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Pattern stabilization in swarms of programmable active matter:
A probe for turbulence at large length scales
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We propose an algorithm for creating stable, ordered, swarms of active robotic agents arranged in any given
pattern. The strategy involves suppressing a class of fluctuations known as “nonaffine” displacements, viz., those
involving nonlinear deformations of a reference pattern, while all (or most) affine deformations are allowed. We
show that this can be achieved using precisely calculated, fluctuating, thrust forces associated with a vanishing
average power input. A surprising outcome of our study is that once the structure of the swarm is maintained at
steady state, the statistics of the underlying flow field is determined solely from the statistics of the forces needed
to stabilize the swarm.
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A bird flock or school of fish often shows large-scale
collective and coordinated motion [1–8]. Such behavior not
only protects individuals in the group from predators but also
reduces hydrodynamic effects [8–12]. Pattern formation while
flocking, of course, is an interplay between hydrodynamic
interactions mediated by embedded fluid medium and how
well swimmers respond to it [11–16]. Studies have shown that
self-propelled agents, equipped with reinforcement learning
algorithms, can adapt to minimize collective flying efforts and
produce stable geometrical patterns [13]. Experiments have
also used inanimate, autonomous agents such as active col-
loidal particles or robotic agents to mimic collective motion
observed in nature [17–22].

The use of a patterned swarm of drones has shown
immense potential in surveying, disaster management, and
setting up a communication network in inaccessible loca-
tions [23–31]. Typical strategies for maintaining a pattern
involves accurate measurement of the velocity of the fluid
medium and actively compensating for the disruptive forces
at the level of individual agents using computations performed
at a central command and control station [32–34]. Although a
fixed patterned arrangement of drones is obtained, the result-
ing swarm requires calm weather to operate and uses various
collision avoidance and machine-learning algorithms, which
increase operational and computational complexity [35–39].

In this letter, we propose a strategy to produce posi-
tionally ordered patterns of drones or robotic agents or
“bots” [23,36,40] that are robust and do not require velocity
sensors or any a priori knowledge of the underlying flow
field. Another significant finding of our work is that in certain
conditions, statistical properties of the underlying flow field
can be obtained, as a coproduct, without using any invasive
velocity probes. A common approach for studying flow statis-
tics involves point particles that preferentially sample the flow
structures or using an extended object such as a polymer if
two-point correlations are needed [41–49]. In atmospheric
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turbulence, these approaches are inefficient to obtain Eulerian
statistics since particles separate quickly from one another
due to turbulent diffusion [50]. This knowledge, on the other
hand, would be of great help in interpreting wind patterns [51]
and weather prediction [52], wind energy generation [53],
understanding storms and hurricanes [54], etc.

Consider a system of bots placed in some pattern and
embedded in a flowing medium. For specificity and compu-
tational simplicity, we consider here point particles placed at
equal intervals in a circular geometry of radius Rs in two di-
mensions (see Fig. 1). Our analysis is general and unchanged
if any other pattern or dimension is chosen. The particles have
mass m and are allowed to move within a square box of length
L � Rs. At any time t , the position ri and velocity vi of the ith
particle is determined by the set of Stokes-drag equations [55]
with a constant drag coefficient γ and in the presence of a
background flow field U(ri, t ), viz.,

dri

dt
= vi, (1)

m
dvi

dt
= −γ [vi − U(ri, t )] + �Fi. (2)

Here �Fi represents active forces produced by the bots’ own
propulsion mechanism. These forces may, in principle, be
programmed to mimic intrabot interactions arising from a vir-
tual Hamiltonian. We put m = 1 for our subsequent analysis.
Note that we assume that the bots are small in comparison
to the typical flow structure so that their presence does not
significantly alter the flow field U(ri, t ).

Here U(r, t ) is the solution of the Navier-Stokes equa-
tions under appropriate boundary conditions and parameters
representing fully developed turbulence. To reduce com-
putational cost, however, we use a synthetic, multiscale,
spatiotemporally correlated turbulent-like flow field as de-
scribed in [56–58] for most of our results. We also show later
that our main conclusions are unchanged if a realistic U(r, t )
obtained using direct numerical simulation (DNS) [59,60] is
used.
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The velocity of the field U(r, t ) at any given position
and time is obtained from the Fourier series, U(r, t ) =
V0

∑Nk
n=1 [An cos(kn · r + ωnt ) + Bn sin(kn · r + ωnt )]. Here

Nk is the total number of Fourier modes included and V0 is
a dimensionless constant which determines the strength of
the velocity field. Also, the Fourier coefficients An, Bn and
distribution of modes kn, ωn are chosen randomly with the
constraint that the velocity field produced is incompressible
and the energy spectrum follows Kolmogorov scaling k−5/3;
see the Supplemental Material (SM) [61].

