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This Letter investigates the nature of synchronization in multilayered and multiplexed populations in which
the interlayer interactions are randomly pinned. First, we show that a multilayer network constructed by setting
up all-to-all interlayer connections between the two populations leads to explosive synchronization in the two
populations successively, leading to the coexistence of coherent and incoherent populations forming chimera
states. Second, a multiplex formation of the two populations in which only the mirror nodes are interconnected
espouses explosive transitions in the two populations concurrently. The occurrence of both explosive synchro-
nization and chimera are substantiated with rigorous theoretical mean-field analysis. The random pinning in the
interlayer interactions concerns the practical problems where the impact of dynamics of one network on that of
other interconnected networks remains elusive, as is the case for many real-world systems.
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Introduction. The dynamical evolution of large-scale com-
plex systems having underlying graph structures has been
popularly modeled using coupled Kuramoto oscillators on
networks [1,2]. A multilayer network, which refers to the
same sets of nodes having different types of interactions
among its units, has brought forward many astonishing phe-
nomena and sheds light on the mechanisms behind emerging
behaviors beyond a single layer framework [3–11]. One such
behavior is explosive synchronization (ES), which refers to
the first-order transition to synchronization [12–20]. In con-
trast to a smooth transition to synchronization, an abrupt jump
to the coherence accompanied by hysteresis is witnessed as
the strength of couplings between the interacting units in-
creases. It is reported that the dynamical or structural features
such as delay, phase lag, and weight adaptation employed in
the intralayer or interlayer couplings in multilayer networks
play a crucial role in controlling the characteristics of emer-
gent ES transition [21–26].

Further, a chimera state (CS) refers to the coexistence of
coherent and incoherent states, which is an upshot of the
partial symmetry breaking of the system [27,28]. A decade
ago, Abrams et al. [29] reported the breathing chimera states
in two groups of identically coupled, phase lagged oscil-
lators. Recently, borrowing the same model but composed
of nonidentical oscillators, the study was extended for a
wider parameter space exhibiting various chimera states [30].
Later, a model considering two groups of the phase lagged
nonidentical oscillators in the presence of adaptively con-
trolled coupling reported the bridging of ES with the chimera
state [31].

Strogatz et al. [32,33] showed that pinning the phases in
networked oscillators to random phases leads to the emer-
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gence of the ES route. This work introduces a concept of
multilayer interpinning (see Fig. 1), which involves pairs of
interconnecting nodes in two populations of nonidentical os-
cillators stuck at independent random phases. Such a scheme
is more relevant when a particular impact of the interdepen-
dence, i.e., how activities of one network get affected by those
of the other networks, is not known or decipherable from the
available data, which is the issue for many complex systems
(see Supplemental Material [34]). Here we show that the in-
terpinned multilayer network sports an interesting dynamical
feature, i.e., the existence of chimera states (CS) during the
explosive transition to synchronization and then desynchro-
nization. The multilayer setup leads to the ES transitions in
the two populations in succession, i.e., one population stays
synchronous while the other stays asynchronous. We also
covered multiplex interpinning (see Fig. 1) in which the par-
allel nodes in the two populations are pinned to the same set
of random phases. This setup induces ES transitions in the
two populations concurrently, i.e., the occurrence of CS is
not witnessed. Our investigation creates distinctions between
the dynamical characteristics of the multilayer and multiplex
interpinning.

Dynamics on multilayer networks. We begin with con-
sidering a multilayer network comprising two interacting
nonidentical populations of the same number of nodes, N .
The evolution of phases θ i

l (i=1 . . . N) in either population
l ∈ {1, 2} is governed by

θ̇ i
l = ωi

l + λ

N

N∑
j=1

sin
(
θ

j
l − θ i

l

) + D

N

N∑
k=1

sin
(
θ k

l ′ − θ i
l − αi

)
,

(1)

where the αi are independent random phases uniformly dis-
tributed on the interval αi ∈ [0, 2π ). The random pinning
phases αi corresponding to the mirror nodes {θ i

l , θ
i
l ′ } in the
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FIG. 1. Schematics of two all-to-all interconnected (green
dashed lines) populations under the impression of interpinning,
where ES and CS refer to explosive synchronization and chimera
states, respectively. Multilayer formation: each node in a population
is interconnected with all the nodes in the other population; for better
clarity, only one node is shown connected with the other nodes in
the other population. Multiplex formation: only mirror nodes are
interconnected.

