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Kink propagation and solute partitioning in an atomic monolayer on a substrate
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When a monolayer of Lennard-Jones atoms is driven by an external force over an atomically spaced lattice,
the atoms do not move in the direction of the force. By considering monolayers containing a solvent and two
different solutes, we show that the different atomic species follow distinct directions and so partition from one
another and from the solvent. The strength of the driving force is chosen so that at any instant, most atoms are
stationary while only a small fraction propagates as solitary waves. In this regime, the mean velocity of the
layer is due to the nonzero contribution from merely a few atoms. We also present a simple theory, based on
the probability that an atom in the monolayer will hop from one equilibrium location to the next, that explains
the distinct directions of atomic migration.
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I. INTRODUCTION

When small particles move over a substrate, they do not
follow the direction of the force. Rather, it is observed that
the particle trajectories align with certain lattice directions of
the substrate [1–10]. The trajectory direction is sensitive to
the particle properties, encouraging potential applications to
particle sorting and nanodevice assembly. Experimental stud-
ies have investigated the dynamical and directional behavior
of micron- and nano-sized monolayers [1,6,10,11] as well as
of micro- and nanofluidic systems [9,12] with the smallest
particle size of about 20 nm [4].

To our knowledge, however, directionality of atomic-sized
particles over atomically corrugated substrates has not been
investigated. Studies of molecular motion in the vicinity of a
substrate have the potential to advance our understanding of
a range of phenomena including surface diffusion [13–15],
fluid slip [16–18], molecular-level sorting [19,20], and
lubrication [21].

In this Letter, we report on a numerical simulation of
the dynamics of a monolayer of Lennard-Jones (LJ) atoms
driven by an external force over a thermal solid substrate of
simple cubical symmetry. In these simulations, we consider
monolayers of pure solvent as well as solutions that contain
solute atoms. We vary the direction of the applied force and
investigate the directions that monolayer atoms follow and
their dynamics. We show that for a dense monolayer that is
commensurate with the substrate lattice, both solvent and so-
lute atoms propagate in directions different from one another,
resulting in the solute atoms partitioning from the solvent
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as a result of their particular energetic interaction with the
substrate potential. We find that directionality can be under-
stood after recognizing that at any instant, the dynamics of the
monolayer is dominated by the motion of only a small fraction
of mobile atoms.

While the mean properties of atomic monolayers have been
studied [22–24], the motion of individual atoms in dense
monolayers close to a surface has remained an open question
[25]. We find that, at any instant, while most atoms reside
close to their static equilibrium locations, there is a small
fraction of peripatetic atoms that propagate. The sequential set
of atoms set into motion constitute a disturbance that we refer
to as a kink. The theoretical paradigm for motion of particles
over a rigid periodic substrate is the Frenkel-Kontorova (FK)
model [7,8,26–29]. We find that the propagation of a kink of
discrete atoms over a substrate with a large activation energy
is approximated by the sine-Gordon (sG) equation, which is
the continuum version of the FK model. Kinks are shown to
be localized with a well-defined width and a speed that agrees
well with the speed of sG solitons. In our system they are
also topological with each kink being annihilated or created
pairwise with a vacancy. Finally, the kinks can preserve their
form but are phase shifted by kink-vacancy interactions.

II. METHODOLOGY

We carry out nonequilibrium molecular dynamics simula-
tions of monolayers of pure solvent LJ atoms as well as of
solutions that contain solute atoms that differ in interaction
strength from the solvent atoms, as shown in Fig. 1 [30].
The monolayer is driven over the substrate by applying an
external force on all atoms in the monolayer. The temperature
of the substrate T is maintained at 85 K by using a Langevin
thermostat; solvent and solute atoms are not thermostatted.
Nonbonded interactions are modelled by the LJ potential,
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FIG. 1. (a) Snapshot showing the monolayer of solvent (cyan)
and solute (magenta) atoms, which are initially located at the equi-
librium locations of the LJ potential of the simple cubical lattice
substrate (yellow). (b) Side view. Solid (orange) line indicates the
upper limit of the restraining potential at z = 2σ above the substrate
(see text). (c) Substrate potential U normalized by the thermal energy
kBT as a function of x and y for a solvent atom at the mean height
of the monolayer. Plus (white) markers indicate the equilibrium loca-
tions of the monolayer atoms over the substrate, while the horizontal
and vertical (dashed) lines indicate low-energy corridors connecting
neighboring equilibrium locations. Atoms in the monolayer are sub-
ject to an external driving force F applied at angle α.

