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Asymmetry-induced isolated fully synchronized state in coupled oscillator populations
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A symmetry-breaking mechanism is investigated that creates bistability between fully and partially synchro-
nized states in oscillator networks. Two populations of oscillators with unimodal frequency distribution and
different amplitudes, in the presence of weak global coupling, are shown to simplify to a modular network with
asymmetrical coupling. With increasing the coupling strength, a synchronization transition is observed with
an isolated fully synchronized state. The results are interpreted theoretically in the thermodynamic limit and
confirmed in experiments with chemical oscillators.
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Introduction. Biological and engineered systems often
consist of discrete oscillatory units with slightly different
properties (e.g., natural amplitudes and frequencies), and cou-
pling among the units can generate collective rhythms that
are essential for normal operation [1–4]. Many features of the
transition to synchronization can be captured with simplified
models, e.g., with the Kuramoto phase model, that predicts
“classical” transitions, e.g., second-order phase transitions
with continuous increase of order above a critical coupling
strength [5,6]. A sudden increase of the order parameter due
to first-order transitions can also be observed with an increase
in coupling, e.g., for specific natural frequency distributions
[7–9], for strongly coupled relaxation oscillators [10], with
coupling delays [11] or low-pass filters [12], or with correla-
tions of network properties (degree with natural frequencies)
[13–15]; in these examples the order parameter vs the cou-
pling strength curves often exhibit S shapes with two stable
and one unstable branches.

All the above synchronization transitions have a common
feature: For sufficiently large values of coupling strength they
predict approaching the fully synchronized state where all
oscillators behave identically. The question naturally arises
whether this feature is general or qualitatively different syn-
chronization scenarios could exist. For example, a practically
dangerous situation can occur in scenarios where certain states
are isolated from other states and thus cannot be obtained from
continuation, i.e., through sweeping the coupling strength
up and down. Such states often lie on isolas in bifurcation
diagrams, where the stable states are created and destroyed
through fold bifurcations.

One natural situation where isolas can occur is in net-
works of oscillators where chimera states (i.e., partially
synchronized states of identical phase oscillators in symmetric
networks [16]) impede the transition to full synchronization.
In this particular case, isolated fully synchronized states were
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predicted for small parameter regions in phase oscillator mod-
els with an explicit two-population coupling [17,18].

In this Letter we show that nonclassical synchronization
transitions with an isolated fully synchronized state in general
can be found in a population of oscillators that exhibit het-
erogeneities in both amplitudes and natural frequencies. For
this we consider a system of two populations (σ = 1, 2) of
Stuart-Landau oscillators

Ẇ (σ )
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(
q2

σ + iω(σ )
j − ∣∣W (σ )

j

∣∣2
)
W (σ )

j
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with a complex coefficient Ke−iα , where K ∈ [0,∞) and α ∈
(−π/2, π/2) are real parameters referred to as the coupling
strength and the phase lag. In the absence of coupling (K = 0)
each oscillator W (σ )

j (t ) ∈ C has an attracting circular limit
cycle of radius qσ ∈ (0,∞) along which it rotates with a
frequency ω

(σ )
j ∈ R. We assume that the amplitudes qσ are

constant within each of the populations, while the frequencies
ω

(σ )
j are chosen randomly and independently from Lorentzian

distributions

gσ (ω) = γσ

π

1

ω2 + γ 2
σ

, σ = 1, 2,

with widths γσ > 0. In the symmetric case q1 = q2 the system
(1) becomes a single globally coupled population, which was
considered in [19]. In contrast, here we focus on the asymmet-
ric case q1 �= q2, which occurs if oscillators of two different
types are mixed together. Note that such amplitude asymme-
try sometimes can emerge spontaneously in globally coupled
limit cycle oscillators [20], where it serves as a prerequisite for
the symmetry-breaking partially synchronized states called
chimera states [20,21].
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For simplicity, we consider the weak-coupling case K �
1. Then the system (1) can be reduced to a phase oscillator
model with a type of asymmetrical coupling topology. Using
the polar coordinate ansatz

W (σ )
j (t ) = b(σ )

j (t ) exp
[
iθ (σ )

j (t )
]
,

we find that the amplitudes of the oscillators b(σ )
j (t ) remain

almost unchanged, whereas their phases θ
(σ )
j (t ) evolve ac-

cording to

θ̇
(σ )
j = ω̃

(σ )
j +

2∑
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)
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where ω̃
(σ )
j = ω