What is the nature of the forces �F needed to maintain the
shape of any given pattern (e.g., a ring) in the presence of tur-
bulent field U(r, t )? It is easy to see that the simplest choice,
viz., nearest-neighbor harmonic forces [62–66], will not work.
Local harmonic forces alone cannot guarantee the stability
of the global pattern, and under the influence of a turbulent
velocity field, the polymer quickly intertwines with itself and
collapses [61]. Increasing the range of the harmonic forces
is ineffective and simply increases the persistence length with
intertwining happening further and further apart unless a large
fraction of particles are bonded to each other [67]. This in-
creases the computational and communication overheads for
large swarms. An alternative may be to incorporate three-body
forces that prefer particular bond angles [68,69]. Even in the
presence of such interactions, the desired pattern may not be
the unique ground state [70], and formulating such interac-
tions may become cumbersome for more complex patterns.
We describe below an algorithm which solves this problem,
guaranteeing a unique global order using forces derived only
from configurations of the local particle neighborhood.

We begin by observing that maintaining local particle con-
nectivity guarantees global stability of any pattern, except
for overall affine deformations, i.e., all translations, rotations,
dilations, and shears. The pattern is represented by a set
of tagged (labeled) reference coordinates {Ri} for particles
(bots) i = 1, . . . , N . Now, any set of particle displacements
ui = ri(t ) − Ri can be projected onto orthogonal nonaffine
and affine subspaces [71,72] by a linear projection operator
P that we define shortly. The nonaffine part of the displace-
ments involves particle rearrangements and changes the local
connectivity of the neighborhood. We show that it is possi-
ble to determine time-dependent forces �Fi(t ) that selectively
suppress nonaffine displacements and therefore maintain local
connectivity [73–76]. Since computation of �Fi(t ) stems from
a linear optimization problem, the desired reference structure
is guaranteed to be the unique ground state [71,77]. While
detailed discussions of the nonaffine projection formalism is
given in [71,77] (see also SM [61]), we briefly recall the main
ideas relevant to the present study.

Around each particle i, define a neighborhood �(i) consist-
ing of the neighbors of the ith particle. In d dimension for a
given coarse-graining volume consisting of N� � N particles
there exist d2 affine and N�d − d2 nonaffine displacement
modes [71,77]. Clearly, for nonaffine displacement modes to
exist, N� requires to satisfy the obvious condition N� > d .
For any generic deformation of �(i), we construct a block
column vector � of size N�d whose elements are � jα =
uα

j − uα
i = (rα

j − rα
i ) − (Rα

j − Rα
i ), ∀ j ∈ �(i), i.e., the

αth component of the relative displacement of particles i

(a) (b)

FIG. 1. Reference structure and coarse-graining volume �.
(a) Model A: Floppy swarm, active particle spaced equally on a
ring. Around particle i coarse-graining volume (pink shaded) is
defined and consists of two left and right neighbors. (b) Model
B: Rigid swarm, active particles equally spaced on a ring (dark
blue) surrounded by layer of concentric ghost particles (light blue).
Coarse-graining volume (pink shaded) around particle i consists of
eight particles.

and j. Next we define the linear projection operator P of
� onto nonaffine subspace such that nonaffine component
of displacements is given by P� and χi({r}, {R}) = �TP�

measures total nonaffinity associated with the deformed �(i).
The projection operator P is a function only of the reference
structure and is given by P = I − M(MTM)−1MT with block
matrix M jα,μν = δαμ(Rν

j − Rν
i ), where Rν

j , Rν
i are νth compo-

nents of the desired reference position of active particles for
j ∈ �(i) [61]. The active forces for the swarm are then defined
as �Fi = −∂ (−hX NX )/∂ri where the parameter hX determines
the strength of nonaffine active forces conjugate to global
nonaffinity field X ({r}, {R}) = N−1 ∑

i χi. Note that although
X is a multiparticle potential, it is fairly short-ranged, and only
the neighboring drones within the coarse-grained region of
a given bot indexed i contributes to the gradient of X (see
Fig. 1 and SM [61] and Fig. S1). In other words, positional
information of only the neighboring drones is required to
calculate nonaffine forces, resulting in reduced communica-
tion and computational cost. By construction, negative values
of hX selectively suppress nonaffine displacements of the
swarm while positive values enhance them. For any desired
reference structure, the matrix P is calculated and uploaded
into the memory of drones. At any time t , a drone, i, can
determine the forces �Fi(t ) from the known instantaneous
positions of its neighbors. Once applied in the form of ex-
tra thrust, these forces tend to reduce X and stabilize the
pattern.

