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Power-law and log-normal avalanche size statistics in random growth processes
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We study the avalanche statistics observed in a minimal random growth model. The growth is governed
by a reproduction rate obeying a probability distribution with finite mean ā and variance va. These two
control parameters determine if the avalanche size tends to a stationary distribution (finite scale statistics with
finite mean and variance, or power-law tailed statistics with exponent ∈ (1, 3]), or instead to a nonstationary
regime with log-normal statistics. Numerical results and their statistical analysis are presented for a uniformly
distributed growth rate, which are corroborated and generalized by mathematical results. The latter show that the
numerically observed avalanche regimes exist for a wide family of growth rate distributions, and they provide a
precise definition of the boundaries between the three regimes.
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In complex systems with long-range spatiotemporal corre-
lations, avalanche processes are commonly observed. Well-
known examples of avalanches include the spreading of
epidemics (or information) [1,2], the price evolution of stock
options in finance [3], avalanches of neuron firings in the brain
[4–6], “crackling noise” exhibited by earthquakes [7,8], struc-
tural phase transitions [9,10] and magnetic systems [11,12],
or avalanches of fractures in porous media [13] or living
systems [14,15]. A crucial quantity to characterize avalanches
is their size distribution, which allows theoretical and exper-
imental results to be compared and can suggest mechanisms
for the underlying avalanche dynamics. Notably, heavy-tailed
distributions are often observed for avalanche size statis-
tics, and understanding them is important to determine the
origin of the specific process. From a practical viewpoint,
it is often difficult to distinguish the type of heavy-tailed
distributions on finite intervals, especially for limited size
samples or noisy data. Pareto (power-law) and log-normal
distributions are two of the most widely observed heavy-tailed
distributions [16,17]. Many investigations have described
heavy-tailed data in terms of Pareto or power laws with ex-
ponential decays [18]. Careful statistical analyses, however,
indicated that statistical evidence in support of a power-law
distribution is often limited [19], and a log-normal distribu-
tion can often be a good alternative to describe heavy-tailed
statistics [20]. These difficulties are clearly exemplified by
the ongoing controversy between log-normal and power-law
distributions in neuroscience [21,22] and complex networks
[23]. The discrimination between power-law and log-normal
distributions is even more challenging for data that can be
modeled as a log-normal distribution at moderate sizes with a
power-law tail [24].
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Several paradigmatic models have been proposed to ex-
plain the ubiquity of power-law avalanche size distributions.
These include critical points in disordered systems [11,25–
28], self-organized criticality (SOC) [29], marginal stability
[30], and, in more abstract terms, growth models [31] or
branching processes [32–35]. In fact, some of these paradigms
are related, or can even be mapped, to each other (e.g., SOC
and branching processes [36] or branching processes and spin
models [37]).

Log-normal distributions are often explained in terms of
stochastic multiplicative models of growth phenomena based
on the law of proportionate effect. Here, we focus on Gibrat’s
process [38,39], which can be viewed as a discrete time
version of the so-called multiplicative noise [40]. Gibrat’s
process assumes that the size zi of an observable in generation
i grows proportionally to its size with a random reproduction
(or growth) rate, ai: zi+1 = aizi. Assuming that the growth
rates {ai}∞i=1 are independent random variables and the first
two moments of ln ai are finite for every i, the central limit
theorem implies that zi is log-normally distributed for large i
[17], or see [41] for a more precise approximation. Avalanches
are typically regarded as bursts of activity, which in our case
would correspond to excursions of z that asymptotically return
to the absorbing state with z = 0 after being perturbed from
this state. Since Gibrat’s variable z can either approach zero
or ∞ when iterated, we extend the usual avalanche defini-
tion to encompass the case in which z does not return to 0
but grows indefinitely, as in supercritical branching processes
[32]. The size of an avalanche corresponds to the sum of zi

over generations. Despite the fact that the distribution of zi

is reasonably well understood for Gibrat’s processes, little
is known about the avalanche size distribution. In general,
a log-normal distribution for zi does not imply a log-normal
distribution for the avalanche size, and Gibrat’s process cannot
be regarded as an explanation of log-normal avalanche size
statistics.
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Here, we push further the comparative analysis between
power-law and log-normal distributions by studying the
avalanche size distribution of Gibrat’s processes. By means of
mathematical results and numerical simulation examples, we
reveal rich avalanche behavior, which, in particular, includes
power-law and log-normal avalanche size statistics.