(σ )
j + K sin α and

κσσ ′ = KNσ ′

N1 + N2

qσ ′

qσ

. (3)

Equation (3) shows that each oscillator in (2) influences other
oscillators with a strength proportional to its amplitude, while
the oscillator’s sensitivity to the impact of other oscillators
is inversely proportional to its amplitude. Note that the two-
population models of the form (2) have been studied in many
other works [17,18,22–26], but with qualitatively different
connectivity matrices κσσ ′ . For example, symmetric matrices
with positive elements κ11 = κ22 > κ21 = κ21 have been used
in several studies of chimera states [17,18,22]. Moreover,
matrices κσσ ′ with positive and negative elements have been
considered in [23,24]. Furthermore, connectivity matrices of
the form κσσ ′ ∼ dσ dσ ′ , where dσ denotes the node degree,
were related to the annealed approximation of random Ku-
ramoto networks [25,26]. However, it is easy to see that the
connectivity matrix (3) cannot be reduced to any of the above
examples.

In the following we assume that the population sizes
are equal, N1 = N2. Without loss of generality, we choose
q2 > q1; then the small-amplitude oscillators and the large-
amplitude oscillators are grouped into the first and second
populations, respectively. Defining the amplitude ratio μ =
q2/q1 and inserting this into Eq. (3), we obtain the expressions
for the connectivity matrix κσσ ′ ,

κ11 = κ22 = K

2
, κ12 = Kμ

2
, κ21 = K

2μ
, (4)

illustrated schematically in Fig. 1(a). Note that the amplitude
ratio μ also acts as an interpopulation coupling asymmetry
factor.

Thermodynamic limit analysis. In the thermodynamic limit
N1 = N2 → ∞, the state of the system (2) can be described
by the probability density function fσ (ω, θ, t ) for each popu-
lation σ ; then

zσ (t ) =
∫ ∞

−∞
dω

∫ 2π

0
fσ (ω, θ, t )eiθ dθ (5)

is the complex order parameter of the σ th population. The
modulus of zσ satisfies |zσ (t )| ∈ [0, 1] and measures the
synchrony of the σ th population. Small values of |zσ (t )| corre-
spond to asynchronous population dynamics, while |zσ (t )| =
1 indicates its perfect synchrony. Using a standard analyt-
ical procedure (see Sec. 3.1.1 in [27]), we can show that

FIG. 1. Network schematic and experimental setup.
(a) Schematic of the network topology exhibiting the same
intrapopulation but differing interpopulation coupling strength.
(b) Experimental implementation of the feedback scheme. The
currents of each population are measured [ik (t )] and fed back to the
applied circuit potentials (Vk) according to Eqs. (11) and (12). Each
population has 40 electrodes (only two are shown for clarity).

the long-term dynamics of probability densities fσ typically
settles down on the Ott-Antonsen invariant manifold [28]. The
evolution on this manifold is described by a system of two
complex ordinary differential equations (ODEs) for z1 and
z2, which, using the polar coordinate representation zσ (t ) =
rσ (t ) exp[iφσ (t )] and defining ψ (t ) = φ2(t ) − φ1(t ), can be
written as an equivalent real ODE system

ṙ1 = −γ1r1 + 1 − r2
1

2
[κ11r1 cos α + κ12r2 cos(ψ − α)], (6)

ṙ2 = −γ2r2 + 1 − r2
2

2
[κ22r2 cos α + κ21r1 cos(ψ + α)], (7)

ψ̇ = r2
1 + 1

2r1
[κ11r1 sin α − κ12r2 sin(ψ − α)]

− r2
2 + 1

2r2
[κ22r2 sin α + κ21r1 sin(ψ + α)]. (8)

Below we consider two cases of the system (6)–(8) with the
connectivity coefficients κσσ ′ determined by (4): (i) oscilla-
tors with identical frequencies γ1 = γ2 = 0 and (ii) oscillators
with unimodal frequency distribution and identical widths in
the two populations γ1 = γ2 > 0.

Note that because of (4) the system (6)–(8) with γ1 =
γ2 is not Z2 symmetric with respect to the transformation
(r1, r2, ψ ) �→ (r2, r1,−ψ ). This fact makes it qualitatively
different from the phase oscillator model considered in
[17,18].

