
PHYSICAL REVIEW E 104, L032102 (2021)
Letter

Non-Fickian single-file pore transport
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Single-file diffusion exhibits anomalously slow collective transport when particles are able to immobilize by
binding and unbinding to the one-dimensional channel within which the particles diffuse. We have explored this
system for short porelike channels using a symmetric exclusion process with fully stochastic dynamics. We find
that for shorter channels, a non-Fickian regime emerges for slow binding kinetics. In this regime the average
flux 〈�〉 ∼ 1/L3, where L is the channel length in units of the particle size. We find that a two-state model
describes this behavior well for sufficiently slow binding rates, where the binding rates determine the switching
time between high-flux bursts of directed transport and low-flux leaky states. Each high-flux burst is Fickian with
〈�〉 ∼ 1/L. Longer systems are more often in a low-flux state, leading to the non-Fickian behavior.
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Introduction. Single-file diffusion (SFD), where particles
diffuse within sufficiently narrow channels such that particles
never exchange their relative positions, is exhibited within
a variety of experimental systems [1] including zeolites [2],
colloidal racetracks [3], and carbon nanotubes [4]. SFD has
also been well studied theoretically in model one-dimensional
systems, often focusing on the intriguing tracer dynamics of
individual particles—see, e.g., Refs. [5–11]. Though in non-
interacting SFD systems the collective diffusion of particles
is the same as in simple diffusion (SD) [12,13], collective
transport in SFD can be anomalously slowed with respect to
SD due to transient immobility of particles due to binding and
unbinding from channel walls [14].

Anomalous transport effects have been reported in single-
file water transport through short channels. These effects
range from bursty bidirectional transport seen in molecular
dynamics (MD) studies of short water-filled carbon nanotubes
(CNTs) [4] to experimental reports of an approximately ex-
ponential decrease of net flux with channel length in both
biological and engineered membrane pores [15,16]. While
bursty transport in water-filled CNTs has been attributed to the
dynamics of chains of polarized hydrogen bonds spanning the
length of the channel [17,18], the physics of the anomalous
length dependence of transport in membrane pores is less
clear.

With simple diffusive systems, we expect Fick’s law
to hold, with average flux � inversely proportional to
channel length L, i.e., � ∼ 1/L. This reflects a linear
response of the flux to the average concentration gradi-
ent along the channel. Anomalous exponential scaling of
flux with channel length [15,16] therefore represents “non-
Fickian” behavior. Since these experimental studies are
done with membrane pores with a geometric length span-
ning a phospholipid membrane, the exponential scaling
is only uncovered when the effective length is measured
by the number of charged residues within the channel.
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The anomalous length dependence has therefore been at-
tributed to transient bonds between water and these charged
residues [15,16].

Since the reported non-Fickian length dependence in short
charged channels requires interactions with the channel walls,
we hypothesize that it may be related to anomalous transport
in SFD due to binding and unbinding from channel walls [14].
Accordingly, we will stochastically model SFD transport in
short one-dimensional channels. We will study the effects of
transient particle immobility due to binding.

We allow binding at every site of discrete one-dimensional
channels, so our focus is on how channel length L affects the
average flux of particles for fixed boundary concentrations,
i.e., how permeability scales with L. There are some limits
in which we know that we will observe simple Fickian flux
scaling � ∼ 1/L [14]: For any length channel with either no
particle association or with very fast association-dissociation
dynamics then we expect SD behavior with Fickian transport,
and for sufficiently long systems we also have anomalously
slow but Fickian transport. The mechanism of this anoma-
lously slow transport was found to be the trapping of mobile
particles within “cages” of immobilized particles [14]. Since
cages require multiple bound particles within a channel we
expect different physics for smaller L. Our question then is, do
short channels with slow binding-unbinding dynamics exhibit
a distinctive transport regime?