two populations are taken to be the same. Hence, the phase
differences (θ k

l ′ − θ i
l ) of all the k nodes in population l ′ with an

interconnected node i in population l are pinned at a random
phase αi. For that matter, the third term tends to lead to a static
disorderliness among all the interlayer phase differences. This
static disorderliness creates frustration among the nodes in
either population and hinders the synchronization process in
them. Here, the interlayer coupling strength D also serves
as the pinning strength. The second term fosters intrapopula-
tion coherence as the homogeneous coupling strength λ = λl

strengthens. The frequencies of the nodes in either population
follow a uniform or symmetric distribution g(ωl ). Our aim is
to comprehend how the behavior of phase synchronization in
the two populations is influenced by the random interpinning.
For that matter, the degree of synchronization in each popula-
tion is determined by the order parameter defined as

rle
iψl = 1

N

N∑
j=1

eiθ j
l , (2)

where ψl is the average phase of population l . A stationary
value of r(t ) = r � 1 implies coherence, whereas r(t ) � 0
means complete incoherence. We begin our investigation by
constructing a multilayer network of two globally connected
(GC) populations, each of size N = 1000. The interlayer
couplings between them are subject to random pinning, as
discussed before. Different samples of natural frequencies
for the two populations are selected from either uniform
g(ωl ) ∈ [−�,�] or unimodal symmetric g(ωl ) with mean 0.
Distinct samples of phases for the two populations are drawn
uniformly randomly on [0, 2π ). The phase dynamics of the
multilayer network given by Eq. (1) is evolved using the
Runge Kutta 4th order method with step size dt = 0.01.

a. Explosive synchronization (ES). To witness the occur-
rence of ES, forward ( f ) and backward (b) phase transitions
are observed by computing the order parameter against each
adiabatically increasing or decreasing coupling strength λ in
the steps of dλ, respectively. In Fig. 2, the order parameter
corresponding to different values of the pinning strength D

(a) (b)

FIG. 2. (a), (b) rl−λ exhibiting ES transitions in a GC-GC mul-
tilayer network having uniform ωi

l ∈ [−0.5, 0.5]. The green and
cyan solid lines analytically match the stable synchronous solutions
[Eq. (10)] for both of the populations, while the cyan dashed line
[Eq. (11)] elucidates the bistability in the solution for a population
with hysteresis, as discussed later. Initial transients of forward r f

l

for (c) D = 1 and (d) D = 2. Stationary phases of the two popula-
tions for (e) D = 1 at λ = 1.6 and (f) D = 2 at λ = 2.5. Here, i =
1 . . . 1000 and i = 1001 . . . 2000 belong to θ i

1 and θ i
2, respectively.

is plotted for the forward and backward continuation in λ.
It unveils that a sufficient pinning strength D exerts frustra-
tion at the interconnected nodes and leads to a discontinuous
transition in the two populations, accompanied by hysteresis.
It is apparent that two sets of two distinct critical cou-
pling strengths exist, one {λ f 1

c , λ
f 2
c } for the forward abrupt

transitions and the other {λb1
c , λb2

c } for the backward abrupt
transitions as shown in Figs. 2(a) and 2(b). At the first forward
critical λ

f 1
c , it is the initial condition dependence that one pop-

ulation experiences explosive transition while the other sees
complete incoherence (rl ′ � 0). The two populations remain
in their respective states until second forward λ

f 2
c is reached.

At λ
f 2
c , the coherent population sees a marginal abrupt desyn-

chronization, while the incoherent population experiences
explosive synchronization and traces the other synchronous
population. In the backward transition, the subsequent abrupt
desynchronization of the two synchronous populations takes
place in a similar fashion. The population which synchro-
nizes at λ

f 2
c is the first one to abruptly desynchronize at λb1

c ,
while the other population achieves a marginal abrupt gain
in synchrony before desynchronizing at λb2

c . Next, the critical
coupling points and the hysteresis width can be enhanced by
increasing D as it exerts even more frustration among the
nodes, in turn entailing even larger values of λ for the onset of
an abrupt transition.
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b. Chimera states (CS). Here we emphasize the occurrence
of the chimeric state in the two multilayered populations
during the forward and backward phase transitions. In the
multilayer formation, the two interlinked populations form
the chimeric state, in which one population remains coherent
while the other dwells in complete incoherence. In Figs. 2(e)
and 2(f), for instance, the stationary phases θ i

l of the two
populations are depicted exhibiting chimera states at λ = 2
for different values of D. The region of chimeric occurrence
spans from coupling strength λ