Case (i). We start with the case of oscillators with identical
frequencies (γ1 = γ2 = 0). It is known [29,30] that in this
case, the Ott-Antonsen manifold is not attractive and many
other dynamical regimes (which are typically quasiperiodic)
can be found outside the manifold at different distances from
it. On the other hand, all linearly stable equilibria and periodic
orbits found in the system (6)–(8) with γ1 = γ2 = 0 usually
become attractors of the same system for arbitrarily small but
positive values of γ1 and γ2. Therefore, considering the case
γ1 = γ2 = 0, we obtain useful information about the behavior
of the system (6)–(8) in the singular limit γ1 = γ2 → 0.

Simple calculations demonstrate that the system (6)–(8)
with γ1 = γ2 = 0 has two types of fixed points. The first type
includes fixed points describing fully synchronized states,
where each population is synchronized r1 = r2 = 1 but with a
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FIG. 2. Stable (black) and unstable [orange (gray)] fixed points
of the network (6)–(8) with identical oscillator frequencies (γ1 =
γ2 = 0) and (a) and (b) α = 1.15 and (c) and (d) α = 1.3. (a) and
(c) Dependence of the second population order parameter r2 versus
the amplitudes ratio μ (for the first population r1 = 1). (b) and
(d) Corresponding global order parameters R [see (9)]. Notice that
unphysical fixed points r2 > 1 are discarded in (d).

phase shift between their collective phases

ψ = arctan

(
μ2 − 1

μ2 + 1
tan α

)
.

The second type includes partially synchronized fixed
points with one population fully (r1 = 1) and the second
population partially (r2 < 1) synchronized. These points are
defined parametrically by the formulas

r2 = −cos(ψ + α)

μ cos α
,

μ2 = − cos2(ψ + α) sin ψ/cos α

sin(ψ + 2α) cos α + 2 cos2(ψ + α) sin(ψ − α)
,

with ψ and α varying in the intervals [−π, π ] and
(−π/2, π/2), respectively. Note that not all values of ψ and
α are admissible. First, the expression for r2 must satisfy
the inequality 0 < r2 � 1. Second, the right-hand side of the
formula for μ2 must be positive. Using these restrictions,
we find two critical values α1 ≈ 1.05 and α2 ≈ 1.23 such
that for 0 � α < α1 the system (6)–(8) has only the fully
synchronized fixed point r1 = r2 = 1, while for α > α1 and
sufficiently large μ it also has two other partially synchronized
fixed points (one stable and one unstable) lying on a folded
branch. Moreover, for α > α2 there is a bounded interval of
μ values where the upper part of the folded branch becomes
unphysical (r2 > 1). Figures 2(a) and 2(c) show the two types
of fixed points (r2 vs μ) for two representative values α and
Figs. 2(b) and 2(d) show the corresponding global order pa-
rameter

R = 1
2 |z1 + z2| = 1

2 |r1 + r2eiψ |. (9)

[The unphysical branch (r2 > 1) connecting two transcritical
bifurcation points is not shown in Fig. 2(d).]

Case (ii). For oscillators with unimodal frequency dis-
tribution (γ1 = γ2 > 0), without cross coupling the two
populations would exhibit a Kuramoto transition to syn-
chrony at the same critical coupling strength. There-
fore, symmetry-broken partially synchronized states are
due to the cross coupling between the populations. In
this case, the dynamics on the Ott-Antonsen manifold

FIG. 3. Synchronization transitions in the network model (6)–(8)
with unimodal distribution of the natural frequencies (γ1 = γ2 =
0.01) at three different amplitude ratios μ: (a) μ = 1, (b) μ = 1.67,
and (c) μ = 5. Stable and unstable branches are shown as black and
orange (gray) curves, respectively. The order parameter R is com-
puted by (9). Pluses and circles show the time-averaged global order
parameters RN obtained in the forward and the backward K sweeps
(with initial conditions from the previous integration), respectively,
for the system (2) with N1 = N2 = 500 and α = 1.15.