Model. We consider a discrete symmetric exclusion pro-
cess (SEP) within a one-dimensional channel with L + 1 sites
(we measure length in units of the site spacing a, which is
an effective particle size), with occupancy probability p that
ranges from p0 = 1 at the first site to pL = 0 at the last.
As illustrated in Fig. 1, each particle can transition between
mobile and immobile states at rates kgo and kstop, respectively.
Mobile particles can hop into adjacent empty sites in either
direction at rate khop. We simulate this system with an ex-
act event-driven SSA (stochastic simulation algorithm, i.e.,
kinetic Monte Carlo) [19]. We measure the average net flux
across any point in the system in a steady state. Our code is
freely available [20].
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FIG. 1. Schematic of our model system, with a one-dimensional
channel of length L indexed by discrete positions i ∈ {0, L}. Positions
are either occupied (solid shapes) or unoccupied (dashed circles) by
particles. A concentration gradient across the system induces an aver-
age net flux, and is maintained by imposing p0 = 100% occupancy of
the first site and pL = 0% occupancy of the last site, as indicated. All
particles can transition from mobile (green solid circles) to immobile
(red solid octagons) states, or back, with transition rates kstop and kgo,
respectively. The single-file constraint is imposed by allowing mobile
particles to hop to an adjacent site at a rate khop only if the destination
site is not occupied.

In this model isolated particles exhibit a diffusivity D0 =
khop/[2(1 + KA)], since they spend a fraction 1/(1 + KA) of
their time bound, where KA = kstop/kgo is the binding associ-
ation constant (with disassociation constant KD = 1/KA). For
simple diffusion (SD) we would expect a flux �0 across the
system of �0 ≡ D0(p0 − pL )/L. We have previously shown
that for L � 1 we observe a density-dependent collective dif-
fusion that is well described by D = D0/(1 + p̂ + p̂2), where
the occupation probability p is scaled with p̂ = p/pscale and
pscale ≡ √

(kstop + kgo)/khop(1 + KD) is a characteristic den-
sity [14]. This leads to an average flux

�Fick = 2D0 pscale√
3L

tan−1[(1 + 2 p̂)]
∣∣ p̂0

p̂L
, (1)

that exhibits Fickian (∼1/L) dependence on the system size.
In the limit of fast binding (pscale → ∞) �Fick → �0, but
for slower binding and unbinding kinetics the average flux is
significantly smaller [14].

Results. In Fig. 2(a), we plot the flux ratio �/�0 versus
the system size L for a variety of Rstop ≡ kstop/khop ratios,
as indicated by the legend. We use KA = 10, so that almost
all particles are bound (i.e., immobile) at any given time.
At L = 1, solving the master equation for this system ex-
actly gives �/�0 = 1 independently of either Rstop or KA,
as observed. For fast binding dynamics, with Rstop � 1, we
also recover close to the SD flux ratio of 1 [14]. For larger
L � 1, we asymptotically approach the constant �Fick/�0, as
indicated by the horizontal dashed lines [14]. Note that solid
symbols represent time-averaged fluxes, ignoring the first half
of the data to minimize initial transients. Open symbols, be-
hind the solid symbols, are averaged over the second quarter
of the data—their indistinguishability by the eye indicates that
a steady state has been reached.

In Fig. 2(a), we find that as Rstop decreases the flux even-
tually becomes independent of Rstop. As shown in Fig. 2(b),
we characterize this slow-binding regime for a wide range
of KA values. Here, we use Rstop = 10−7 with colored points
as indicated. Since �0 ∼ 1/L, the L dependence observed in

(a)

(b)

FIG. 2. The time-average flux � divided by the simple-diffusion
(SD) flux �0 = D0/L vs the system size L. (a) For KA = 10 and
various dimensionless binding rates R ≡ kstop/khop as indicated in the
legend. The horizontal black dotted line is the SD result �/�0 = 1,
while the other horizontal dotted lines are the expected L � 1 (Fick-
ian) behavior from Eq. (1), with colors corresponding to the legend.
(b) For Rstop = 10−7, for a variety of association constants KA as
indicated. The diagonal dashed black line indicates �/�0 ∼ 1/L2,
i.e., � ∼ 1/L3. The curved colored lines are from the two-state
model, Eq. (3). The open black circles are experimental data from
Ref. [16]—see Discussion.