The model. The basis of our avalanche model is the follow-
ing multiplicative process:

zi+1 = aizi = aiz0

i−1∏
j=0

a j . (1)

The initial value z0 for the process represents a perturbation
of the system from the z = 0 absorbing state. We set z0 = 1 (a
different positive value of z0 would only lead to a time shift).
The reproduction rates {an}∞n=0 are independent and identi-
cally distributed (i.i.d.) random variables with finite mean ā =
Ea[a] and variance va = Ea[a2] − E2

a[a]. In our model, the
probability density function (PDF) for the reproduction rate,
fa(a), is required to have a non-negative support to ensure that
zi � 0 at every generation i.

The avalanche size after T generations is given by the
following sum:

ZT =
T∑

i=1

zi = a1 + a1a2 + · · · + a1 . . . aT . (2)

Our aim is to understand the dependence of the PDF for
the avalanche size, p(ZT ), on the two parameters of the re-
production rate distribution, ā and va. Equation (2) shows that
the avalanche size ZT is a random variable given by the sum
of T random variables. The challenge in calculating p(ZT ) is
that {zi}T

i=1 are correlated, and the central limit theorem does
not apply in general [42]. Accordingly, there is no reason
to expect that ZT is normally distributed for large T , as one
would expect if {zi}T

i=1 were uncorrelated. In fact, Eq. (2)
shows that ZT is a Kesten scalar variable [43]. Within this
context, power-law tails have been reported for p(ZT ) under
quite general conditions [43–46]. Here, we identify power-law
decay as one of three generic behaviors for p(ZT ). In addition,
our analysis establishes a conceptual link between a Kesten
recursion and the size of avalanches described as Gibrat’s
multiplicative process.

We first present results of numerical simulations for a
specific PDF fa(a) that show the existence of three different
regimes for p(ZT ). After that, we mathematically demonstrate
that the numerically observed avalanche regimes are expected
for any fa(a) with finite first and second moments for a and
ln a.

Numerical results. Here, we present results for a uniformly
distributed reproduction rate, ai ∼ U (b, c), with 0 � b < c.
The uniform distribution is a simple and flexible choice that
allows the dependence of p(ZT ) on ā and va to be system-
atically studied by independently tuning the parameters ā =
(b + c)/2 and va = (c − b)2/12. In [47], we present qualita-
tively similar results for exponentially (Fig. S2 of Sec. IV) and
Poisson (Fig. S3 of Sec. V) distributed growth rates. In both
cases, however, ā and va cannot be independently tuned.

Figure 1 shows three avalanche regimes identified for uni-
formly distributed a on the (ā, va) space. The region of the

FIG. 1. Phase diagram on the (ā, va ) space showing three
regimes for the avalanche size distribution for uniformly distributed
growth rate, a ∼ U (b, c). In regime I (finite scale), p(ZT ) converges
to an asymptotic PDF p(Z ) with finite mean and variance. In regime
II, p(ZT ) converges to an asymptotic p(Z ) with a power-law tail. In
regime III, ZT is nonstationary and p(ZT ) approaches a log-normal
distribution for large T , with T -dependent parameters. All regimes
are bounded from above by the condition va � ā2/3 ensuring b > 0
and (ā† � 1.36, v†

a � 0.61). Boundaries between different regimes
were analytically obtained.

space where a random growth process is possible depends on
the specific PDF for the growth rate. For uniformly distributed
a, the region is restricted to ā � 0 and va ∈ [0, ā2/3]. For a
given ā, the upper bound for va reflects the constraint b � 0.
For a general fa, the upper bound is given by the condition
a � 0.