f 1
c to λ

f 2
c during the forward

transition. The area sporting chimera states during the back-
ward transition is stretched out in a relatively narrower region,
beginning from coupling strength λb1

c to λb2
c . For either pop-

ulation, whether it meets the coherence or incoherence in the
chimera region depends purely on the sensitivity to the initial
condition at critical point λ

f 1
c in the forward transition and

λb1
c in the backward transition. Figures 2(c) and 2(d) exhibit

the initial transients of forward rl for the two populations de-
pending entirely upon the initial conditions at t = 0. Further,
the span of the existing chimera states during either the for-
ward or backward transition gets augmented when the pinning
strength is increased, as this, in turn, delays the values of λ

f 2
c

and λb1
c due to enhanced frustration among the nodes. The

same is quite apparent from the rl − λ diagrams in Figs. 2(a)
and 2(b). The Supplemental Material [34] reports (i) the oc-
currence of ES and CS for unimodal distribution g(ωl ) and
(ii) the impact of randomly selected different fractions of the
interpinned nodes on phase transition in the two populations.

c. Theoretical predictions. In the thermodynamic limit
N → ∞, phases θ i

l of the nodes in model (1) are continuous
and a 2π periodic function such that α → θα

l [33]. Each θ i
l

is associated with an αi; hence, relabeling of each θ i
l with its

corresponding α allows us to reexpress the model (1) as [33]

θ̇ α
l = ωα

l + λ

2π

∫ 2π

0
dα′ sin

(
θα′

l − θα
l

)

+ D

2π

∫ 2π

0
dα′ sin

(
θα′

l ′ − θα
l − α

)
, (3)

where l ′ �= l; l, l ′ ∈ {1, 2}. In the limit N → ∞, the order
parameter (2) for a layer l can be rewritten as [33]

rle
iψl = 1

2π

∫ ∞

−∞
dωl g(ωl )

∫ 2π

0
eiθα

l dα. (4)

Model (3) can be expressed in terms of mean-field parameters
rl and ψl ,

θ̇ α
l = ωα

l + λrl sin
(
ψl − θα

l

) + Drl ′ sin
(
ψl ′ − θα

l − α
)
. (5)

Now considering g(ωl ) such that their mean frequencies 	l =
0, then ψl = 0. The criteria for the synchronous states θ̇ α

l = 0
in either population then yields

eiθα
l =

iωα
l ±

√
|u + veiα|2 − [

ωα
l

]2

u + veiα
, (6)

where u = λrl and v = Drl ′ . After substituting eiθα
l from

Eq. (6) into Eq. (4), one obtains the following expression for

the order parameter:

rl = 1

2π

∫ ∞

−∞
dωl g(ωl )

∫ 2π

0
dα

[
iωl ±

√
|u + veiα|2 − ω2

l

]
u + veiα

.

(7)

We theoretically obtain the solutions for synchronous states
by considering uniform g(ωl ) = 1

2γ
for wα

l ∈ [−γ , γ ] such
that 	l = 0. For the uniform g(ωl ), the first part of the in-
tegration in the order parameter (7) vanishes,

1

2π

∫ γ

−γ

dωl

2γ

∫ 2π

0
dα

iωl

u + veiα
= 0, (8)

and only the second part accounts for the order parameter.
Since we must have rl > 0, the + sign in the second term in
Eq. (7) is taken into account and then rl can be reexpressed in
terms of z = u/v as

rl = 1

2π

∫ γ

−γ

dωl

2γ

∫ 2π

0
dα

√
|z + eiα|2 − [ωl/v]2

z + eiα
. (9)

After carrying out some mathematical simplifications, the real
part of the order parameter is expressed as

rl = 1

2π

∫ γ

−γ

dωl

2γ

∫ 2π

0
dα

√
z2 + 2z cos α + 1 − [ωl/v]2

z2 + 2z cos α + 1

×(z + cos α). (10)

Here, rl = 0 is one of the solutions of Eq. (10) for z = 0, i.e.,
u = 0 and v �= 0. The bifurcating solutions in the vicinity of
z = 0 (z → 0) are obtained by the series expansion of Eq. (10)
for 0 < z < 1:

rl = z3

16
[
1 − γ 2

v2

]3/2 + u

2γ
arcsin

[
γ

v

]
+ O(z4). (11)

The solutions for the order parameter given by Eqs. (10) and
(11) are depicted, respectively, by cyan and green solid lines,
and cyan dashed lines in Figs. 2(a) and 2(b) for different
values of D. In Fig. 2(a) for D = 1, Eq. (10) yields stable
coherent traces for rb