�/�0 at intermediate channel lengths represents non-Fickian
behavior. The heavy black dashed line indicates an approxi-
mate 1/L2 dependence of the ratio, implying � ∼ 1/L3. What
is the mechanism of this behavior?

Fast and slow flux states. We consider a two-state model,
where our two flux states are fast (freely flowing, denoted
“ f ”) and slow (plugged, denoted “s”). The system transitions
between these states due to the binding of particles within
the channel. When particles are bound, they act as a plug
that slows the flux. This model is described by the average
lifespans of the states, τ f and τs, and their average fluxes, � f

and �s.
In the fast state, there are no bound particles in the

channel and the average flux � f = D f (pL − p0)/L, where
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D f ≡ khop/2. The lifetime of this state before a binding oc-
curs is τ f = 1/(kstopn f ) ∼ 1/L, where the average number of
particles is n f = (pL + p0)(L + 1)/2. This is a well-defined
dynamical state so long as τ f exceeds the transient timescale
needed to set up the constant density gradient, i.e., τ f �
τtrans ≡ L2/D f . This condition requires the channel to be
shorter than a crossover length,

LX ≡ R−1/3
stop . (2)

Since Rstop = kstop/khop, the L � LX regime extends to arbi-
trarily long pores in the limit of slow binding. For simplicity,
here and subsequently we take p0 = 1 and pL = 0, corre-
sponding to our numerical boundary conditions.

In the slow state, there is at least one bound particle in the
channel. We restrict our attention to the regime of the anoma-
lous effects seen in Fig. 2(b), khop � kstop � kgo, i.e., slow but
strong binding with Rstop � 1 and KA � 1. Initially we expect
a pluglike configuration, with an average number of parti-
cles behind the first bound particle nplug = (L − 1)/2. With
KA � 1, binding within the plug is faster than removing the
first plugged particle and we expect nbound = 1 + ηsnplug/(1 +
KD) particles to be bound within the plug, where we introduce
a dimensionless factor ηs. The lifetime of the plug is then
τs ≡ nbound/kgo ∼ L. Plugs are relatively long lived, with τs >

τ f when KA � 1. The slow flux state corresponds to slowly
clearing the plug over τs, so that �s = (1 + nplug)/τs.

With the lifetimes of the fast and slow flux states, τ f and
τs, we also obtain their respective probabilities q f = 1/(1 +
τs/τ f ) and qs = 1 − q f . The average flux in this two-state
model is then �2 = q f � f + qs�s. While the relative contri-
bution of the slow flux increases with L, it is subdominant for
L � LX where we obtain

�2 � q f � f = 1

1 + τs/τ f

khop

2L

= khop

2L[1 + nboundkstop(L + 1)/(2kgo)]
,

= khop

2L
[
1 + KA(L+1)

2

(
1 + ηs

L−1
2(1+KD )

)] . (3)

For L = 1 we recover the exact flux � = khop/[2(1 + KA)].
The two-state model captures the observed fluxes for small
Rstop with ηs = 0.55, as shown by the dotted lines in Fig. 2(b).
For larger L, we observe � � �2 ∼ 1/L3, as indicated by the
dashed black line. Note that Rstop = 10−7 in Fig. 2(b), so that
all L � LX . When L � LX , indicated by the horizontal dashed
lines in Fig. 2(a), the flux crosses over to the Fickian behavior
described by �Fick in Eq. (1).

Flux switching. The speed of binding does not affect the
average flux �2 in Eq. (3), but determines the largest channel
length LX for which it is observed. Nevertheless, the lifetimes
of the fast and slow states τ f ∼ 1/kstop and τs ∼ 1/kgo do
depend on the binding rates. For fixed KA = kstop/kgo, this
implies switching between high- and low-flux states with a
rate proportional to the dimensionless binding rate Rstop =
kstop/khop.