U = 4ε[(σ/r)12 − (σ/r)6], which provides a simple model
of atomic interaction, with only an energy parameter ε and
a length parameter σ . Atomic masses are 14 u for the solvent
and solute atoms and 197 u for the substrate atoms.

Table I shows the LJ energy parameters of the four types
of atoms that are present in the numerical simulations. The
length parameter is the same for solvent and solute atoms so
that they both are commensurate with the substrate lattice.
Two types of solute atoms were used, which we refer to as
solute A and solute B. Both solute species have larger LJ en-
ergy parameters than the solvent, making them harder to move
from their equilibrium locations in the substrate potential.

Table I also shows U0, the minimum amplitude of the sub-
strate potential for each of the three types of monolayer atoms.
Here U0 is found from the difference between the potential
energy minimum half-way between two equilibrium locations
and the LJ energy at the equilibrium location.

The solid substrate consists of three 40 × 40 layers of
atoms that are tethered to their cubical lattice positions with
a lattice spacing of λ = 21/6 σ = 0.298 nm by linear springs
with a stiffness k = 46.8 N/m. Periodic boundary conditions
are implemented in x and y directions of the square cell, which
has dimensions Lx = Ly = 40 λ.

TABLE I. The Lennard-Jones energy parameter, ε, of the four
types of atoms in the simulation, and the minimum amplitude of the
LJ potential, U0, experienced by the atoms in monolayer. All atoms
have the same LJ length parameter of σ = 0.266 nm.

Atom type ε/kBT U0/kBT

Solvent 0.553 2.321
Solute A 2.212 3.844
Solute B 6.227 5.795
Substrate 6.227 –

To keep the solvent and solute atoms constrained to a
monolayer, motion in the z direction normal to the sub-
strate is restrained by a repulsive LJ potential, Urep(z) =
4 εrep[σ/(2σ − z)]12, where z is measured from the equi-
librium height of the uppermost layer of the substrate and
εrep/kBT = 1.856. This restraining potential places an upper
limit of zmax = 2σ on the vertical motion of the atoms in
the monolayer. In practice, the range of vertical motion of
the atoms in the monolayer is much smaller, with the mean
vertical position of the monolayer atoms ranging from 0.79σ

to 0.91σ above the upper layer of the substrate.
Both the solvent and solute atoms are initially located at

the minima of the substrate potential energy landscape, as
depicted in Fig. 1. The external force applied to all atoms in
the monolayer is specified by its magnitude F and direction
α. The applied force is chosen to be of sufficiently small
magnitude so that only some atoms are propagating at any
time. In this regime, most atoms in the monolayer vibrate
about their equilibrium location. Occasionally, however, a
monolayer atom will “hop” in either the x or y direction,
creating a defect in the monolayer in which one equilibrium
cell is doubly occupied, and one is vacant. We refer to the
doubly occupied equilibrium location as a kink. The kink
then propagates through the monolayer as neighboring atoms
hop one by one. Because the probability of initiating a hop
depends on the strength and direction of the external force, the
strength of the external force at each angle was chosen so that
the rate of hopping was comparable at all angles, yielding an
applied force between 20.1 and 23.2 pN over the entire range
of 0◦ � α � 45◦.

The direction of atomic migration was analyzed through
simulations with a duration of 140 ns and using a 5 ps
sampling rate. However, in order to resolve the individual
propagation of kinks and vacancies in the monolayer, fem-
tosecond resolution in atomic positions is needed because the
individual atomic hops between equilibrium locations take
less than a picosecond. Therefore, simulations to resolve the
kink and vacancy dynamics have a duration of 2.5 ns and a
sampling rate of 10 fs.

