
PHYSICAL REVIEW E 104, L022401 (2021)
Letter

Mechanics of cup-shaped caveolae
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Caveolae are cell membrane invaginations of defined lipid and protein composition that flatten with increasing
membrane tension. Super-resolution light microscopy and electron microscopy have revealed that caveolae
can take a variety of cuplike shapes. We show here that, for the range in membrane tension relevant for cell
membranes, the competition between membrane tension and membrane bending yields caveolae with cuplike
shapes similar to those observed experimentally. We find that the caveola shape and its sensitivity to changes in
membrane tension can depend strongly on the caveola spontaneous curvature and on the size of caveola domains.
Our results suggest that heterogeneity in caveola shape produces a staggered response of caveolae to mechanical
perturbations of the cell membrane, which may facilitate regulation of membrane tension over the wide range of
scales thought to be relevant for cell membranes.
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I. INTRODUCTION

Caveolae are small membrane invaginations with a size
of the order of 100 nm that are enriched in caveolin-1 pro-
teins as well as a number of other proteins and lipids [1,2].
Caveolae are highly abundant in the plasma membranes of
certain mammalian cell types, such as muscle and endothelial
cells, in which they can encompass half of the total mem-
brane area [2,3]. Caveolae respond to changes in membrane
tension by altering their curved shape [1–6]. In particular,
caveolae flatten out and, ultimately, (partially) disassemble
in response to cell swelling and cell stretching, and thereby
provide a reservoir of (in-plane) membrane area and a buffer
against changes in membrane tension [5,7,8]. Caveolae are
thought to have biologically important roles in mechanosens-
ing, mechanotransduction, membrane area and membrane
tension homeostasis, plasma membrane organization and sig-
naling, and lipid regulation [1–3,6,9,10].

Super-resolution light microscopy (SRM) and electron mi-
croscopy (EM) experiments have demonstrated that caveolae
can take a variety of cuplike shapes resembling spherical caps
[1,2,10–16]. For instance, three-dimensional super-resolution
fluorescence imaging of caveolin-1 in mouse embryonic fi-
broblast cells [14] shows that caveolae can take cuplike
shapes with variable invagination depths, areas, and radii of
curvature (see Fig. 1). Motivated by these experimental obser-
vations, we employ here the theoretical framework developed
in Ref. [17] to study the mechanics of cup-shaped caveolae.
Previously it was found [5,18] that the competition between
membrane tension and line tension along the caveola domain
boundary yields fully flattened or fully budded (spherical)
caveola shapes. We show here that, as the membrane tension
is changed, the preferred spontaneous curvature of caveola

domains can yield a continuous spectrum of cuplike caveola
shapes intermediate between fully flattened and fully budded
caveola states. For the range in membrane tension relevant
for cell membranes and the spontaneous curvature associated
with caveola domains, our calculations predict that caveolae
adopt cuplike shapes similar to those observed experimen-
tally [1,2,10–16] [Fig. 1(a)]. We find that the caveola shape
and its response to changes in membrane tension can depend
strongly on the caveola spontaneous curvature and on the size
of caveola domains. Our calculations suggest that caveolae
show a staggered response to changes in membrane tension,
which may facilitate regulation of membrane tension over the
wide range of scales thought to be relevant for cell membranes
[19–21].

