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Stochastic interpretation of g-subdiffusion process
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Recently, we considered the g-subdiffusion equation with a fractional Caputo time derivative with respect to
another function g, T. Kosztołowicz et al. [Phys. Rev. E 104, 014118 (2021)]. This equation offers different
possibilities for modeling diffusion such as a process in which a type of diffusion evolves continuously over
time. However, the equation has not been derived from a stochastic model and the stochastic interpretation of g
subdiffusion is still unknown. In this Letter, we show the stochastic foundations of this process. We derive the
equation by means of a modified continuous time random walk model. An interpretation of the g-subdiffusion
process is also discussed.
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Introduction. Subdiffusion occurs in media in which the
movement of diffusing molecules is very difficult due to the
complex internal structure of the medium. A useful tool used
in normal and anomalous diffusion modeling is the continuous
time random walk (CTRW) model [1–15], and the citation
list on this issue can be significantly extended. Within this
model, a distribution of time between particle jumps ψ has a
heavy tail for subdiffusion, ψ (t ) ∼ 1/t1+α , 0 < α < 1 [6–17].
This model provides the “ordinary” subdiffusion equation
with the fractional order Riemann-Liouville or Caputo deriva-
tive [10–16,18–24]. Recently, a more general subdiffusion
equation with the Caputo derivative with respect to another
function g has been considered [25] (see also Ref. [26]);
we call it the g-subdiffusion equation which describes the
g-subdiffusion process. As shown in Ref. [25], this equation
describes a process in which a type of diffusion can change
over time. As we discuss later, the g-subdiffusion equation can
be used to describe a process in which ordinary subdiffusion is
additionally slowed down. Such a process may occur, among
others, in the diffusion of drugs in a system consisting of
packed gel beads immersed in water [27] and in the diffusion
of antibiotics in a bacterial biofilm [28]. Unfortunately, g
subdiffusion does not yet have a stochastic interpretation. We
show how to derive the g-subdiffusion equation by means of
a modified CTRW model and we discuss the interpretation of
this process.

“Ordinary” subdiffusion equation. The fractional subdif-
fusion equation with an “ordinary” Caputo derivative of the
order α ∈ (0, 1) is [24]

C∂αP(x, t )

∂tα
= D

∂2P(x, t )

∂x2
, (1)
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where the Caputo fractional derivative is defined for 0 < α <

1 as
Cdα

dtα
f (t ) = 1

�(1 − α)

∫ t

0
(t − u)−α f ′(u)du, (2)

α is a subdiffusion parameter, and D is a generalized diffu-
sion coefficient measured in the units of m2/sα . To solve the
equation the Laplace transform L can be used,

L[ f (t )](s) =
∫ ∞

0
e−st f (t )dt . (3)

Due to the relation

L
[Cdα f (t )

dtα

]
(s) = sαL[ f (t )](s) − sα−1 f (0), (4)

where 0 < α � 1, we get

sαL[P(x, t )](s) − sα−1P(x, 0) = D
∂2L[P(x, t )](s)

∂x2
. (5)

g-subdiffusion equation. In this Letter, functions describ-
ing g subdiffusion are denoted by a tilde. The g-subdiffusion
equation reads

C∂α
g P̃(x, t )

∂tα
= D

∂2P̃(x, t )

∂x2
, (6)

where 0 < α < 1, the Caputo derivative with respect to an-
other function g is defined as [29]

Cdα
g f (t )

dtα
= 1

�(1 − α)

∫ t

0
[g(t ) − g(u)]−α f ′(u)du, (7)

the function g fulfills the conditions g(0) = 0, g(∞) = ∞,
and g′(t ) > 0 for t > 0, and its values are given in a time
unit. When g(t ) = t , the g-Caputo fractional derivative takes
a form of the ordinary Caputo derivative. To solve Eq. (6) the
g-Laplace transform can be used, and this transform is defined
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as [30]

Lg[ f̃ (t )](s) =
∫ ∞

0
e−sg(t ) f̃ (t )g′(t )dt . (8)

Due to the property [30]

Lg

[Cdα
g

dtα
f̃ (t )

]
(s) = sαLg[ f̃ (t )](s) − sα−1 f̃ (0), (9)

the procedure of solving Eq. (6) is similar to the procedure
of solving an ordinary subdiffusion equation by means of the
ordinary Laplace transform method. In terms of the g-Laplace
transform the g-subdiffusion equation is

sαLg[P̃(x, t )](s) − sα−1P̃(x, 0) = D
∂2Lg[P̃(x, t )](s)

∂x2
. (10)

Using the g-Laplace transform to Eq. (6) yields Eq. (10) in the
same form as Eq. (5).