III. ATOMIC MIGRATION RESULTS

We define a hop as the displacement of an atom from one
equilibrium position to a neighboring equilibrium position,
and an atomic trajectory as the path a single atom takes
through the monolayer via a sequence of individual hops.
Figure 2 shows the atomic trajectories of a single solvent atom
(blue) and two individual solute atoms (red for solute A and
green for solute B) for a forcing angle of α = 27.5◦ over a
13-ns segment of a 140-ns simulation. Since the solvent has
the smallest LJ energy parameter, these atoms move the most
freely over the surface and undergo the largest displacement.
The two solute atoms, with larger LJ energies, do not hop as
frequently and have a smaller net displacement. As can be
seen from the figure, most hops occur in either the x or y direc-
tion, as the hopping atoms follow the low-energy corridors in
the substrate potential. At this angle of the driving force, hops
in the x direction occur much more frequently than hops in the
y direction, leading to atomic migration angles that differ from
the angle of the driving force. Crucially, the migration angle

L022801-2



KINK PROPAGATION AND SOLUTE PARTITIONING IN … PHYSICAL REVIEW E 104, L022801 (2021)

FIG. 2. Representative trajectories following individual solvent
and solute atoms over a 13-ns time interval for a forcing angle of
α = 27.5◦ (orange arrow). The trajectory of a typical solvent atom is
shown in blue; trajectories for typical solute A and solute B atoms
are shown in red and green, respectively. The migration angles for
the center of mass of the three species of atoms are indicated by the
solid lines at angles of 14.7◦ for the solvent and 8.39◦ and 4.60◦ for
the solutes. Coordinates have been translated to a common origin and
normalized by the lattice constant λ.

for the center-of-mass motion of each atomic species (shown
as the straight lines in Fig. 2) are different from the driving
angle α and from each other. Thus, we see that neither the
solvent nor the solute migrate in the direction of the external
forcing.

Figure 3 shows the angle of center-of-mass migration for
the solvent and each of the solutes as the direction of the ap-
plied force is varied over the range 0◦ � α � 45◦. In general,
the angle of center-of-mass migration differs significantly
from the angle of the driving force. (At 0◦ and 45◦, the angle

FIG. 3. The migration angle of the center of mass (c.m.) for
atoms in the monolayer, θ , as a function of the angle of the applied
force, α. Solvent: Blue circles; Solute A: Red squares; Solute B:
Green diamonds. The solid lines are the theoretical predictions for
the solvent, Eq. (2), and the solute atoms, Eq. (3). Error bars indicate
the standard deviation of the mean migration angle at each driving
angle. In only a few cases are the error bars larger than the symbols
on the figure.

of center-of-mass migration and the angle of the driving force
must be equal due to symmetry.) The difference is largest at
a driving angle of 27.5◦ and increases with increasing LJ en-
ergy, so that solute B shows the largest deviation in migration
angle.

The trajectories in Fig. 2 follow individual atoms. Alterna-
tively, we track the disturbance created as atoms leave their
equilibrium locations. When an atom hops spontaneously, it
leaves behind a vacant equilibrium location and moves into an
already-occupied equilibrium location. The original occupant
of the doubly occupied site is then dislodged, and it then
moves forward, resulting in a sequence of hopping atoms
and generating the trajectory for the kink. This trajectory will
continue until the kink recombines with a vacancy. Since the
kink trajectories consist of sequences of hops of neighboring
atoms, they tend to follow similar patterns as the trajectories
of individual atoms, with the kinks traveling along the low-
energy corridors in the LJ potential, as shown in Fig. 4(a).

The monolayer is initialized with the number of monolayer
atoms equal to the number of equilibrium sites. During a
typical simulation, at most 2.5% of the monolayer atoms are
participating in the kinks while all other monolayer atoms
fluctuate around their equilibrium sites. While the number of
kinks varies in time, Fig. 4(b), they are found to be topo-
logically stable, where the instantaneous number of kinks
is always equal to the number of vacancies. Since the kink
convects atoms as it propagates, it is the small population of

FIG. 4. (a) Five representative kink trajectories at angle α =
27.5◦. Coordinates have been translated to a common origin and
normalized by the lattice constant λ. (b) The number of kinks nkink

normalized by the number of atoms in the monolayer, N , as a
function of time for an applied force at angle α = 27.5◦. (c) The x
position (green line) and y position (cyan line) of the center of mass
(c.m.) of the monolayer, obtained by averaging the x and y positions
of all N monolayer atoms, matches perfectly at all times with results
from the mass convected by the kinks and vacancies (black dashed
lines).
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kinks and vacancies that results in the center of mass of the
monolayer moving over the substrate, Fig. 4(c).