II. CAVEOLA ENERGY

Based on SRM and EM observations [1,2,10–16] and pre-
vious theoretical models [5,18,25] we describe caveolae as
membrane domains that take the shape of spherical caps [24]
with radius of curvature R and fixed surface area S = πL2,
where L is the in-plane radius of the flattened caveola (Fig. 1).
While the assumption of a fixed caveola area is consistent with
experiments showing that the number of caveolin-1 proteins in
curved caveolae is approximately constant with only a small
pool of caveolin-1 outside caveolae [26,27], we also note that
flattened caveolae may disassemble [7], which may provide a
mechanism for plasticity in caveola size. The caveola shape
is conveniently specified by the fraction of the surface of
a sphere of radius R covered by the caveola, β = L2/4R2,
with β = 0 for completely flattened caveolae, β = 1 for fully
budded caveolae, and 0 < β < 1 for intermediate caveola
states taking the shape of spherical caps or cups [Fig. 1(b)].
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FIG. 1. Cup-shaped caveolae. (a) Two-dimensional z-x rendering of caveolae obtained from three-dimensional super-resolution fluores-
cence imaging of caveolin-1 at the plasma membrane for mouse embryonic fibroblast cells freely adhering to fibronectin substrates (left) and
with adhesion constrained to 210×10 μm2 fibronectin islands (right). Changes in the cell adhesion geometry are expected to modify the cell
adhesion forces [22,23], and the shape and organization of caveolae [14]. The white dotted curves indicate the approximate position of the
plasma membrane for the observed caveolae. Scale bar: 100 nm (adapted with permission from Ref. [14]). (b) Schematic of the spherical cap
model of caveola shape, with the caveola domain indicated in red and the surrounding membrane indicated in blue. We denote the caveola
surface area by S = πL2, the caveola radius of curvature by R, the caveola base radius by a, and the caveola invagination depth by h [24].

Caveola membrane domains have an approximate size within
the range 50 � L � 100 nm [1,2,10–16]. In agreement with
SRM and EM observations [1,2,10–16], these lower and upper
bounds on L yield 25 nm � R < ∞ and 50 nm � R < ∞ for
0 < β � 1, respectively [Fig. 1(a)].

We consider three additive contributions to the caveola
energy G that depend on caveola shape. First, the caveola en-
ergy involves a contribution Gσ = 2πσa, where σ is the line
tension along the caveola domain boundary and the in-plane
caveola base radius a = L

√
1 − β [Fig. 1(b)]. Nonzero σ can

arise, for instance, from differences in molecular composi-
tion between caveola domains and the surrounding membrane
[17,28]. Previous work on lipid domain formation in bilayer
membranes [17,28] suggests 0 � σ � 1 kBT/nm. Interactions
between caveolae and the surrounding membrane may also
yield an effective contribution to the line tension that depends
on caveola shape. We take here a phenomenological approach
and consider, on the one hand, the constant values σ = 0 and
1 kBT/nm. On the other hand, to explore how a dependence of
σ on β may affect caveola shape, we also permit σ to linearly
increase or decrease with β. The latter two scenarios corre-
spond to situations in which the composition of the membrane
surrounding caveolae favors flat or curved membrane shapes,
respectively. In general, σ (β ) may also depend explicitly on
membrane mechanical properties such as membrane tension.

Second, the caveola energy involves a contribution Gκ

describing the energy cost of bending caveolae away from
their preferred shape. For the spherical cap geometry of cave-
olae, the Helfrich-Canham-Evans membrane bending energy
[29–31] yields

Gκ = 1
2κS(C − C0)2, (1)

where κ is the membrane bending rigidity, C = 2/R is the sum
of the two principal curvatures of caveolae [Fig. 1(b)], and C0

is the caveola spontaneous curvature. We use the value κ =
20 kBT [19] for all the calculations described here. Caveolae
are enriched in the curvature-generating integral membrane
protein caveolin-1 [1,2] that, in a model bacterial system such
as E. coli, can generate vesicles with the size and caveolin-
1 composition of budded caveolae [32]. These observations
suggest that the unperturbed state of caveolae is curved and,
hence, C0 �= 0 in Eq. (1). EM observations of budded caveolae
[1,2,10–13,33] indicate 0.04 � C0 � 0.08 nm−1. For com-
pleteness, we also consider here the special case C0 = 0 in

Eq. (1). In addition to the contribution in Eq. (1) due to the
mean curvature, the caveola membrane bending energy may,
in general, also include a Gaussian curvature term [30], which
would give rise to a boundary term evaluated along the caveola
perimeter [34]. This term is identical to zero if the Gaussian
membrane bending rigidities inside and outside caveolae are
equal to each other. If there is a substantial difference in
the Gaussian membrane bending rigidities inside and outside
caveolae, the Gaussian boundary term could be included in
the model described here as an additional, β-dependent con-
tribution to the effective caveola line tension [34]. We do not
explicitly consider here effects due to the Gaussian membrane
curvature.