Regime I (dark blue region in Fig. 1) is characterized by
avalanches for which zi approaches zero after a finite number
of generations in such a way that the mean and variance of
p(ZT ) are finite for every T . This regime is referred to as
the finite scale regime, as opposed to scale-free distributions,
which lack a typical scale. Below, we mathematically show
that the necessary condition for the first two moments of
p(ZT ) to be finite is va + ā2 < 1 for any fa(a). In particular,
this condition defines the boundary between regions I and II
shown in Fig. 1 for a uniformly distributed a. In regime I,
p(ZT ) converges to an asymptotic PDF, p(Z ), after a finite
number of generations, Tz. Figure 2(a) shows an example of
the convergence of p(ZT ) to p(Z ) after Tz = 22 generations.
The rate of convergence decreases as the boundary with region
II is approached. The specific shape of p(Z ) depends on ā and
va. Phenomenologically, we observe that the subset of region
I with va � ā − 0.7 (then excluding values of va just below
the upper boundary) shows distributions that are compatible
with a log-normal distribution [see Fig. 2(a)]. This result is
reminiscent of cases in which a log-normal distribution was
observed as the asymptotic distribution for the sum of a large
but finite number of uncorrelated and log-normal, or, more
generally, positively skewed random variables [48,49]. The
comparison of our results with those in [48,49], however, is
not complete due to the presence of correlations between the
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FIG. 2. Examples of avalanche size PDFs for a uniformly dis-
tributed growth rate, a ∼ U (b, c). (a) Regime I: convergence of the
PDF of ln ZT toward an asymptotic distribution with T . (ā, va) =
(0.8, 0.06), solid line: fit of a log-normal distribution to the asymp-
totic distribution. (b) Asymptotic PDF p(Z ) for (ā, va) = (0.5, ā2/3)
(i.e., b = 0 corresponding to the upper bound for va in Fig. 1).
Solid line: analytical solution. (c) Regime II: asymptotic p(Z ) in
log-log scale. Solid lines: fits of power laws with exponents α

given in the legend. (d) Regime III: logarithm of p( ln(ZT )) with
(ā, va ) = (1.1, 0.013). Solid lines: fits of a log-normal distribution
to the data for each given T . Symbols (respectively, solid lines) are
used for numerical results (respectively, maximum-likelihood fits or
analytical results).

random variables {zi}T
i=1, defining ZT in our model. In fact,

a log-normal-like distribution is observed in a good part of
region I in the phase diagram, but it is not the only possible
shape for p(Z ) in this regime. For instance, Fig. 2(b) shows an
example of p(Z ) observed at a point along the upper bound for
region I in the phase diagram (line with va = ā2/3 in Fig. 1).
See Sec. III A of [47] for more examples of p(Z ) in this
regime.

In regime II, p(ZT ) converges to an asymptotic PDF p(Z )
with a power-law (or Pareto) tail Z−α [see Fig. 2(c)]. A
maximum-likelihood fit to the data (Sec. VI of [47]) reveals
that the exponent α takes values that range from α = 3 at the
boundary with regime I to α = 1 at boundary with regime III.
Below we mathematically show that this range for α holds
beyond the uniformly distributed a used for the simulations
shown in Fig. 2.

In regime III, avalanches grow indefinitely and p(ZT )
does not converge to a T -independent PDF. Instead, the lo-
cation and spread of p(ZT ) increase monotonically with T
[Fig. 2(d)]. Interestingly, p(ZT ) can be very well described by
a log-normal distribution with T -dependent parameters. This
is corroborated by a likelihood ratio test [50] and parametric
bootstrap [51] (see more details in Sec. VI of [47]).

Mathematical results. We now show mathematically that
the three avalanche regimes illustrated numerically for
uniformly distributed {ai} can be observed for generic

distributions fa(a) with non-negative support and finite first
and second moments for a and ln a. This analysis also pro-
vides general conditions satisfied at the boundaries between
different regimes.