[Eqs. (6)–(8)] is relevant to the long-term dynamics of
the phase model (2) with heterogeneous natural frequencies
ω

(σ )
j .
The synchronization transitions can be described by the

changes of the global order parameter

RN (t ) = 1

N1 + N2

∣∣∣∣∣
2∑

σ=1

Nσ∑
k=1

eiθ (σ )
k (t )

∣∣∣∣∣ (10)

for the coupling strength K . In the thermodynamic limit
RN (t ) ≈ R [see (9)]; therefore, the transitions can be pre-
dicted by Eqs. (6)–(8). For this we fix values of γ1 = γ2,
μ, and α, vary the coupling strength K , and compute the
corresponding fixed points (r1, r2, ψ ) of the system (6)–
(8) using the Newton-Raphson method. Then inserting the
result into (9), we obtain the graph of R versus K . Fig-
ure 3 shows qualitatively different synchronization transition
scenarios found for γ1 = γ2 = 0.01, α = 1.15, and several
μ. For identical amplitudes in both populations (symmetri-
cal coupling, μ = 1) we recover the well-known classical
(second-order) monotonic synchronization transition typical
for the Kuramoto model with all-to-all coupling [5,6]. For
μ = 1.67 the (nearly) fully synchronized state is reached
through an S-shaped (first-order) transition from the partially
synchronized state [Fig. 3(b)]. Finally, for μ = 5 [Fig. 3(c)],
with increasing the coupling strength, first a partially syn-
chronized state occurs, which retains its stability in the limit
of strong (infinite, in the phase model) K . Thus, the (nearly)
fully synchronized state is isolated. The corresponding branch
starts from a fold bifurcation at a finite coupling strength and
ends in the infinite coupling strength limit. The predictions of
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FIG. 4. Synchronization transitions in the system of mean-field
coupled Stuart-Landau oscillators (1) with unimodal distribution of
the natural frequencies (γ1 = γ2 = 0.01) at three different amplitude
ratios μ = q2/q1: (a) μ = 1, (b) μ = 1.8, and (c) μ = 2. Pluses
and circles show the time-averaged mean-field 〈W 〉 obtained in the
forward and the backward K sweeps (with initial conditions from the
previous integration), respectively. The other parameters are N1 =
N2 = 50, α = 1.15, and q1 = 2.

these nonclassical bifurcation diagrams were confirmed with
numerical simulations with N1 = N2 = 500 oscillators with
forward and backward sweeps of the coupling strengths in
Fig. 3 (pluses and circles, respectively).

Note that all synchronization transitions described above
have an important scaling property. For fixed μ and α, the
value of an equilibrium of the system (6)–(8) depends on the
ratio K/γ , but not on K and γ separately. This means that
every qualitative feature of the synchronization transitions in
the system (6)–(8) can be realized for arbitrarily small values
K , provided the values of γ1 and γ2 are small enough. For
example, Fig. 4 shows that every type of synchronization
transition from Fig. 3 indeed can be found in the original
system of the mean-field coupled Stuart-Landau oscillators
(1).

Experiments with electrochemical oscillators. The
asymmetry-induced synchronization bistability was
explored with 80 electrochemical oscillators (using Ni
electrodissolution) that can be coupled with a delayed
feedback [31]. At constant circuit potential V , the oscillatory
dissolution rate, the corrosion current, of each of the
1-mm-diam nickel wires can be measured in a 3 mol/L
sulfuric acid electrolyte maintained at a temperature of
10 ◦C. It was expected that the theoretically predicted
synchronization features can be observed in the experiments,
provided the modular network with the asymmetrical coupling
between the two groups can be realized.

The first and second populations of 40 wires were con-
nected to the corresponding channels of a bipotentiostat
[see Fig. 1(b) for a schematic of the experiments]. The
bipotentiostat measured the total currents of each pop-
ulation [i1(t ) and i2(t )] and applied small adjustments

FIG. 5. Synchronization transition in a population of oscillatory
chemical reactions. The global order parameter is plotted as a func-
tion of the coupling strength. Error bars show the standard deviation
of R in the time series for each point. The empty and filled circles
correspond to in-phase and random initial conditions, respectively.
The states of each population are shown in Fig. 6, marked with the
dashed lines.

of the circuit potentials [V1(t ) and V2(t )] of the two
populations

V1(t ) = V0 + K[ĩ1(t − τ ) + ε1 ĩ2(t − τ )], (11)

V2(t ) = V0 + K[ĩ2(t − τ ) + ε2 ĩ1(t − τ )], (12)

where ĩk (t ) = ik (t ) − ok is the offset [ok (t )] corrected popu-
lation current, V0 is the base circuit potential (at which the
oscillations occur), ε1 and ε2 represent the interpopulation
coupling factors, K is the feedback gain, which is equivalent
to the (overall) coupling strength, and τ is the feedback delay,
which corresponds to the phase lag parameter α. According to
our previous study [31], the α/2π quantity is approximately
equal to τ/T0, where T0 = 2.4 s is the mean period of the
uncoupled population (K = 0 V/mA). We have chosen τ =
0.9T0/4, which translates to α ≈ 1.4 in the theory.