Third, the caveola energy involves a contribution Gγ =
γ (S − πa2) corresponding to the work required to form a
curved caveola shape against a (lateral) membrane tension
γ . The value of γ strongly depends on the cell type and on
the cell state, as well as on the location within the cell mem-
brane [21]. Roughly, one expects that 10−4 � γ � 1 kBT/nm2

[19,20]. For buds forming in membranes with no area reser-
voirs, which can be the case for some bacterial cell types, one
generally needs to consider a contribution to the bud energy
due to membrane stretching, which would be proportional to
the square of the fractional change in membrane area [35]. For
the mammalian cell types of principal relevance for caveolae,
however, the available membrane area can readily change
without membrane stretching [36,37], and we therefore do not
include the energy cost of membrane stretching in the caveola
energy.

The total caveola energy G = Gσ + Gκ + Gγ can thus be
expressed as a function of the caveola shape parameter β in
the form

G = 2πLσ (β )
√

1 − β + 8πκ

(√
β − LC0

4

)2

+ πL2γ β.

(2)

We minimize the caveola energy G in Eq. (2) with respect
to β to determine the stable (energetically most favorable)
caveola shapes βmin as a function of membrane tension for
the parameter ranges of L, σ , and C0 relevant for caveolae.
Minimization of G in Eq. (2) amounts to solving a linear
equation for σ = 0 and a quartic equation for a constant
σ > 0, permitting exact analytic solutions. However, for the
scenarios with a (linear) dependence of σ on β considered
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here, minimization of Eq. (2) leads to a polynomial equation
of degree greater than 4, in which case an analytic solution
is not feasible [38]. To treat all the choices for σ considered
here on the same footing, we numerically determine βmin

throughout this Letter by minimizing G in Eq. (2) using the
NUMPY.ARGMIN function implemented in the NUMPY package
of the programming language PYTHON (version 2.7.12). We
checked our numerical solution procedure against the exact
analytic solutions available for constant σ .

For constant σ and γ = 0, the caveola energy in Eq. (2)
reduces to the energy studied in Ref. [17] in the context of
membrane budding driven by line tension. For constant σ and
C0 = 0, Eq. (2) reduces to the energy introduced in Ref. [5] to
describe bistable caveolae with β ≈ 0 or 1. An energy similar
to Eq. (2) with constant σ was also recently employed [18] in
the context of a two-state model of caveolae with β ≈ 0 or 1.
We show here that, for the values of γ , L, σ , and C0 relevant
for caveolae in cell membranes, Eq. (2) can yield stable cup-
like caveola shapes with 0 < β < 1 similar to those observed
experimentally [1,2,10–16] [Fig. 1(a)]. We do not consider
in Eq. (2) possible contributions to the caveola energy due
to nematic ordering of lipids or proteins in caveolae [39].
In addition to caveola-induced membrane shape deformations
[25], such contributions to the caveola energy may affect the
formation of caveola clusters or produce more complicated
caveola shapes deviating from the spherical cap geometry we
focus on here. Furthermore, caveolae may interact with the
cytoskeleton [11], resulting in the exertion of forces on cave-
olae. Such interactions may modify the mechanical properties
of caveolae by, for instance, coupling curvature-sensing or
curvature-inducing proteins in caveolae with the cytoskeleton,
or penalizing shear deformations of caveolae [40–43]. Finally
we note that, while we focus here on the interplay between
cuplike caveola shapes and membrane tension, cup-shaped
membrane buds can form even in the absence of membrane
tension through area differences between the outer and inner
membrane leaflets [44].