To study the PDF of the avalanche size ZT for a generic
fa(a), we express Eq. (2) as ZT = a1(1 + XT ). Here, XT =∑T

i=2

∏i
j=2 a j is a random variable whose behavior at large

T determines whether the system is in regime I, II, or III.
Regime III corresponds to situations in which zT +1/a1 =∏T

j=2 a j increases monotonically with T . In this case, an
infinite avalanche occurs in which z grows indefinitely and
ZT obeys a nonstationary log-normal distribution for large T ,
provided Ea[ln2 a] < ∞. Indeed, in this case XT is distributed
as ZT −1 and therefore ZT ∼ a1ZT −1 for large T . We then
conclude that ZT is given by the product of T i.i.d. positive
random variables obeying fa(a) and, provided Ea[ln2 a] < ∞,
ZT obeys a log-normal distribution with expectation and vari-
ance that increase exponentially with T (see the expressions
for E[ZT ] and var[ZT ] in Sec. II of [47]). In other words, ZT

essentially obeys Gibrat’s law in regime III.
Regimes I and II are observed when the product

∏T
j=2 a j

tends to zero for large T and therefore z asymptotically ap-
proaches the absorbing state with z = 0. In this sense, regimes
I and II define the absorbing phase of the model. Under this
condition, XT ∼ ZT , and therefore ZT tends to a stationary
random variable Z with p(Z ) given by the following equation
(see a derivation in Sec. I of [47]):

p(Z ) = Ea

[
a−1 p

(
Z

a
− 1

)]
. (3)

This can be reduced to a homogeneous Fredholm integral
equation of the second kind [52] that is difficult to solve in
general. We only solved it analytically for a specific case with
a ∼ U (0, c), which accurately matches the numerical results
in region I, as shown in Fig. 2(b) [47] [see [45] for other exact
solutions of Eq. (3)]. Even if Eq. (3) cannot be analytically
solved in general, it is easy to show that regime I, where the
first two moments of Z are finite, is observed for any distribu-
tion fa(a) provided Ea[a] = ā < 1 and Ea[a2] = va + ā2 < 1
[47] (Sec. II). The boundary between regimes I and II is
then given by the condition Ea[a2] = 1, or equivalently va =
1 − ā2 for any PDF fa(a).

To investigate the properties of regime II and its boundary
with regime III, we insert a power-law tail ansatz, p(Z ) ∝
Z−α , into Eq. (3). From this we find that the exponent α is
given by the zeros of the function

h(α) = Ea[aα−1] − 1. (4)

The function h(α) has a root at α = 1 due to the normal-
ization of fa(a), which implies Ea[1] = 1. However, we are
only interested in roots with α ∈ (1, 3], irrespective of the
specific form of fa(a). The condition α > 1 ensures that p(Z )
is normalizable, and the condition α � 3 corresponds to the
boundary between regimes I and II where Ea[a2] = 1.

Figure 3 illustrates the behavior of h(α) for a uniformly
distributed a with fixed va and various values of ā. A similar
behavior is expected for any distribution fa(a) since h(α)
is strictly convex for any fa(a) in the interval with α � 1.
Therefore, h(α) has at most one minimum and one root in

L052101-3



STEFANO POLIZZI et al. PHYSICAL REVIEW E 104, L052101 (2021)

FIG. 3. Function h(α) [Eq. (4)] for a uniformly distributed re-
production rate (see Sec. III C of [47] for the exact analytic form).
Different curves correspond to different values of ā for growth pro-
cesses with va = 0.2. The exponent of the power-law tail for p(Z )
in regime II corresponds to the roots of h(α) in the interval of
α ∈ (1, 3]. This corresponds to curves with 0.89 � ā � 1.1 in this
example.

the interval of interest, (1,3]. As illustrated in Fig. 3, the root
of h(α) decreases with increasing ā from the value α = 3
at the boundary between regimes I and II to approach the
minimum admissible value, α = 1, which marks the transition
from regime II to regime III. At the transition between regimes
II and III, the minimum of h(α) occurs at α = 1, and this leads
to the condition

h′(1) = Ea[ln a] = 0 (5)

for the boundary between the two regimes. The specific shape
of the boundary in the space (ā, va) depends on the specific
distribution of a. Equation (5) allows the relation between ā
and va to be obtained for any fa(a). In particular, we obtained
analytical results for uniformly and exponentially distributed
a which compare well with numerical results (see Fig. 1 and
more details in [47]).

