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We study the Kuramoto model with attractive sine coupling. We introduce a complex-valued matrix formu-
lation whose argument coincides with the original Kuramoto dynamics. We derive an exact solution for the
complex-valued model, which permits analytical insight into individual realizations of the Kuramoto model. The
existence of a complex-valued form of the Kuramoto model provides a key demonstration that, in some cases,
reformulations of nonlinear dynamics in higher-order number fields may provide tractable analytical approaches.
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The dynamics of networks with many nodes and con-
nections poses difficulties for mathematical treatment. While
linear dynamics on a network of interacting units is straight-
forward to handle with matrix algebra, once nonlinearity is
introduced at individual units, the dynamics of the system
becomes difficult to study analytically. Here, we consider the
Kuramoto model (KM), a paradigmatic example of nonlinear
network dynamics describing the synchronization of coupled
oscillators [1]. This model provides a canonical description
of synchronization in nature, where populations of interacting
units (from neurons to Josephson junctions and fireflies [2])
coordinate the timing of their behavior in the absence of
a central coordinator [3]. Because of its wide applicability
throughout many systems, the KM is a central consideration
in the study of nonlinear dynamics.

Analytical approaches to the KM started with the original
work of Kuramoto, who introduced the model in Ref. [4].
By changing to a rotating coordinate frame and passing to a
continuum description, Kuramoto provided a description of
the population dynamics in the infinite limit and the transition
to synchrony at a critical coupling strength. Since this pivotal
work, much research has gone on to analyze the dynamics
of the KM. In recent years, several studies have focused on
introducing complex versions of the KM [5,6], with the goal
of providing some analytical insight; however, finding a com-
plex KM that permits an exact solution for the evolution of
this system has proven evasive.

In this Letter, we provide a complex-valued matrix formu-
lation of the KM whose argument corresponds to the original
KM. We derive an explicit analytical solution for the dynamics
using the eigenspectrum of the adjacency matrix. We then use
this solution to study synchronization in individual realiza-
tions of the model. The existence of a complex-valued version
of the KM permitting an analytical solution provides a key
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demonstration for potential analytical approaches to complex
nonlinear dynamics at finite scales. The complex-valued KM
and its exact solution provide an example that, in some cases,
reformulations of nonlinear dynamics in different number
fields may provide opportunities for analytical descriptions of
nonlinear systems.

We start with the standard KM on a general network of N
nodes:

θ̇i = ωi + κ

N∑
j=1

ai j sin(θ j − θi ), (1)

where θi(t ) ∈ [−π, π ] is the state of oscillator i ∈ [1, N] at
time t , ωi is the intrinsic angular frequency, κ scales the
coupling strength, and element ai j ∈ {0, 1} represents the
connection between oscillators i and j. The standard sine cou-
pling in the interaction term causes phases of two connected
oscillators i and j to attract, to an extent depending on the
homogeneous coupling strength κ . Here, we first consider the
KM defined on an undirected ring graph GRG, where nodes are
arranged on a one-dimensional ring with periodic boundary
conditions and connected to their k neighbors in each direction
(later considering Erdős-Rényi and Watts-Strogatz graphs).
We also consider first the case of homogeneous intrinsic fre-
quencies ωi = ω ∀ i ∈ [1, N] (with the inhomogeneous case
in the Supplemental Material [7]). For k = �N/2�, GRG cor-
responds to the fully connected graph on N nodes, KN . It is
important to note that the approach described here is general
to the specific graph model we consider.

Starting with Eq. (1), we can change to a rotating coor-
dinate frame [8] and set ω = 0 without loss of generality.
We then subtract an additional imaginary component in the
interaction term:

θ̇i = γ

N∑
j=1

ai j[sin(θ j − θi ) − i cos(θ j − θi )]. (2)

We note this expression now implies θi ∈ C and requires a
scaling of the coupling strength (γ = 2κ/π ); as we show,
the resulting complex-valued system admits a solution whose
argument agrees with the original KM. We note that subscripts
i and j will be used to index oscillators, and in other cases i
represents the complex unit.
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MULLER, MINÁČ, AND NGUYEN PHYSICAL REVIEW E 104, L022201 (2021)

Multiplying both sides of Eq. (2) by i, we have

iθ̇i = γ

N∑
j=1

ai j[i sin(θ j − θi ) + cos(θ j − θi )]. (3)

Applying Euler’s formula, we can rewrite the system as

iθ̇i = γ

N∑
j=1

ai je
i(θ j−θi ) = γ e−iθi

N∑
j=1

ai je
iθ j . (4)

This equation now results in the following matrix form:

θ̇ = γ

i
diag[e−iθ] Aeiθ, (5)

where θ ∈ RN is the state vector across nodes, and A ∈
{0, 1}N×N is the adjacency matrix encoding the connections
between nodes in the network. We can then utilize the fact
that the inverse of the matrix diag[e−iθ] is diag[eiθ] to arrive at

diag[eiθ]θ̇ = γ

i
Aeiθ. (6)