III. STABLE CAVEOLA SHAPES FOR γ > 0

It was found previously [17] that, for γ = 0, a nonzero
line tension in Eq. (2) can yield stable membrane bud shapes
with 0 < β < 1. We find here that, for γ > 0, Eq. (2) yields
stable cuplike caveola shapes with 0 < β < 1 similar to those
observed experimentally [1,2,10–16], even if σ = 0 [see the
solid curves in Fig. 2]. In particular, at small membrane ten-
sion with σ = 0, Eq. (2) predicts stable caveola shapes with
β � 0.4 and a shallow minimum in G. As the membrane
tension is increased, the minimum in G becomes more sharply
defined and βmin shifts smoothly towards βmin = 0. In con-
trast, for σ = 1 kBT/nm in Fig. 2 we find a discontinuous
transition from fully budded caveolae with β ≈ 1 to partially
flattened caveolae with β ≈ 0.2 at a critical membrane tension
γ ∗ ≈ 0.028 kBT/nm2 (see the dashed curves in Fig. 2). It
is instructive to compare these results to previous work on
caveolae [5], which showed that a constant σ and C0 = 0
in Eq. (2) yield a discontinuous transition in caveola shape,
from fully budded (β ≈ 1) to flattened (β ≈ 0) caveola states
without any stable intermediate states. Figure 2 thus suggests

FIG. 2. Caveola energy G in Eq. (2) as a function of the caveola
shape parameter β for γ = 0.008, 0.028, and 0.048 kBT/nm2 with
σ = 0 (solid curves) and σ = 1 kBT/nm (dashed curves). The solid
and dashed horizontal lines indicate the energy minima of the cyan
solid and green dashed curves, respectively. We set L = 100 nm and
C0 = 0.04 nm−1. The schematics in the top panels show caveolae
(indicated in red) with shape parameters β = 0, 1/4, 1/2, 3/4, and 1
(left to right). We set κ = 20 kBT .

that cup-shaped caveolae are stabilized by the competition be-
tween membrane tension and membrane bending with C0 �= 0.

To further characterize the cuplike caveola shapes in
Fig. 2 we note that, for σ = 0, G in Eq. (2) has a unique
minimum at

βmin = min

(
1,

[
2κLC0

8κ + L2γ

]2)
. (3)

The solid curves in Fig. 3(a) show βmin with σ = 0 as a
function of γ for L = 50 and 100 nm. First note that we
always have βmin = 0 for C0 = 0 in Fig. 3(a) because G
linearly increases with β for C0 = 0 and σ = 0. In this
hypothetical scenario, flattened caveola shapes provide the
minimum-energy caveola states for any value of the mem-
brane tension. Conversely, Fig. 3(a) shows that, for C0 �= 0
and σ = 0, Eq. (2) can yield stable caveola shapes with any
β within the range 0 � β � 1, with different βmin(γ ) for
different C0 and L. Equation (3) and Figs. 2 and 3(a) show that
the sequence of minimum-energy caveola shapes as a function
of membrane tension depends crucially on C0 and L, which
may take different values for different caveolae.

In particular, at zero membrane tension, caveolae with
σ = 0 in Fig. 3(a) are in their most budded state β0

min =
min(1, [LC0/4]2). As the membrane tension is increased, one
obtains stable caveola shapes with 0 � β < β0

min for σ =
0. Provided that L � 4/C0, variations in membrane tension
within the range relevant for cell membranes [19–21] thus
yield, for σ = 0, the entire spectrum of stable caveola shapes,
0 � βmin � 1. This scenario is illustrated in Fig. 3(a) for C0 =
0.08 nm−1 with L = 50 nm, and for C0 = 0.04 and 0.08 nm−1

with L = 100 nm, respectively. In this regime, caveolae have a
constant βmin = 1 for γ � γ , where the threshold membrane
tension γ is given by

