNIC—eliciting type-I excitability emerge (Fig. 2). This
two bifurcations mediate two different ways of entering the
type-I excitable region marked by the label “c” [27,28]. This
will have a direct effect on the behavior of the pulses to
be considered below. Figures 2(a)–2(c) show a sketch of the
phase space of the temporal system in each of the correspond-
ing regions. In Fig. 2(a), the system has a limit cycle and
an unstable focus. In Fig. 2(b), a limit cycle is around the
three fixed points: node (P1), saddle (P2), and unstable focus
(P3), corresponding to the three homogeneous solutions of
(1). In Fig. 2(c), the cycle has been destroyed either by the
homoclinic or SNIC bifurcations leading to a type-I excitable
regime.

We turn now to the spatiotemporal dynamics. In the ex-
citable region, by initializing the system with a strong enough
localized perturbation around the lower homogeneous solu-
tion, P1, a pair of solitary (or traveling) pulses that propagate
with fixed shape and constant and opposite velocities is gen-
erated. We take one of such pulses, i.e., the one moving to the
left [Fig. 3(b)], to characterize in detail.

A convenient way to study these pulses is using a moving
reference frame, ξ = x − ct , where c is the velocity of the
pulse yet to be determined. In this coordinate system, the
partial differential equations (1) become ordinary differential
equations,

du/dξ = uξ ,

dv/dξ = vξ ,

duξ /dξ = −(v + c uξ ),

dvξ /dξ = u3 − μ2u − μ1 − v(1 + bu − u2) − c vξ . (2)

FIG. 2. Phase diagram of the system (1) including the bifurcation
lines of homogeneous and traveling pulse solutions. The diagram
is organized by a SNSL codimension-2 point (red dot) from which
a SNIC (blue dot-dashed line) and homoclinic of a stable cycle
(red line) bifurcation lines emerge for the temporal dynamics. The
diagram is completed by the heteroclinic bifurcation line of travel-
ing pulses (dashed black line). For the temporal system, excitable
excursions occur in the area above the SNIC and homoclinic lines.
For the spatiotemporal system, excitable traveling pulses can form in
this green shaded area. The insets show a schematic representation of
the phase space for the temporal system in each corresponding area.
P1, P2, and P3 indicate the fixed, saddle, and unstable fixed points,
respectively, for each region, and the limit cycle and its remnants are
shown as a red line.

FIG. 3. Comparison of the temporal dynamics of an excitable
excursion and the spatial profile of a 1D traveling pulse sustained by
this excitable dynamics. (a) Temporal (spatially homogeneous) ex-
citable trajectory of u (red solid line) and v (blue dashed line) starting
from an initial condition just above the saddle point P2. (b) Stable 1D
traveling pulse as a function of the spatial coordinate ξ in the moving
reference frame. (c),(d) The temporal excitable excursion and the
traveling pulse in the (u, v) phase space, respectively. P1, P2, and
P3 indicate stable, saddle, and unstable fixed points. Here, μ1 = 0.3
and μ2 = 1.0.
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Trajectories of this dynamical system describe stationary so-
lutions of (1) in the reference frame moving with velocity c
[29]. Only bounded trajectories have a physical meaning. In
particular, excitable traveling pulses are represented in this
system as homoclinic trajectories originating from the lower
fixed point P1 [Fig. 3(d)]. c is computed numerically simul-
taneously with the field profile using a Newton method [30],
and it varies weakly with parameters in the excitable region.

Although the dynamical system describing temporal dy-
namics for homogeneous solutions (1) and the spatial
dynamical system (2) are apparently very different, one
observes important similarities in their solutions. Roughly
speaking, a traveling pulse transcribes the temporal dynamics
in space, such that the spatial profile of the pulse resembles the
excitable trajectory in time. It is important to remark, however,
that whereas excitable temporal (homogeneous) trajectories
are open, the spatial pulses show a closed trajectory in phase
space [compare Figs. 3(a), 3(c) and Figs. 3(b), 3(d)]. This
transcription of the dynamics also occurs in the type-II case,
where the excitable pulses inherit the square shape from the
slow-fast feature of the temporal trajectories (see, for instance,
Fig. 3.2 in Ref. [5]). We would like to emphasize the differ-
ence in the shape between both types of excitable media.