Model of a particle random walk. To derive the subdiffusion
equation we use a simple model of a particle random walk
along a one-dimensional homogeneous lattice. Usually, in the
CTRW model both a particle jump length and waiting time
for a particle jump are random variables. In our consider-
ations, we assume that the jump length distribution λ has
the form λ(x) = 1

2 [δ(x − ε) + δ(x + ε)], where δ is the delta
Dirac function. Only the choice of a particle jump direction is
random, where its length ε is a parameter. We start with the
particle random walk model in which the particle positions
and time are discrete. Next, we move to continuous variables.
A random walk with discrete time n is described by the
equation Pn+1(m) = 1

2 Pn(m + 1) + 1
2 Pn(m − 1), where Pn(m)

is a probability that a diffusing particle is at the position m
after the nth step. Let the initial particle position be m = 0.
Moving from discrete m to continuous x spatial variable we
assume x = mε and Pn(x) = Pn(m)/ε, where ε is a distance
between discrete sites. The above equations and the relation
[Pn(x + ε) + Pn(x − ε) − 2Pn(x)]/ε2 = ∂2Pn(x)/∂x2, ε → 0,
provide the following equation in the limit of small ε,

Pn+1(x) − Pn(x) = ε2 ∂2Pn(x)

∂x2
. (11)

To move from discrete to continuous time we use the formula
[1]

P(x, t ) =
∞∑

n=0

Qn(t )Pn(x), (12)

where Qn(t ) is the probability that a diffusing particle takes n
steps in the time interval (0, t ). The function Qn is determined
differently for ordinary subdiffusion and g subdiffusion. In the
following, we find the rule for determining the functions Qn

and the explicit form of the functions ψ for both processes.
These functions, together with Eqs. (11) and (12), provide
ordinary subdiffusion and g-subdiffusion equations.

The case of ordinary subdiffusion. In this case the function
Qn is a convolution of n distributions ψ of a waiting time for a
particle to jump and a function U which is the probability that
a particle does not change its position after the nth step,

Qn(t ) = (ψ ∗ ψ ∗ · · · ∗ ψ︸ ︷︷ ︸
n times

∗U )(t ), (13)

where the convolution is defined as

( f ∗ h)(t ) =
∫ t

0
f (u)h(t − u)du. (14)

The ordinary Laplace transform has the following prop-
erty that makes the transform useful in determining the
function Qn,

L[( f ∗ h)(t )](s) = L[ f (t )](s)L[h(t )](s). (15)

From Eqs. (12), (13), and (15) we have

L[P(x, t )](s) = L[U (t )](s)
∞∑

n=0

Ln[ψ (t )](s)Pn(x). (16)

Combining Eqs. (11), (12), and (16) we get

2[1 − L[ψ (t )](s)]

ε2L[ψ (t )](s)
L[P(x, t )](s) − 2L[U (t )](s)

ε2L[ψ (t )](s)
P(x, 0)

= ∂2L[P(x, t )](s)

∂x2
. (17)

Comparing Eq. (17) with Eq. (5) we conclude that they are
identical only if

1 − L[ψ (t )](s)

L[ψ (t )](s)
= ε2sα

2D
,

L[U (t )](s)

L[ψ (t )](s)
= ε2sα−1

2D
.

The solutions to the above equations are

L[ψ (t )](s) = 1

1 + ε2sα

2D

, (18)

and

L[U (t )](s) = ε2sα−1

2D
(
1 + ε2sα

2D

) = 1 − L[ψ (t )](s)

s
. (19)

Due to the relations

L[1](s) = 1

s
, L

[∫ t

0
f (u)du

]
(s) = L[ f (t )](s)

s
, (20)

we get

U (t ) = 1 −
∫ t

0
ψ (u)du. (21)

In order to find the function ψ we use the relation [31]

L−1[sνe−asβ

](t ) = 1

t1+ν

∞∑
k=0

1

k!�(−ν − βk)

(
− a

tβ

)k

≡ fν,β (t :a), (22)

where a, β > 0, and � is the Euler’s gamma function. The
function fν,β is the Wright function and the special case
of Fox’s H function. To find the inverse Laplace trans-
form of Eq. (18) first we calculate the inverse Laplace
transform of the function e−asβ

/(1 + τ sα ), where τ = ε2/2D
and a, β > 0, using the formula 1/(1 + u) = ∑∞

n=0 un when
|u| < 1. We get

L
[

e−asβ

1 + τ sα

]
(s)=

{
1
τ

∑∞
n=0

(− 1
τ

)n
s−(n+1)αe−asβ

, s > 1
τ 1/α ,∑∞

n=0(−τ )nsnαe−asβ

, s < 1
τ 1/α .