γ = 2κ

L2
(LC0 − 4). (4)

Fully budded caveola shapes are stable if γ � γ and are grad-
ually flattened as the membrane tension is increased beyond
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FIG. 3. Global minimum of G in Eq. (2) within the range 0 � β � 1, βmin (left axes and opaque curves) and corresponding derivative of
βmin with respect to membrane tension, dβmin/dγ , for 0 < βmin < 1 (right axes and partially transparent curves) as a function of membrane
tension γ for (a) σ = 0 (solid curves) and σ > 0 with σ = 1 kBT/nm (dashed curves) and for (b) σ = σ−(β ) = (1 − β ) kBT/nm (solid
curves) and σ+(β ) = β kBT/nm (dashed curves) using C0 = 0, 0.02, 0.04, 0.06, and 0.08 nm−1 at L = 50 nm (left panels) and L = 100 nm
(right panels). We use the same labeling scheme for βmin and dβmin/dγ . The stars along the right axes mark the maximum magnitudes of
dβmin/dγ and Smax, for the σ = 0 and σ− curves, using the same color scheme as for the dβmin/dγ curves. We set κ = 20 kBT .

γ = γ . For instance, for L = 100 nm and C0 = 0.08 nm−1 we
have γ = 0.016 kBT/nm2 [see the purple solid curve in the
right panel of Fig. 3(a)]. For σ = 0 and γ � γ , Eq. (2) thus
predicts that the (fully budded) caveola shape is independent
of membrane tension. In contrast, for γ > γ each value of
βmin corresponds, for given L and C0, to a unique value of γ .

For a constant line tension σ > 0 in Eq. (2), cuplike cave-
ola shapes tend to be ruled out by a sharp transition from
βmin = 1 to βmin = β∗ < 1 with increasing membrane ten-
sion. In particular, at a critical membrane tension γ ∗ caveola
states with β = 1 and β = β∗ have equal energy (see the
green dashed curve in Fig. 2), yielding a discontinuous transi-
tion in caveola shape from βmin = 1 to β = β∗ with increasing
membrane tension [see the dashed curves in Fig. 3(a)]. The
value of γ ∗ and the magnitude of this discontinuous jump
in caveola shape depend on the values of L, C0, and σ . In
particular, for a given L and σ such that γ ∗ � 0, a decrease
in C0 results in a smaller γ ∗ and a greater discontinuous
jump length 1 − β∗. As C0 → 0 with σ > 0, we recover the
bistable system described in Ref. [5], which rules out cup-
like caveola shapes. Indeed, if Gσ dominates over Gκ and
C0 → 0 in Eq. (2) the only two stable caveola shapes corre-
spond to β ≈ 0 and 1 at large and small membrane tension,
respectively [5]. In contrast, for small enough σ , the discon-
tinuity in the dependence of caveola shape on γ disappears,
yielding a continuous spectrum of stable cuplike caveola
shapes.

Figure 3(a) shows that the sensitivity of the stable cave-
ola shape to changes in membrane tension depends crucially
on the size and spontaneous curvature of caveolae. For 0 <

βmin < 1, we can quantify the tension sensitivity of the cave-
ola shape by taking the derivative of βmin with respect to
membrane tension [see the partially transparent curves and
right axes in Fig. 3(a)]. For σ = 0, the maximum magnitude
of the tension sensitivity, Smax, is obtained at γ = γ in Eq. (4)
for L � 4/C0 and at γ = 0 for L < 4/C0. We find that, for
σ = 0, Smax = L/κC0 for L � 4/C0 and Smax = L4C2

0 /64κ

for L < 4/C0 [see the stars along the right axes in Fig. 3(a)].
Thus, for σ = 0, Smax increases with L and decreases with C0

for L � 4/C0, but increases with both L and C0 for L < 4/C0.
In contrast, for a constant σ > 0 in Fig. 3(a), we find that
Smax increases (weakly) with L as well as C0 for the parameter
ranges relevant for caveolae.