To explain the observed deviation between the angle of
forcing α and the observed migration angle θ of the center
of mass, we formulate a model based on the differential prob-
ability of hopping in the x or y direction. We assume that the
rate of hopping is determined by the work done on the atom
that hops. We take the mean angle θ to be given by

tan θ = probability of hop in y direction

probability of hop in x direction
. (1)

We assume that the probabilities of hopping in the x and y
directions are proportional to their Boltzmann factors. For
solvent atoms this can be written in terms of the work done
by the external force (accounting for hops in both the positive
and negative directions) as

tan θ = sinh [βF (λ/2) sin α]

sinh [βF (λ/2) cos α]
. (2)

Here the work done is calculated using the appropriate (x or y)
component of the driving force when moving a solvent atom
by a distance of λ/2. Equation (2) constitutes a prediction
for the migration angle for solvent atom. If we use the force
values from the simulation for the magnitude of the driving
force F , then we obtain the solid blue line shown in Fig. 3,
which is in excellent agreement with the observed migration
angle for the solvent.

Because the solute atoms have larger LJ energy parameters,
they do not hop spontaneously, and the work required to
cause a solute atom to hop is greater than that supplied by
the external forcing. As a result, solute atoms only hop due
to a collision from an incoming kink. The additional work
�U required for a solute atom to hop can be found from
the difference in the potential that the solute atoms experi-
ence compared to the solvent atoms. So, from Table I, �U
is the difference in value of U0 for a solute from the U0 of
the solvent. For the solute atoms, Eq. (2) then becomes

tan θ = sinh {β[�U + F (λ/2)] sin α}
sinh {β[�U + F (λ/2)] cos α} . (3)

For solute A this difference is �UA/kBT = 1.523, and for so-
lute B it is �UB/kBT = 3.474. The corresponding theoretical
predictions are shown as the red and green solid lines in Fig. 3,
again in excellent agreement to the observed migration angles.
In both the high- and low-temperature limits, Eq. (3) predicts
that the migration angles of all species go to a common limit.
Hence, there is a range of intermediate temperatures which
optimize the separation of different species.

IV. KINK DYNAMICS

Key aspects of the kink dynamics on this discrete lattice
can be described by the behavior of solitons in the continuum
sine-Gordon equation. Neglecting the discreteness effects in
the standard FK model, the equation of motion reduces to the
sine-Gordon (sG) equation [31],

utt − uxx + sin u = 0. (4)

FIG. 5. Kink profiles showing the x positions of 35 contiguous
atoms in the monolayer with respect to their initial substrate equilib-
rium sites. (a) A single traveling kink shown at intervals of 0.5 ps
(color coded). Filled diamonds at the top indicate the location of the
center of the kink at each time shown. (b) A kink passing through a
vacancy, shown every 0.4 ps (color coded). Filled diamonds indicate
the location of the kink center; open diamonds indicate the center of
constant-velocity kink (see text). In both panels, dashed lines at the
initial and final frames depict the sG profiles with γ = 1.26.

Topological solitons appear as one of the solutions to the sG
equation,

u(x, t ) = 4 tan−1 exp {−γ [x − x0 − v(t − t0)]}, (5)

γ = 1/
√

1 − v2, (6)

where v is the velocity of the kink measured in units of
sound velocity c and x0 is the location of the center of the
kink at time t0. The sound velocity c = 4052 m/s was found
from the oscillation frequency of a pure-solvent monolayer
with zero external forcing. To compare the sG results to our
observations, we evaluate the continuum results at discrete
points k and divide the displacement by λ/2π , yielding uk ,
the nondimensional x displacement of the atoms, as described
by Eq. (5). With this normalization, the equilibrium spacing
of the atoms in the monolayer is 2π .

Figure 5(a) shows eight profiles of a kink during a 4-ps
interval as it propagates through the monolayer. The width,
1/γ , and position, x0, of the kink can be determined by the
slope and intercept of a straight line fit to the inverse of Eq. (5).
The snapshots shown here are for a kink that has an average
velocity of v = 0.61 and an average width corresponding to
γ = 1.26. (For comparison, the fitted sG profile from Eq. (5)
is shown as the dashed line at the first and last times.) While
the observed profile fluctuates as the kink propagates, its over-
all shape is preserved. Similarly, the instantaneous velocity of
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FIG. 6. Relationship between the inverse width γ and velocity v

averaged over a large sample of kinks at forcing directions α = 0◦,
27.5◦, and 45◦ in a pure solvent monolayer. Kinks propagating in
the x and y directions are plotted separately. The blue star shows the
mean of all the sampled kinks: (γ = 1.27, v = 0.63). The green line
indicates the prediction of the sG equation, Eq. (6).

the kink fluctuates, as indicated by the irregular spacing of
the filled diamonds at the top of the figure, which mark the
location of the center of the kink for each snapshot.