(23)

L042101-2



STOCHASTIC INTERPRETATION OF G-SUBDIFFUSION … PHYSICAL REVIEW E 104, L042101 (2021)

Next, we take the limit of a → 0. From Eqs. (22), (23), and
the relations fν,β (t ; 0) = 1/�(−ν)t1+ν , 1/�(0) = 0, we get

ψ (t ) =
{ 1

τ

∑∞
n=0

(− 1
τ

)n t (n+1)α−1

�((n+1)α) , t < τ 1/α,∑∞
n=0 (−τ )n+1 t−(n+1)α−1

�(−(n+1)α) , t > τ 1/α.
(24)

We have ψ (t ) ≈ ατ/�(1 − α)t1+α in the limit of t →
∞. The function ψ was already derived using the rela-
tion L−1[1/(1 + τ sα )] = tα−1Eα,α (−tα/τ ), where Eα,α (z) =∑∞

n=0 zn/�(α(n + 1)) is the two-parameter Mittag-Leffler
function (see, for example, Ref. [32]). Then, the function ψ

corresponds to Eq. (24) but for the case of t < τ 1/α only.
The case of g subdiffusion. To get Eq. (10) we use the g-

Laplace transform. This transform has the following property
[30],

Lg[( f ∗g h)(t )](s) = Lg[ f (t )](s)Lg[h(t )](s), (25)

where the g convolution is defined as

( f ∗g h)(t ) =
∫ t

0
f (u)h[g−1(g(t ) − g(u))]g′(u)du. (26)

We involve the g convolution in the CTRW model. Then, the
procedure for deriving the g-subdiffusion equation using the
g-Laplace transform is analogous to the procedure for deriving
the ordinary subdiffusion equation using the ordinary Laplace
transform. Assuming

P̃(x, t ) =
∞∑

n=0

Q̃n(t )Pn(x) (27)

and

Q̃n(t ) = (ψ̃ ∗g ψ̃ ∗g · · · ∗g ψ̃︸ ︷︷ ︸
n times

∗gŨ )(t ), (28)

from Eqs. (25), (27), and (28) we obtain

Lg[P̃(x, t )](s) =
∞∑

n=0

Lg[Ũ (t )](s)Ln
g[ψ̃ (t )](s)Pn(x). (29)

From Eqs. (11) and (29) we get

1 − Lg[ψ̃ (t )](s)

ε2Lg[ψ̃ (t )](s)
Lg[P̃(x, t )](s) − Lg[Ũ (t )](s)

ε2Lg[ψ̃ (t )](s)
P̃(x, 0)

= ∂2L[P̃(x, t )](s)

∂x2
. (30)

Equations (30) and (10) are identical only when

Lg[ψ̃ (t )](s) = 1

1 + ε2sα

2D

(31)

and

Lg[Ũ (t )](s) = ε2sα−1

2D
(
1 + ε2sα

2D

) . (32)

Comparing Eqs. (31) and (32) with Eqs. (18) and (19), respec-
tively, we get

Lg[ψ̃ (t )](s) = L[ψ (t )](s), (33)

Lg[Ũ (t )](s) = L[U (t )](s). (34)

From the relation

Lg[ f̃ (t )](s) = L[ f̃ (g−1(t ))](s), (35)

we get the following rule [25],

Lg[ f̃ (t )](s) = L[ f (t )](s) ⇔ f̃ (t ) = f (g(t )). (36)

Due to Eq. (36), from Eqs. (33) and (34) we obtain

ψ̃ (t ) = ψ (g(t )), (37)

and

Ũ (t ) = U (g(t )). (38)

Equations (24) and (37) provide

ψ̃ (t ) =
⎧⎨
⎩

1
τ

∑∞
n=0

(− 1
τ

)n g(n+1)α−1(t )
�((n+1)α) , t < g−1(τ 1/α ),∑∞

n=0 (−τ )n+1 g−(n+1)α−1(t )
�(−(n+1)α) , t > g−1(τ 1/α ).