Now, using the fact that

diag[eiθ]θ̇ = 1

i

d

dt
eiθ, (7)

mentioned in Ref. [6], we have that

d

dt
eiθ = γ Aeiθ, (8)

and letting x = eiθ , we have

ẋ = γ Ax (9)

whose general solution is

x(t ) = eγ tAx(0). (10)

We can now utilize a diagonalization of the adjacency matrix,
A = V DV −1, to rewrite the solution as

x(t ) = V eγ tDV −1x(0), (11)

and the problem of computing the matrix exponential is now
reduced to computing the standard exponential function on
the diagonal entries of D. We note that the adjacency matrix A
is always diagonalizable for the undirected graphs considered
here.

Finally, as noted above, Eq. (10) can be directly related to
the original KM. Let θ = θre + iθim be the decomposition of θ

into the real and imaginary parts. Then we have

x = eiθre−θim = e−θim eiθre . (12)

θre is thus the argument of the analytical solution x. In par-
ticular, we can take θre ∈ [−π, π ]. We use this solution to
compare with the numerical integration of Eq. (1).

What remains in deriving an expression for the resulting
temporal dynamics is to study the eigenspectrum of A. To do
this, we note the adjacency matrix of the ring graph GRG is by
definition a circulant matrix [9], and we can use the circulant
diagonalization theorem (CDT) to obtain its eigenspectrum
analytically. The CDT states that all circulants ci j = circ(c j ),
where circ(c j ) is the circulant matrix constructed from the
generating vector c j , are diagonalized by the same unitary
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FIG. 1. Synchronization dynamics in a three-node Kuramoto
model (KM). In this example, N = 3, κ = 1, ω/2π = 10 Hz, and
the network is fully connected (top left), so the adjacency matrix A is
the complete graph K3 (top right). Compared are the numerical result
(dotted gray line) and the analytical expression (solid black line) for
the state variables θ1 (top), θ2 (middle), and θ3 (bottom). Plotted is
one second of simulation (dt = 0.001 s). The difference between the
numerical result and the analytical prediction was verified to remain
less than π/16 in simulations as long as 10 s.

matrix U with the components

urs = 1√
N

exp

[
−2π i

N
(r − 1)(s − 1)

]
, (13)

r, s ∈ [1, N], and that the N eigenvalues are given by

Er (C) =
N∑

j=1

c j exp

[
−2π i

N
(r − 1)( j − 1)

]
. (14)

Using these expressions, we can then evaluate Eq. (10) in
terms of the eigenspectrum of A to obtain a fully analytical
evaluation of x(t ), which we can then compare to numerical
integration of the original KM.

We can now compare the argument of the analytical expres-
sion Eq. (10) with the result obtained by numerical integration
of Eq. (1). As a first example, we considered a small network
of N = 3 nodes and k = 1, resulting in the complete graph
K3. Figure 1 (top left) shows the considered network along
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FIG. 2. Numerical and analytical realizations of the KM. Plot-
ted are the state variables (θi ∀ i ∈ [1, N]) produced by the model
(N = 200 and k = 100, resulting in the fully connected complete
graph KN ), with different nodes on the horizontal axis and time on
the vertical. Dark colors indicate values close to −π , and light colors
indicate values close to π .

with the state variables θi at each node. Initial conditions
θi(0) were selected randomly with the uniform distribution
U (−π, π ). Starting from these random initial conditions and
a homogeneous coupling strength κ = 1, this small network
synchronizes over the course of the 1-s simulation (cf. dotted
blue vertical lines across the bottom three panels, Fig. 1).
Equations were integrated using a forward Euler method with
fine temporal precision (dt = 0.001 s) and were compared
with results from a Runge-Kutta method [10]. Additional
simulations were run at very high temporal precision (up to
dt = 10−6 s) to ensure the numerical validity of these results.
The simulation code to reproduce all figures in this work is
available at Ref. [11].

We next compare the analytical and numerical results for
larger networks of N = 200 nodes on a ring graph with k =
100. To create a synchronization transition during a 1-s simu-
lation interval, we scaled the coupling strengths accordingly
(κ = 6/N). Figure 2 shows the results of this comparison
between the numerical (top) and analytical (bottom) evalua-
tions. The numerical and analytical evaluations exhibit similar
dynamics, from the macroscopic synchronization to the spe-
cific trajectories of individual oscillators. Interestingly, a small
fraction of the nodes in the numerical simulation remain coun-
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FIG. 3. Synchronization in numerical and analytical realizations
of the KM (N = 200, k = 100). The modulus of the synchronization
order parameter r is plotted as a function of the coupling strength
κ for the numerical (black line) and analytical (red line) evaluations
of the model. Solid lines represent the average |r| over ten 1-s sim-
ulations (with the same random initial conditions for the numerical
and analytical evaluation in each realization) at a value of κ on a
logarithmic space of 1000 points between 10−3 and 101. Shaded
areas represent standard deviations over realizations.

terphase to the rest of the population, while this behavior does
not occur in the analytical version.