We introduce two distinct models, viz., “Model A”: a floppy
swarm and “Model B”: a rigid swarm; see Fig 1. In Model
A we use a coarse-graining volume � consisting of four
particles, viz., two left and right neighbors of the central
particle. On the other hand, in Model B, active particles are
sandwiched between two concentric rings of “ghost” parti-
cles. The position of the particles in the ghost layers are not
affected by the turbulent field or nonaffine forces and remain
virtual, stored only in the memory of robotic agents. These
virtual coordinates of ghost particles are free to translate and
rotate along with particles of the actual swarm. The ghost
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(a)

(b)

FIG. 2. Time evolution (t1 < t2 < t3) of (a) Model A (hX =
−1000, V0 = 0.5) and (b) Model B (hX = −1, V0 = 1) respectively.
Background color represents the vorticity values (� = ∇ × U) of the
turbulent field. In Model A, a global transformation of the circular
ring to an ellipse is allowed and costs no energy. Model B, on the
other hand, is stiffer. Only a portion of the full simulation cell has
been shown for clarity.

particles in this setting satisfy rigid body constraints, and
therefore their positions are updated by rigid translation and
rotations, r + Vcomδt + �δt ẑ × (r − Rcom ). Here Rcom, Vcom

and � are the center of mass position, velocity, and average
angular velocity of the actual swarm. The ghost particle po-
sitions are included in the coarse-graining volume � and are
taken into account while calculating �Fi for the actual bots.
Coarse-graining volume for Model B thus consists of eight
particles as shown in Fig. 1. Time-dependent configurations
from Model A, shown in Fig. 2(a) reveal a stable elliptical
pattern for sufficiently high values of hX . For small hX , while
the ring may occasionally intertwine with itself, it is guaran-
teed to disentangle back, in sharp contrast to the harmonic
case. Highly elliptical configurations are, however, observed.
The transformation that takes a circle to an ellipse is affine,

and such deformations, no matter how much large, do not
produce any nonaffinity in the system and are allowed as
long as local neighborhood connectivity between particles is
preserved. The presence of ghost particles in Model B serves
as a “stencil” for the physical swarm, and all relative affine
deformations of the swarm keeping ghost particles fixed are
penalized. The only zero energy cost affine transformations
are pure rotations and translations of the system as a whole.
Figure 2(b) shows typical configurations of a Model B swarm.

It is clear that eddies with sizes much smaller than the size
of the swarm cannot affect 〈X 〉. On the other hand, very large
eddies simply carry the swarm along introducing mainly affine
deformations so that 〈X 〉 → 0. Therefore 〈X 〉 grows with de-
creasing eddy size saturating to a limit Xc for eddies below a
cutoff size corresponding to frequency ωc (see SM [61]). The
only two dimensionless quantities are therefore 〈X 〉/Xc and
V 2

0 γωc/|hX | so that the leading behavior of 〈X 〉 ∼ V 2
0 γ /|hX |

for both Models A and B as shown in Fig. 3. The greater
flexibility of Model A implies power expended by nonaffine
forces is much smaller compared to B as we discuss below.

Note that a constant 〈X 〉 implies zero average power. In-
deed, taking a dot product of both sides of the second equation
in Eq. (2) with the velocity vi one obtains the rate of change
of the kinetic energy (= 0 in the steady state) as �Fi · vi −
γ (v2

i − U(r, t ) · vi ). The first term is the power expended by
the nonaffine forces and if vi follows the local fluid velocity
U(r, t ); true for a swarm drifting along with the fluid medium,
this is, on average zero. In practice, the distribution of power
expended by �Fi fluctuates around zero with an error that is
much smaller for Model A than for Model B as expected; see
SM [61] for a detailed analysis for the specific case of the
synthetic turbulent field used in this work.

We end this letter by demonstrating how the Model B
swarm may be used to obtain the statistics of the turbulent
flow field U(r, t ) over a few meters to kilometers. One may be
able to measure the local velocity field using appropriate sen-
sors and compute correlation functions and structure function
“on the fly.” While this is of course possible, drone swarms,
stabilized using forces which suppress X , can go a step fur-
ther. Specifically, the swarm can be used to obtain equal-time

(a) (b)

FIG. 3. Model A (a) and Model B (b): Global nonaffinity 〈X 〉 scales linearly with V 2
0 γ /|hX |. Different symbols represents different

combinations of the nonaffine field hX , V0 and γ (Stokes number). Since global nonaffinity measures the nonaffine deformation of the swarm,
an increase in the value of X as a function of V0 indicates the destabilizing tendency of the background flow. On the other hand, counteracting
nonaffine forces tend to reduce these nonaffine deformations and therefore reduce X . A table of values of V0, hX , and γ for Models A and B
used for generating (a) and (b) is also shown. The square brackets represent an interval with initial, final, and step values, respectively. The
parentheses correspond to different value of γ .