In Fig. 3 we show a time series of flux (black lines, left
axis) and a number of bound particles (red histograms, right
axis) versus scaled time tRstop, for a hundredfold variation
of the dimensionless binding rate Rstop. The time-averaged

FIG. 3. Two-state switching between fast and slow flux � (black
traces, with a logarithmic scale on the left-hand side) vs scaled time
tRstop. High flux coincides with no bound particles (red histograms,
with a linear scale on the right-hand side) while low flux coincides
with bound (immobile) particles in the channel. Three different rep-
resentative time series are shown, with Rstop = 10−6, 10−5, and 10−4

(top to bottom, as indicated) at fixed KA = 10 with L = 8. The saw-
tooth decrease of bound particle numbers between high-flux events
indicates the slow clearing of the plug in the slow state, followed by
a burst of flux in the fast state. Time units are such that khop = 1.

flux values correspond to each distinct interval of time when
the channel either has any or has no bound particles. These
correspond to the slow and fast states, respectively, of our
two-state model.

The qualitative independence of the scaled plots in Fig. 3 is
consistent with the switching rate between states being scaled
by Rstop. The high-flux state also retains approximately the
same magnitude as Rstop is varied, in agreement with Eq. (3).
The system spends most of the time within the slow state, with
a flux that remains orders of magnitude lower than the fast
state but that increases with Rstop, and with a number of bound
particles that decreases approximately linearly with time in a
distinctive sawtooth pattern.

To examine this switching behavior more quantitatively, in
Fig. 4 we plot both the average lifetimes 〈τ 〉 and the duration-
weighted average fluxes 〈�〉 of the two states (fast with no
bound particles, or slow with bound particles) as either the
system length L or the dimensionless binding rate Rstop is
varied. We anticipate that our two-state model should apply
for L � LX , where we indicate the estimates of our two-state
model with dashed lines. The two-state estimates of lifetime
and flux are remarkably good.

For L � LX , we observe 〈τ 〉 ∼ 1/L for the free-flowing
state, and 〈τ 〉 ∼ L for the slow-bound state. The average flux
〈�〉 when L � LX in the free-flowing state is Fickian with
〈�〉 ∼ 1/L, indicating that the non-Fickian behavior of the
system is controlled by the relative lifetimes of the free-
flowing and slow-bound states. For smaller Rstop we confirm
that the average lifetime 〈τ 〉 ∼ 1/Rstop for both states while
the free-flowing flux is approximately independent of Rstop, in
agreement with Eq. (3).

For L > LX , the average flux of the now-dominant slow-
bound state is Fickian, corresponding to �Fick in Eq. (1) [14]
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(a)

(c) (d)

(b)

FIG. 4. (a) Average duration 〈τ 〉 of states with any particles
bound (orange squares, slow) and all particles free (blue circles, fast)
vs system length L. For all plots, KA = 10, L = 8, and Rstop = 10−5,
unless otherwise indicated; the two-state model calculations are in-
dicated with colored dashed lines for L � LX ≡ R−1/3

stop . (b) Average
flux 〈�〉 in the slow (duration weighted) and fast states vs L. The
dashed black lines indicate �Fick from Eq. (1). (c) Average duration
〈τ 〉 of slow and fast states vs Rstop. (d) Average flux 〈�〉 for slow and
fast states vs Rstop. Time units are such that khop = 1.

and indicated by the dashed black lines. In this regime the
fast state does not reach a dynamical steady state, since 〈τ f 〉
is independent of L and 〈τ f 〉 � τtrans. The slow and fast fluxes
approach each other both when L � LX , indicating that the dy-
namical transition out of the two-state flux-switching regime
is continuous.

Discussion. We have identified and characterized a collec-
tive transport regime for single-file diffusion (SFD) within
short porelike channels. This regime is controlled by the slow
binding and unbinding of diffusing particles to the channel
walls, i.e., transitions between mobile and immobile parti-
cles. The average particle flux is independent of the binding
kinetics—it only depends on the channel length L and the
association constant KA describing the equilibrium particle as-
sociation. The binding kinetics determines the switching rate
between two transport states: fast flowing with no stationary
particles, and slowly leaking with at least one stationary parti-
cle jamming the pore. Transitions between the flux states are
driven by the binding of particles to the channel walls. While
fast-flowing flux is Fickian (with 〈�〉 ∼ 1/L) and dominates
the average flux, the system is only in this state a fraction
q f ∼ 1/L2 of the time. As a result the average flux is non-
Fickian with 〈�〉 ∼ 1/L3 for L � LX , where LX ≡ R−1/3

stop is
a crossover length determined by the dimensionless binding
kinetics (Rstop ≡ kstop/khop).