IV. CAVEOLA-SHAPE-DEPENDENT LINE TENSION

As noted above, cup-shaped caveolae are expected to de-
form the surrounding membrane [25], leaving a membrane
footprint. Such caveola-induced membrane shape deforma-
tions may incur an energy cost that depends on β. Most
straightforwardly, membrane footprints with smaller curva-
tures may be more favorable from an energetic perspective,
thus increasing the stability of caveola states with small β.
This scenario corresponds to a composition of the mem-
brane footprint with zero spontaneous curvature [45]. We
phenomenologically account for such situations by allow-
ing for σ = σ+(β ) with σ+(β ) = β kBT/nm. Alternatively,
curvature-sensing or curvature-generating lipids or proteins
may be enriched in the curved membrane footprint of caveo-
lae, and thus assist caveola budding [46,47]. Such situations
correspond to a caveola membrane footprint with nonzero
spontaneous curvature. A simple phenomenological descrip-
tion of this scenario is obtained by setting σ = σ−(β ) with
σ−(β ) = (1 − β ) kBT/nm. Effectively, with σ = σ−, the ten-
dency of a finite line tension σ > 0 to stabilize curved
membrane domains [5,17,18] is thus further amplified.

In analogy to Fig. 3(a), Fig. 3(b) shows the energetically
preferred caveola shape βmin as a function of membrane ten-
sion for different values of C0 and L, using the β-dependent
line tensions σ+(β ) and σ−(β ). We find that, compared to σ =
1 kBT/nm, σ+ yields a sharper transition in caveola shape
from β = 1 to β < 1 as the membrane tension is increased
from zero, with this transition occurring at smaller values of
γ (see the dashed curves in Fig. 3). This can be understood by
noting that, compared to σ = 1 kBT/nm, σ+ biases the cave-
ola shape towards more flattened states and thus decreases
the energy cost of caveola flattening. In contrast, σ− yields
a greater range of stable caveola shapes with 0 < β < 1 than
σ = 1 kBT/nm as well as σ = 0 in Fig. 3 (see the solid curves
in Fig. 3). This follows because σ− maximally penalizes cave-
ola shapes with β = 0, thus yielding a more gradual transition
towards caveola states with β = 0 as the membrane tension is
increased.

In contrast to the constant σ considered and σ+ in Fig. 3,
σ− can yield stable cuplike caveola shapes even for C0 = 0,
in regimes with large enough L and small enough γ [see the
black solid curve in the right panel of Fig. 3(b)]. This follows
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FIG. 4. Probability of caveola states with 1/4 � β � 3/4,
P(1/4, 3/4) in Eq. (5) with the caveola energy in Eq. (2), as a
function of membrane tension γ for σ = 0 (left panel) and σ =
σ−(β ) = (1 − β ) kBT/nm (right panel) using C0 = 0.04, 0.06, and
0.08 nm−1 at L = 50 nm (solid curves) and 100 nm (dashed curves).
We set κ = 20 kBT .

because Gκ with C0 = 0 favors flat caveola states while, as al-
ready noted above, σ− progressively penalizes flatter caveola
states compared to more budded caveola states. Finally we
note that, depending on the values of C0 and L considered,
a dependence of σ on β can increase as well as decrease
the tension sensitivity of the caveola shape [see the partially
transparent curves in Figs. 3(b)]. We find that, for a given
domain size and C0 > 0, Smax increases with increasing C0

for σ− [see the stars along the right axes in Fig. 3(b)] and with
decreasing C0 for σ+. For both σ− and σ+, larger Smax are
obtained for larger L in Fig. 3(b).