L032601-3



POPLI, PERLEKAR, AND SENGUPTA PHYSICAL REVIEW E 104, L032601 (2021)

(a) (b)

FIG. 4. Longitudinal structure function S||(r) as a function of
distance r = |ri j | measured at Eulerian points (solid brown line)
and using nonaffine forces (colored dots) in Model B. In (a) U(r, t )
is the same synthetic turbulent field used for earlier calculations.
Simulation was done for a ring of radius Rs = 2, box size L = 40,
and N = 128 particles. Inset shows linear regression error E of the
obtained nonaffine force structure function when compared to the
expected 2/3 law. Note that for a given value of γ , there exist a
range of |hX | for which E is minimum. (b) Same as in (a) but for
U(r, t ) obtained from DNS with simulation parameters as Rs = π/5,
box size L = 2π , and N = 128. To highlight the identical scaling,
the velocity structure function obtained using the Eulerian flow field
(solid brown line) is scaled by a constant prefactor.

measurements over a wide range of spatial length scales.
This is useful to probe fields which involve flow structures at
multiple length scales. To see this, we first point out that, in-
terestingly, no knowledge of the velocity field is necessary to
derive the active forces �Fi. They depend only on χ and there-
fore only on the knowledge of the instantaneous and reference
positions of the neighbors. Obtaining information about posi-
tions is technically far easier than measuring local flow ve-
locities. We calculate the longitudinal structure function [50]
for nonaffine forces S||

F (ri j ) = 〈[( �Fi − �F j ) · r̂i j]2〉 by binning
equidistant pairs ri j of drones and averaged over different
realizations.

Figures 4(a) and 4(b) show the nonaffine force structure
function together with the Eulerian form computed for our
synthetic turbulent field U(r, t ) and the flow field obtained
from DNS (see SM [61] for DNS details), respectively. The
structure function of the nonaffine forces reproduces the Eu-
lerian curve. The presence of ghost layers implies that all
displacement of the bots except for uniform translation and
rotations are considered nonaffine and are counterbalanced
by the restoring nonaffine forces. Thus the swarm in Model
B is analogous to elastic ring polymer [49] with the rigid-
ity parameter as |hX |. However, a key difference between
a polymer and our swarm is that for zero or very small
values of rigidity |hX |, the swarm itself is not stable. The
significance of |hX | on the stability of patterned swarm and

the structure function is motivated by [49] and is discussed
below.

By looking at the momentum equation for the bots Eq. (2),
it is possible to define two characteristic timescales, viz., τγ =
m/γ and τX = √

m/|hX |, associated with the damping and
swarm rigidity. Depending on the ratio of these timescales,
various regimes of the swarm exist. For a given background
field, the value of τγ is set by the mass and shape of the
bots. For such a system the swarm itself is not stable for
too small values of |hX |, in contrast to the flexible polymer
described in [49]. On the other hand, a large value of rigid-
ity (|hX |) pushes normal modes of the swarm towards the
higher frequencies with either little or no overlap with the
frequency spectra of the turbulent field. Drawing analogy to a
driven oscillator, the amplitude corresponding to driving fre-
quencies (turbulent frequencies) becomes significantly small
such that any fluctuations created by the background field
dampen quickly with timescale τX . The deformation of the
swarm is therefore not subject to turbulence. This immedi-
ately suggests an optimum value of |hX | for which nonaffine
forces are proportional to the background velocity field and
yields the desired structure function. To identify the optimum
value of |hX |, we plot (Fig. 4 inset) the linear regression er-
ror E = 〈[1 − S||

F (r)r−2/3/〈S||
F (r)r−2/3〉r]2〉r of the nonaffine

force structure function obtained compared to the predicted
2/3 law for various values of γ and |hX |. The inset of Fig. 4(b)
clearly shows a range of the optimum value of |hX | for which
E is the minimum and the structure function of the nonaffine
forces yields the predicted 2/3 behavior. Therefore, an imprint
of the statistics of U(r, t ) is present in the statistics of the
nonaffine forces used to stabilize the swarm! Note that large
values of γ also require large values of |hX | to stabilize. While,
of course, this is achievable in simulations, in the real world
it is limited by the aerodynamics, design, and capacity of the
drones to produce the required thrust.

This surprising result elucidates a very important aspect
of the Model B swarm. Since nonaffine forces need to be
computed anyway in order to stabilize the structure, no extra
measurements are required for obtaining the structure func-
tion of the background flow field. The set of robotic agents
such as drones can be set up as a Model B swarm to probe the
statistics of the atmospheric turbulence at large length scales.
It is also easy to make a swarm switch between Model A and
Model B modes because the difference is only in the reference
configurations. The swarm can, therefore, fly in the floppy
mode to conserve energy but switch to a stiffer configuration
when a measurement of S||(ri j ) is needed.
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