2 after supplying v=rb
1 � 0.004 (from

simulation) at λb2
c , while Eq. (11) does not hold any feasi-

ble solution as no hysteresis exists for r f ,b
2 . Hence, at λb2

c ,
v = rb

1 � 0 yields a large u = rb
2, which defines one boundary

for chimeric states. Further, the stable and unstable traces for
rb

1 using Eq. (10) and Eq. (11), respectively, are obtained after
supplying v = rb

2 � 0.978 (from simulation) at λb1
c . Hence, at

λb1
c , v = rb

2 � 1 yields u = rb
1 � 0, which defines the other

boundary for chimeric states. During the forward transition,
r f

1 = 0 [from Eq. (10)], the stable fixed point solution for
λ < λ

f 2
c becomes unstable at λ

f 2
c when it coalesces with the

unstable fixed point given by Eq. (11). Hence, for λ > λ
f 2
c ,

the incoherence is lost (unstable r f
1 = 0), as shown by the

cyan dashed line [Eq. (11)], and a stable solution at large r f
1

abruptly emerges. During the backward transition, the stable
fixed point rb

1 [Eq. (10)] and the unstable fixed point [Eq. (11)]
coalesce at λb1

c , and both are then annihilated; in turn, the
coherent trace rb

1 is lost for λ < λb1
c . Only the stable incoherent

solution rb
1 � 0 then exists for λ < λb1

c .
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FIG. 3. rl for GC-GC multiplex network as a function of λ sim-
ulated for uniform g(ωl ) with � = 1.

In similar fashion for D = 2 [see Fig. 2(b)], the stable
coherent and unstable traces for rb

1 and rb
2 are obtained using

Eqs. (10) and (11) after supplying v = rb
2 � 0.002 (at λb2

c ) and
v = rb

1 � 0.99 (at λb1
c ), respectively.

Thus, the theoretical predictions given by Eqs. (10) and
(11) successfully elucidate the subsequent onset of explosive
synchronization and desynchronization transitions in the two
populations with defined boundaries for chimera states as in
the critical coupling strengths.

Dynamics on multiplex networks. Next, we treat a multiplex
framework of the model given in Eq. (1), which considers
interactions only between the mirror adjacent nodes in the
two populations. The evolution of phases in the multiplex
network possessing random interpinning in the mirror nodes
is expressed as

θ̇ i
l = ωi

l + λ

N

N∑
j=1

sin
(
θ

j
l − θ i

l

) + D sin
(
θ i

l ′ − θ i
l − αi

)
.

(12)

Synchronization diagrams for such multiplex network consist-
ing of two GC populations are shown in Fig. 3 for different
values of D. Both the forward critical coupling strength and
the hysteresis width increase with the increase in D. Also,
no initial condition dependence of the order parameter is
witnessed for the multiplexed populations, unlike what we
witnessed in the case of the multilayered populations.

a. Phase plot in D − λ space. To have a complete picture of
the nature of the transition with change in the pinning strength,
we draw a phase plot in the D − λ space for each layer.
The color profile in the D − λ space in Fig. 4 illustrates the
abrupt jump size |r f

l − rb
l |; l ∈ [1, 2] for GC-GC multiplexes

having natural frequencies drawn from a uniform distribution.

FIG. 4. Abrupt jump size |r f
l − rb

l |; l ∈ [1, 2] and hysteresis
width in D − λ space for GC-GC multiplex network (N = 1000)
having uniform frequencies with � = 1.
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FIG. 5. Phase distribution of �θα = |θα
1 − θα

2 |, and �θα as a
function of α for different values of λ for the GC-GC multiplex
network with D = 3 and uniform ωα

l with � = 1.

A profound distinction in color between the hysteresis region
and asynchronous or synchronous region can be witnessed
for pinning strength D > 1. The magnitude of forward and
backward critical coupling strength and hysteresis width cor-
responding to a pinning strength D can also be extracted from
the D − λ phase plots.

b. Distribution of difference of mirror phases. Here, we in-
vestigate the microscopic dynamics of �θα = |θα