In fact, the condition Ea[ln a] = 0 holds at the boundary
between regimes with stationary and nonstationary p(ZT ),
irrespective of the power-law assumption made for regime II.
Indeed, if Ea[ln2 a] < ∞, the strong law of large numbers
[42] allows us to express

∏T
j=2 a j as eTEa[ln a] for large T .

Accordingly, the sign of Ea[ln a] determines whether
∏T

j=2 a j

tends to zero and ZT reaches a stationary regime (if Ea[ln a] <

0, regimes I and II) or increases for increasing T and ZT is not
stationary (if Ea[ln a] > 0, regime III). For a power-law p(Z ),
one can see the change in sign of Ea[ln a] at the transition
between regimes II and III in terms of the slope h′(1), which
is negative in regime II and positive in regime III (see Fig. 3).

Conclusions. We showed that power-law [18,53] and log-
normal avalanches can coexist in a minimal random growth

model with a reproduction rate with finite mean and vari-
ance. Interestingly, the power-law tail exponent α can be
continuously tuned in the range (1,3] by varying the control
parameters. Therefore, our study can explain several power
laws found in natural or human processes, such as the ones de-
scribed in [18], whose exponents are also almost always in the
interval (1,3]. Many of these phenomena have an underlying
multiplicative process and can be interpreted as avalanches.
We have focused on growth processes with a finite value
for ā and va. It is worth noting, however, that the condition
determining a transition from a stationary distribution to a
nonstationary one [Eq. (5)] and the definition of the exponent
α [Eq. (4)] remain valid even if one (or both) of the parameters
diverges (provided Ea[ln2 a] < ∞). This is consistent with
previous studies, where a power-law distributed growth rate
was considered [54].

The model studied in this paper can be seen as a gener-
alization of branching processes that correspond to a specific
distribution for the growth rate (Sec. VII of [47]). In particu-
lar, the exponent α = 3/2 observed for power-law distributed
avalanche sizes in critical branching processes [32,33] is con-
tained within the interval (1,3] obtained here. In addition to
power-law and log-normal distributions, we observed, espe-
cially in the finite scale regime (but also along the upper
bound of Fig. 1), less common distributions for avalanches,
but nonetheless observed experimentally, such as the bimodal
shape shown in Sec. III A of the supplemental material.

We assumed that ā and va remain constant during the
course of the avalanches. One could, however, consider dy-
namical parameters to mimic feedback mechanisms, such
as vaccination in epidemics or refractoriness in neuronal
avalanches. In this case, our phase diagram in Fig. 1 can
be used to propose qualitative scenarios for the ongoing
controversy on log-normal or power-law distributions in neu-
roscience and other domains [21–23]. Indeed, besides giving
an interpretation of the different distributions in terms of ā and
va, it has to be seen as a guide for avalanche distributions, even
for more realistic situations in which the control parameters
are functions of time, as in [14,27,37,55]. This corresponds
to a path in the diagram where the distributions are combined
with different weights. For example, an avalanche with initial
parameter values in region III, shifting in time toward region
II or I (because of external feedbacks such as refractoriness
in the brain), would give a log-normal dominating distribu-
tion. This qualitative scheme suggests that the three avalanche
regimes identified here are relevant to realistically complex
situations with nonstationary at . A more precise description of
the avalanche size in such situations, however, would require
extending our analysis to Gibrat’s processes with nonstation-
ary at .
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