(39)

We get ψ̃ (t ) ≈ ατ/�(1 − α)g1+α (t ) when t → ∞.
We link the g convolution with the ordinary convolution.

Let f̃ (t ) = f (g(t )) and h̃(t ) = h(g(t )). After simple calcula-
tion we get

( f̃ ∗g h̃)(t ) = ( f ∗ h)(g(t )). (40)

From Eqs. (27), (28), and (40) we have

P̃(x, t ) =
∞∑

n=0

Qn(g(t ))Pn(x). (41)

Comparing Eqs. (41) and (12) we obtain

P̃(x, t ) = P(x, g(t )). (42)

Interpretation. The g-subdiffusion process is associated to
ordinary subdiffusion controlled by the same parameter α.
The waiting time for a particle jump in the g-subdiffusion
process is controlled by the functions ψ and g. A particle
jump that would occur with some probability after time t in
an ordinary subdiffusion process will occur with the same
probability after time t̃ = g−1(t ) in the g-subdiffusion process.
If g(t ) < t , we have t < t̃ , and subdiffusion is then slowed
down. When g(t ) > t , subdiffusion is accelerated.

An example of g subdiffusion is the diffusion of molecules
in a medium consisting of a matrix in which there are nar-
row channels. If the channels have a complicated geometric
structure and diffusing molecules do not interact with the
matrix, then ordinary subdiffusion controlled by the parameter
α occurs. If the matrix provides the diffusing molecules with
additional energy, subdiffusion can be accelerated. When tem-
porary penetration of a molecule into the matrix is possible,
then the molecule “disappears” from the channels and may
diffuse further upon returning to a channel. In this case, ordi-
nary subdiffusion is slowed down. Such a process occurs in a
vessel filled with alginate beads immersed in water in which a
colistin antibiotic diffuses [27]. Other examples of the possi-
ble application of the g-subdiffusion equation is the diffusion
of drugs [33–36] or fertilizers [37–39] in systems consisting
of beads immersed in water. We also suppose that the g-
subdiffusion model can be used to describe the diffusion of
antibiotics in a biofilm. Biofilms usually have a gel structure.
When the antibiotic does not interact with bacteria, ordinary
antibiotic subdiffusion in the biofilm is expected. However,
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bacteria in the biofilm have different defense mechanisms
against the action of the antibiotic. These mechanisms may
hinder or even facilitate antibiotic subdiffusion (see Ref. [28]
and the references cited therein). Thus, the application of
the g-subdiffusion equation to describe this process may be
effective.

Final remarks. We have shown that the g-subdiffusion
equation can be derived by means of the modified CTRW
model (we call it the g-CTRW model). In the g-CTRW model
we use g convolution and the g-Laplace transform instead of
“ordinary” convolution and the “ordinary” Laplace transform,
respectively, which are used in the “ordinary” CTRW model.

We note that the condition Lg[ψ̃ (t )](0) = 1 does not guar-
antee that the function ψ̃ is normalized. Therefore, ψ̃ is not
a probability distribution. Thus, it seems that the g-CTRW
model is merely a mathematical procedure. However, this
model can be interpreted as an ordinary CTRW model in

which the timescale is controlled by the function g(t ) [see
Eqs. (37)–(42)]. The key issue for the g-subdiffusion process
is determining the parameter α and the function g. An ex-
ample of their determination from empirical data is shown in
Ref. [27].

In practice, the transformations made in deriving the g-
subdiffusion equation within the g-CTRW model are the
same as in deriving the ordinary subdiffusion equation using
ordinary CTRW. Within the ordinary CTRW, subdiffusion-
reaction equations [40] as well as the Green’s functions and
membrane boundary conditions for a system in which a
thin membrane separates different subdiffusive media [41]
have been derived. Within the g-CTRW model the same pro-
cedures can also be used to derive g-subdiffusion-reaction
equations, Green’s functions, and boundary conditions at
the membrane for the processes described by g-subdiffusion
equations.
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and M. Arabski, arXiv:2107.02419.

[28] T. Kosztołowicz and R. Metzler, Phys. Rev. E 102, 032408
(2020); T. Kosztołowicz, R. Metzler, S. Wąsik, and M. Arabski,
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