In the experiments, we chose ε1 = 0.2 and ε2 = 5.0, which
correspond to asymmetrically coupled populations with μ =
5. A series of experiments was performed with a given
coupling strength K , starting from random and in-phase syn-
chronized initial conditions; the mean Kuramoto (global)
order parameters for both initial conditions are shown in
Fig. 5. For weak coupling (K < 0.010 V/mA), a desyn-
chronized state was observed for both initial conditions. For
0.015 V/mA � K � 0.050 V/mA, the system exhibited the
same partially synchronized state for both in-phase and ran-
dom initial conditions. For K = 0.015 V/mA, the Kuramoto
order for each population (top), the current oscillations of ev-
ery element (middle), and the snapshot of the phases (bottom)
are shown in Fig. 6(a). Population 1 exhibited a synchronized
state, while population 2 was desynchronized.

As it is shown in Fig. 5, with a further increase in
the coupling strength (0.055 V/mA � K � 0.070 V/mA),
the experiments with in-phase initial conditions resulted in
a strongly synchronized state with large Kuramoto order
parameter (R ≈ 0.7–0.8), which differed from a lower syn-
chrony state (R ≈ 0.6) obtained from desynchronized initial
conditions; therefore, bistability was observed. Figure 6(b)
shows that the state obtained from the desynchronized initial
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FIG. 6. Multistability of synchronized states observed for dif-
ferent initial conditions in two populations of oscillatory chemical
reactions. The black and red lines correspond to populations 1 and 2,
respectively. (a) Partially synchronized state with K = 0.015 V/mA
and in-phase initial conditions. (b) Partially synchronized state with
K = 0.060 V/mA and random initial conditions. (c) Nearly fully
synchronized state with K = 0.060 V/mA and in-phase initial con-
ditions. The top row shows the order parameters for each population
vs time. The middle row shows the time series of the oscillator
currents for each population. The bottom row shows snapshots of
the phases (filled circles are for population 1 and empty squares for
population 2).

condition for K = 0.060 V/mA was similar to the partially
synchronized state at lower coupling strength: Population
1 was synchronized and population 2 was desynchronized.
However, starting from an in-phase initial condition, we
obtained a state where population 2 became partially synchro-
nized [while population 1 remained fully synchronized; see
Fig. 6(c)]. The experiments thus showed that the asymmetry-
induced bistability in the synchronization pattern is a robust
phenomenon, and the comparison of the theoretically pre-
dicted [Fig. 3(c)] and experimentally measured (Fig. 5) R vs
K graphs indicate the presence of the isolated (nearly) fully
synchronized state.

Conclusion. We have shown that a system of globally cou-
pled oscillators, which is a mixture of two populations with
different amplitudes, can be reduced in the weak-coupling
case to an asymmetrically coupled modular network. The sys-
tem exhibits nonclassical synchronization transitions, where a
partially synchronized state and an isolated (nearly) fully syn-
chronized state coexist for arbitrarily large coupling strength.
The experiments demonstrated that the salient dynamical
features of the behavior can be observed in systems with-
out amplitude heterogeneity, but with asymmetrical coupling
(through parameter μ). Important future directions include
exploring the correlations between amplitude heterogeneities
and frequency distributions on the observed partially synchro-
nized states, because in experimental settings changing the
amplitudes through bifurcation parameters could also impact
the frequency distribution.

The predicted synchronization bistability is very robust to
finite-size effects as it was observed even with 40 oscilla-
tor populations in experiments. In contrast, similar bistable
synchronization transitions in coupled oscillator models with
nonidentical frequencies but with identical oscillator am-
plitudes required much larger system sizes (e.g., 10 000
oscillators) for their observation [8,9]. Moreover, it seems
likely that finite-size effects were also more pronounced in
the bistable synchronization transitions found in other mean-
field coupled oscillator models [32–36]. In a more general
context, our results show that even relatively small asym-
metry in the coupling topology (e.g., through amplitude
heterogeneity) can produce very robust partially synchro-
nized states where one population is strongly synchronized
while the other is desynchronized. The proposed mecha-
nism thus should be considered for interpretation of partially
synchronized states that seem to prevalent in biological
systems [37,38], in particular, in various aspects of brain
dynamics [39–41].
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