The anomalous pore-transport regime explored in this Let-
ter can be identified by three effects. First is the non-Fickian
dependence on channel length L. Second is the distinctive
random switching between bursts of high-flux and a low-flux
state, with a timescale that depends on both L and Rstop. Third
is the independence of the average flux on the binding rate

Rstop. All of these effects are closely connected with the SFD
nature of the system, and requires a slow transitioning of
individual particles between mobile and immobile states.

SFD effects in pore transport are important in the con-
texts of biological transport [21], nonequilibrium statistical
mechanics [22], and nanofluidics [23]. Many physical ef-
fects are not considered in our model, such as entry and exit
dynamics [24], two-species or osmotic transport [25], collec-
tive or cluster diffusion [22,26], or heterogeneities along the
pore [27]. These represent possible extensions of our model.

Molecular dynamics (MD) studies of SFD of water
in CNTs have reported non-Fickian scaling of flow with
length [28], but they have been limited to undriven systems
without concentration or pressure gradients and no net flux.
As a result, they reported absolute rather than net flow, as
did earlier MD reports of bursty flow in short fixed-length
CNTs [4,17,18]. These effects have been ascribed to collective
reversals of the hydrogen bonding chain within the CNTs.
Furthermore, MD studies with a nonzero concentration gra-
dient reported no non-Fickian effects [29–32].

Nevertheless, non-Fickian dependence of collective trans-
port has been reported in experimental studies of water in
protein pores [15,16]. An approximately 100-fold decrease
of permeability p f is observed over a narrow range from
0 to 30 in the number of binding sites along the pore (see
Fig. 8 in Ref. [16]). The open circles in Fig. 2(b) show that
these data can be phenomenologically described by our model
with 〈�〉 ∼ 1/L3. Here, we have taken L to be the number
of hydrogen bonding sites along the pore, and plot the re-
ported permeability p f multiplied by 0.0002L (i.e., we pick
�0 ∼ 1/L to fit).

Considering Fig. 2(b), we also observe a similar decrease
of relative flux if KA ≈ 1 and Rstop � 10−4. For water, given a
molecular diffusivity of D ≈ 5 × 10−5 cm2/s [16] and molec-
ular size d ≈ 3 × 10−10 m, we expect a hopping rate khop ≈
1011/s. We would then require kstop � 107/s, with kgo < kstop.
Reported hydrogen bond lifetimes for water associated with
proteins are typically much less than ≈100 ps, which is far too
short. While hydrogen bond lifetimes of trapped water within
globular proteins can reach 10 ms [33], this is due to slow
protein rather than slow water dynamics [34,35]. Using our
mechanism to explain the reported non-Fickian permeability
of water pores would therefore require slow local pore confor-
mational changes in response to local water occupancy. While
none have been reported, MD studies of, e.g., 100 ns [32] may
be too short to capture them.

More generally, to clearly separate the timescales of local
binding and transport probably requires collective dynamics
within either the particles or the channel. In contrast, Brow-
nian dynamics of particles in a fixed potential (see, e.g.,
Ref. [36]) would lead to similar effective unbinding and hop-
ping rates, i.e., kgo ≈ khop or Rstop/KA ≈ 1. In that limit we
do not expect to see strong anomalous transport effects [14].
We require slow binding dynamics with respect to particle
hopping.

For macromolecular SFD transport, long binding lifetimes
with respect to diffusion are possible—and our results could
apply. For long channels with L � LX , Fickian transport is still
expected though with anomalously reduced diffusion [14].
Porelike structures in many cellular secretion systems (e.g.,
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Ref. [37]) could exhibit non-Fickian transport, or luminal
diffusion within microtubules (e.g., Ref. [38]). In any case,
non-Fickian SFD in short channels represents an interesting
dynamical regime for transport within the field of nonequilib-
rium statistical mechanics [22].
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