V. CAVEOLA SHAPE DISTRIBUTION

Thermal fluctuations are expected to perturb the caveola
shape about the energetically most favorable state β = βmin.
A simple way to account for such thermal effects is to assume
that the caveola shape is governed by a Boltzmann distribu-
tion. The probability of caveola states with b1 � β � b2 is
then given by

P(b1, b2) = 1

Z

∫ b2

b1

dβe−G/kBT , (5)

where the normalization constant Z is chosen such that
P(0, 1) = 1, G is given by Eq. (2), kB is Boltzmann’s constant,
and T denotes the temperature of the system. We employ here
Eq. (5) to predict the probability of finding cuplike caveola
shapes and, in particular, focus on b1 = 1/4 and b2 = 3/4 in
Eq. (5). We numerically evaluate P(b1, b2) in Eq. (5) using
PYTHON (version 2.7.12).

Figure 4 shows P(1/4, 3/4) in Eq. (5) as a function of
membrane tension for σ = 0 and σ = σ− in Eq. (2), re-
spectively. We focus in Fig. 4 on these two choices for σ

because the foregoing results show that a wide range of cu-
plike caveola shapes can be obtained with zero (or small)
σ and σ that decrease with β. Furthermore, we focus in

Fig. 4 on the range in spontaneous curvature 0.04 � C0 �
0.08 nm−1 most relevant for caveolae [1,2,10–13,33]. We
find in Fig. 4 that, for σ = 0 as well as σ−, larger val-
ues of C0 and smaller values of L tend to yield a larger
range in membrane tension for which caveola shapes with
1/4 � β � 3/4 are dominant. For instance, for σ = 0 and
C0 = 0.08 nm−1 we find P(1/4, 3/4) > 0.5 in the membrane
tension range 0.01 � γ � 0.07 kBT/nm−2 with L = 50 nm
and 0.02 � γ � 0.05 kBT/nm−2 with L = 100 nm (see the
solid and dashed purple curves in the left panel of Fig. 4).
For σ = σ− and C0 = 0.08 nm−1 we find P(1/4, 3/4) > 0.5
in the membrane tension range 0.04 � γ � 0.12 kBT/nm−2

with L = 50 nm and 0.04 � γ � 0.07 kBT/nm−2 with L =
100 nm (see the solid and dashed purple curves in the right
panel of Fig. 4). Figure 4 illustrates that, within the ranges
of C0 and L relevant for caveolae, different values of C0 and
L tend to yield distinct caveola shapes in distinct membrane
tension regimes. Combined with the results in Figs. 2 and 3,
this suggests that cells may use heterogeneity in the values of
C0 and L to produce a staggered response of caveola shape to
changes in membrane tension.

VI. CONCLUSION

We have explored here the roles of membrane bending,
membrane tension, and the line tension of caveola domains
[5,17,18] in stabilizing cuplike caveola shapes. We find that,
for the range in membrane tension relevant for cell mem-
branes [19–21], the competition between membrane tension
and membrane bending yields caveolae with cuplike shapes
similar to those observed experimentally [1,2,10–16], and
that cuplike caveola shapes tend to be ruled out as the line
tension of caveola domains comes to dominate the energy
budget of caveolae. Our results suggest that the size and the
spontaneous curvature of caveola domains are key control
parameters for the stability of cup-shaped caveolae, and for
the sensitivity of cup-shaped caveolae to changes in mem-
brane tension. Heterogeneity in the size of caveola domains
and heterogeneity in caveola spontaneous curvature due to,
for instance, variations in the concentration of caveolin-1 in
caveola domains, as well as spatial heterogeneity in mem-
brane tension within cell membranes [21,48] or variations
in the caveola line tension, may thus produce heterogeneity
in caveola shape. Our calculations predict that variations in
caveola shape yield heterogeneity in the response of caveolae
to mechanical perturbations of the cell membrane, which may
facilitate regulation of membrane tension over the wide range
of scales thought to be relevant for cell membranes [19–21].
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