1 − θα
2 |, the

phase difference between the mirror nodes. Figure 5 illustrates
the distribution P(�θα ) in the asynchronous and synchronous
states which belong to the r − λ profile for D = 3 in Fig. 3.
The distribution P(�θα ) for any λ < λ

f
c exhibits two peaks

at �θα = 0 and �θα = π , as shown in Fig. 5(a). It implies
that for any λ belonging to the asynchronous state, the N-
sized population of �θα is segregated notably in two clusters,
one at 0 or 2π , and the other at π , with a few sparsely
populated elsewhere. On the other hand, in the synchronous
state λ > λ

f
c , the P(�θα ) exhibits bimodal peaks with their

minima located at either π/2 or 3π/2 [see Fig. 5(b)], and
hence the two peaks are located at a spread of π/4 on either
side of the minima. Furthermore, we study �θα as a function
of α in Fig. 5 for different values of λ. For any λ < λ

f
c

[see Fig. 5(c)], the nodes whose initial independent pinning
phases are bounded within α ∈ [π/2, 3π/2] achieve a steady
state around �θα = π , whereas the nodes whose α∈[0, π/2]
or α∈[3π/2, 2π ] settle on about �θα = 0, 2π in the steady
state. Nevertheless, for any λ > λ

f
c [see Fig. 5(d)], the steady

state values of �θα are spread between either [5π/4, 7π/4]
or [π/4, 3π/4] depending on the value of λ. The stationary
population of �θα in the asynchronous and synchronous state
corroborates with the findings for P(�θα ).

The robustness of interpinning prescription against popula-
tions’ topology. The interpinning prescription to the multilayer
and multiplex networks also successfully applies to the pop-
ulations’ connectivity manifesting a topology other than
GC-GC. We demonstrate this representing the two popula-
tions by ER-ER (Erdös Rényi) random [35] and WS-WS
(Watts-Strogatz) small-world [36] networks interconnected in
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(a) (b)

(c) (d)

FIG. 6. rl − λ profiles for ER-ER and WS-WS populations
(〈k1〉 = 〈k2〉 = 12; N = 1000, ωi

l∈[−0.5, 0.5]). For multilayer net-
works with (a) ER and (c) WS interconnectivity 〈kI〉 = 8. For
multiplex networks, (b) ER-ER and (d) WS-WS.

multilayer formation,

θ̇ i
l = ωi

l + λ

N∑
j=1

Ai j
l sin

(
θ

j
l − θ i

l

)

+ D
N∑

k=1

Aik
I sin

(
θ k

l ′ − θ i
l − αi

)
, (13)

and multiplex formation,

θ̇ i
l = ωi

l + λ

N∑
j=1

Ai j
l sin

(
θ

j
l − θ i

l

) + D sin
(
θ i

l ′ − θ i
l − αi

)
,

(14)

where Al ; l∈{1, 2} represents the adjacency matrix of a
population. The multiplex formation given by Eq. (14) has
the interconnections only with the mirror nodes, while the
interconnections in the multilayer formation given by Eq. (13)
manifest ER (WS) network connectivity AI with average

degree 〈kI〉. The ER-ER (WS-WS) populations interpinned
in multilayer and multiplex formations also exhibit ES
transitions successively and simultaneously, as shown in
Fig. 6(a) [Fig. 6(c)] and Fig. 6(b) [Fig. 6(d)], respectively.
Nonetheless, the multiplex and multilayer formations of
BA-BA populations, where BA (Barabási-Albert) denotes
scale-free topology [37], do not exhibit an ES transition
because of the heterogeneity of BA topology.

Conclusion. In summary, we considered multilayer net-
works in which two populations are randomly interpinned.
Such an arrangement leads to the explosive synchronization
in the two populations in succession. After the initiation
of an explosive transition in one population, the multilayer
networks stay in the coexisting state of coherent and inco-
herent populations until the other population also undergoes
the explosive transition. Such chimeric pattern in the two
populations is witnessed during their explosive transition to
synchronization and then desynchronization. Also, the abrupt
synchronization and desynchronization transition is found to
be initial condition dependent. The analytical predictions for
the order parameter are also provided, which fall into good
agreement with the numerical estimations. We also explored
the phase transition in the multiplex network in which only
mirror nodes in the two populations are randomly interpinned.
In the multiplex network, both of the populations’ espoused
explosive transitions route to synchronization simultaneously.
The order parameters of the populations in multiplex forma-
tion did not exhibit any chimeric state and initial condition
dependence. One can find an analogy of the abrupt onset (ex-
plosive transition) to the chimeric state and then abrupt return
to normalcy in the multilayer formation of two populations
with the sudden onset and offset of the focal seizures in the
brain in which only a part of the brain experiences a seizure
episode, while the other part functions normally [38].
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