The similarity between the temporal and spatial trajectories
anticipates the results that follow.

We next study how the two different bifurcations leading
to type-I excitability in the temporal system, i.e., the ho-
moclinic and SNIC bifurcations, shape the excitable pulses.
To do so, we study the stability of traveling pulses in the
(μ1, μ2) parameter space [31]. Traveling pulses are stable in
the part of the excitable region “c” shown in Fig. 2, and are
destroyed at the SNIC or at the heteroclinic bifurcation, as
indicated with a black dashed line in Fig. 2. The homoclinic
and SNIC bifurcations of the temporal systems are directly re-
lated to the heteroclinic and SNIC bifurcations of the traveling
pulses.

Let us first consider the heteroclinic curve (black dashed
line in Fig. 2). Close to the bifurcation in parameter space,
the pulse shape changes drastically, generating a plateau at
the value of the middle (saddle, P2) homogeneous solution
[Fig. 4(b)]. As the spatial trajectory is closer to the saddle
point (through its stable manifold), there is a slowing down of
the spatial dynamics, inherited from the temporal homoclinic
[Fig. 4(a)], that manifests as a plateau in the spatial profile.
The plateau enlarges as the parameters are close to the bifurca-
tion (black dashed line), diverging at the threshold. Figure 4(c)
shows instead the temporal excitable excursion in the (u, v)
phase space, where the trajectory approaches the saddle point
P2. The spatial counterpart [Fig. 4(d)] behaves analogously,
leading to the formation of a double heteroclinic at threshold,
where the size of the plateau diverges. Such bifurcation has
been studied in [24,32] in relation to a T-point of the spatial
dynamics, but the connection with the homoclinic bifurcation
of the temporal systems was not considered. Strictly speaking,
in a finite-size system, this divergence cannot be observed,
but the bifurcation will manifest as a fold of the traveling
pulse [24].

This slowing down has a characteristic logarithmic scaling
law in the width of the plateau with respect to the parameter
distance to the bifurcation [33], which is captured by the ob-

FIG. 4. (a) Divergence of the duration of the excitable excursion
in the temporal system approaching the homoclinic bifurcation, and
(b) divergence of the plateau in the pulses approaching the hete-
roclinic bifurcation. Here, μ2 = 0.4 and μ1 = μ1c − �μ1, where
the homoclinic bifurcation occurs at μ1c = 0.075 603 955 87 for the
temporal system, and the heteroclinic bifurcation occurs at μ1c =
0.081 078 760 02 for the spatial system, and �μ1 = 10−3 (red solid
line) and �μ1 = 10−12 (black dashed line). In all panels, P1, P2 signal
the stable and saddle fixed points, respectively. (c), (d) A zoom of the
most relevant region in the phase space (u, v) for the temporal and
spatial dynamics.

tained solutions, as shown in Fig. 6(a). The red line indicates
the expected scaling slope from theory, which depends on the
logarithmic parameter distance divided by the (independently
obtained) leading unstable spatial eigenvalue of the saddle
point, and we can see that the agreement is perfect.

The fact that the heteroclinic bifurcation curve closely fol-
lows the homoclinic line of the temporal system (Fig. 2), and
that the width of a traveling pulse follows the same scaling
as the duration of a temporal pulse, indicate how the bifurca-
tions of the temporal dynamics permeate the spatial dynamical
description of traveling pulses, even though the connection is
not straightforward from the equations.