Figure 5(b) shows the collision of a kink with a vacancy
(which is initially located at atom number 15) over a 4-ps
interval. During its interaction with the vacancy, the form of
the kink changes markedly from its sG form. However, the
kink that re-emerges from the interaction has the same average
width (corresponding to γ = 1.26) and speed (v = 0.66) as
the kink that entered into the interaction with the vacancy.

The emergent kink is, however, delayed by its interaction
with the vacancy; its position, shown by the filled diamonds,
lags behind where it would have been (open diamonds) had
the interaction not occurred. As a result of the collision, the
kink undergoes a time delay of 0.67 ps and position delay of
5.4λ. This behavior is remarkably similar to the interaction of
a sG soliton and a sG antisoliton: The shape of the monolayer
kink remains invariant through the interaction and the interac-
tion introduces a phase shift in the position of the kink.

To make a quantitative comparison of the observed kinks
with sG solitons, we measured the velocity and width of 1400
kinks at high resolution, sampling at intervals of 10 fs. We
separated the kinks into sets based on the forcing angles of
α = 0◦, 27.5◦, and 45◦ and their direction of travel, either in
the x or y direction. Each individual set has an average velocity
and width which consistently agrees with the prediction of sG
equation. The correspondence between velocity and width for
the individual sets is shown in Fig. 6. While most of the data in
Fig. 6 lies close to the theoretical sG curve, the data point for
y-moving kinks at a forcing angle of α = 27.5◦ is an outlier,
possibly because this data set has, by far, the fewest (85)
samples. The average velocity of all kinks over all samples
is found to be v = 0.63, and the average value of γ is found
to be 1.27. These values are shown as the blue star in Fig. 6
and are in very good agreement with the sG prediction given
by Eq. (6) of γ (v = 0.63) = 1.29.

V. DISCUSSION AND CONCLUSIONS

We observe that when forced across an atomic substrate,
atoms do not follow the direction of the external force, but
that the center-of-mass motion of different species of atoms
follow distinct directions according to the strength of their
interaction with the substrate. We present a simple theory,
based on the differential probability of atomic hops to nearby
substrate equilibrium sites that explains the observed distinct
migration angles.

We also observe that, at any instant, while most atoms
fluctuate near their equilibrium positions, there is a small frac-
tion of peripatetic atoms. These atoms leave their equilibrium
locations, creating vacancies in the monolayer, and collide
with other atoms, generating a sequence of adjacent atoms
hopping from one equilibrium site to another in a propagating
disturbance that we refer to as a kink. We show that the
motion of the monolayer over the substrate is due to the sum
of the individual propagation of kinks and their associated
vacancies.

Remarkably, the kinks on this discrete substrate are ob-
served to possess properties of continuum sG solitons: (i) they
are localized, with a well-defined width; (ii) their profile is
consistent with that of sG solitons; (iii) kinks are topological,
appearing or disappearing pairwise with vacancies; (iv) kink
velocity is in good agreement with the prediction of sG equa-
tion; and (v) on emerging from an interaction with a vacancy,
a kink maintains its profile but is delayed.

Our Lennard-Jones simulations and theoretical model
demonstrate how individual atoms move over an atomic sub-
strate while they are being separated based on their interaction
strength. Directionality of atomic trajectories in monolayers
may provide a means for molecular sorting and inspire the
design of new separation technologies. In this study, we only
consider the separation of solutes from solvents based on the
energy parameters of the atoms. Future studies will address
separation based on the length parameter σ of the atoms. In
this study, we only consider a substrate with square symmetry
although we look forward to investigating substrates with
other structure, including the interesting hexagonal symme-
try of graphene. These future studies with more varied and
realistic models and materials would indicate the robustness,
scope and feasibility of molecular sorting over a substrate.
In summary, we report on a new fundamental phenomena
of kink propagation in atomic monolayers, whose general-
ity and potential technological applicability continue to be
investigated.
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