FIG. 5. Same as in Fig. 4 for the SNIC bifurcation. u − uP1 is
plotted in (a) and (b), where uP1 is the value of u at the stable fixed
point P1. Here, μ2 = 2.0 and μ1c = 1.0887 with �μ1 = −10−4 and
�μ1 = −10−1 for the black dashed and red solid curves, respec-
tively. (c), (d) The phase space (u, v) for the temporal and spatial
dynamics, respectively.
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FIG. 6. (a) Scaling of the pulse width, γ , approaching the het-
eroclinic bifurcation. γ is defined as the distance from where the
pulse separates 10−2 from the stable homogeneous solution until
it comes back to the same distance (black points). The expected
scaling is γ = 1

λ1
ln(|μ1 − μ1c|) (red line in the plot), where λ1 is the

closest eigenvalue to zero of the saddle point in the spatial dynamics.
(b) Scaling of the rate λ at which the tail of the traveling pulse
exponentially approaches the saddle, as a function of the parameter
distance to the SNIC bifurcation. The expected scaling is a power
law with exponent 1/2: λ ∝ √|μ1 − μ1c| (red line).

Next we analyze what happens to the pulse at the SNIC
bifurcation [34]. Beyond the SNIC bifurcation (blue dash-
dotted line in Fig. 2), a temporal cycle is reconstructed when
the saddle P2 and the node P1 collide. As parameters are set
closer to the SNIC from the excitable region, the trajectories
triggered by perturbations need more time to return to the
stable fixed point P1, as its eigenvalue tends to zero. As a
result, the tail behind the traveling pulses also gets longer and
longer [Fig. 5(d)].

For the SNIC in the temporal case, the power law manifests
in the divergence of the characteristic time to reach the stable
fixed point [28]. Analogously, one would expect that the pulse
thickness scales as a power law that diverges at the onset
of bifurcation. However, due to the exponential approach to
the saddle close to the bifurcation, the thickness of the pulse
is not well defined. Therefore, we have turned to measure
the approach rate that is proportional to the leading spatial
eigenvalue, which becomes zero at the bifurcation. This scal-
ing is shown in Fig. 6(b) and, as expected in a saddle-node
bifurcation, it follows a power law with exponent 1/2. The
behavior of the system at the other side of the bifurcation
corresponds to a wave train, which in this case is the analog

of a temporal periodic behavior, with the SNIC marking a
transition from wave trains to pulses.

In this Letter, we have shown the existence of 1D trav-
eling pulses in a general model for type-I excitable media.
Most studies in the literature of propagating structures in
excitable media correspond to type-II excitability, found, e.g.,
in reaction-diffusion systems and the heart. On the other
hand, an increasing number of studies report type-I excitable
structures [18–21,25], although these structures have not been
characterized yet. Still, they exhibit some distinctive features
when comparing with type-II excitable pulses, such as their
shapes, that are square in the latter case and smoother in the
case of type-I excitable pulses. This difference between the
pulse shaped, already obvious when comparing the excitable
trajectory in temporal systems, is not casual, but a direct
consequence of the mechanisms behind the excitability. The
typical squared shape of type-II pulses arises from two very
different (slow-fast) timescales, a key ingredient of this kind
of excitability. A type-I excitable system, on the other hand,
does not need such difference of timescales, which makes its
shape smoother.

In our study, we have used a model that exhibits two routes
corresponding to type-I excitability, mediated by two different
bifurcations, i.e., SNIC and homoclinic (saddle loop), and we
find key similarities between the temporal dynamics and the
spatial profile of traveling pulses. In particular, type-I travel-
ing pulses exhibit the same scaling behaviors for their width
as those found in the duration of the excitable excursions in
the temporal case, namely, logarithmic for the heteroclinic and
power law for the SNIC bifurcations, respectively. This equiv-
alency in the scaling behaviors unveils a nontrivial relation
between temporal systems and the spatiotemporal structures
of partial differential equations. Such general properties re-
lated to the type of excitability could be used to identify the
dynamical mechanisms behind traveling pulses from empir-
ical evidence. Other instabilities of traveling pulses in this
system will be studied elsewhere [35].
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