To understand this point further, we systematically stud-
ied synchronization in the KM. To quantify the extent of
synchronization, we use a standard approach to study the sum
over oscillators:

r(t ) = 1

N

N∑
j=1

eiθ j (t ), (15)

where r(t ) ∈ C, |r(t )| ∈ [0, 1] is the order parameter at time
t , and θ j (t ) ∈ [1, N] is the phase of oscillator j at time t [note
that θ j,re(t ) in the case of the analytical expression Eq. (10)].
Figure 3 shows the time-average order parameters over 1-s
simulations. As κ increases in the KM, the order parameter
begins at a low value (desynchronized state) and increases
until approaching unity (synchronized state) at values of κ

ranging from 1 to 10. As observed in Fig. 2, the numerical
and analytical versions of the KM exhibit very similar macro-
scopic synchronization dynamics.

Last, we considered the numerical and analytical solutions
of the KM on undirected Erdős-Rényi and Watts-Strogatz ran-
dom graphs. For each realization of a random graph, we obtain
a numerical estimate of the eigenspectrum of its adjacency
matrix A to use in the analytical expression Eq. (10). We
first considered the KM on an Erdős-Rényi random graph
(GER), which displays synchronization dynamics similar to
those previously observed (Fig. 4, top). We then considered
the KM on a Watts-Strogatz network (GWS), which is defined
as a ring graph, GRG, where each node is first connected to
its k neighbors in each direction and each edge is rewired
to another node with uniform probability q [12]. The KM
on GWS displays nontrivial spatiotemporal dynamics before
converging to the synchronized state (Fig. 4, bottom mid-
dle). Importantly, these spatiotemporal dynamics are also well

L022201-3
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FIG. 4. Numerical and analytical realizations on the Erdős-Rényi and Watts-Strogatz random graphs. (Top left) The Erdős-Rényi random
graph GER is plotted with nodes (black dots) and edges (blue lines) (N = 200, p = 0.2). (Top right) The numerical integration of the KM
[Eq. (1)] and the analytical evaluation of Eq. (10) are plotted (κ = 50/N). As previously, dark colors indicate values close to −π , and light
colors indicate values close to π . (Bottom left) The Watts-Strogatz (WS) graph GWS (N = 200, k = 10, and rewiring probability q = 0.1).
(Bottom right) Numerical and analytical evaluations of the KM are plotted as above.

described by the analytical expression introduced here (Fig. 4,
bottom right).

In this work, we have introduced a complex-valued for-
mulation of the KM whose argument corresponds to the
original Kuramoto dynamics. This formulation permits an
exact analytical solution for individual realizations of the KM.
Here, we have first considered the case of homogeneous in-
trinsic frequency; however, this approach generalizes to the
inhomogeneous case (see Supplemental Material [7]). We
then compared the analytical version to numerical integra-
tion of the KM equations and found the analytical version
displays similar dynamics, from the macroscopic synchro-
nization behavior to the specific trajectories of individual
oscillators.

Previous research, including an inspiring technical report
written by van Mieghem [6], has studied complex-valued
formulations of the KM [5,13]; however, no exact analyt-
ical expression was previously obtained. In particular, the
expression derived in Ref. [6] was noted to hold only for the
repulsive cosine variant of the KM, and the linear reformu-
lation in Ref. [5] requires tuning a parameter to create the
correspondence to the original KM. Thus, the results reported
in this Letter, while representing only an initial study utilizing
the expression in Eq. (10), may provide analytical insight into
the Kuramoto model.

Importantly, we emphasize that the analytical version in-
troduced here is valid at finite scales and for individual
realizations of the KM. This analytical version allows future
mathematical study of synchronization dynamics in networks
with many nodes and connections, potentially using new

tools from spectral graph theory, in addition to allowing one
to obtain the future state of the system at an arbitrary fu-
ture moment without numerical integration of the differential
equations defined in the network. Because the KM has been
extensively studied both as a model for neural dynamics
[8,14,15] and as a fundamental model for neural computation
[16], these results open up several possibilities for studying
the connections among network structure, nonlinear dynam-
ics, and computation. Recurrent connections have previously
been shown to produce powerful computations through non-
linear interactions [17]. The approach introduced here may
have applications in understanding such recurrent interac-
tions, which have been increasingly acknowledged to play an
important and unexplained role in visual processing in the
brain [18]. Understanding more clearly the connection be-
tween networks and computation thus may have implications
for fields such as neuroscience and beyond.

In this work, we have specifically studied the KM defined
on a ring graph, GRG, whose highly regular structure permits
analytical study of the eigenspectrum of its adjacency matrix.
The regular structure of this graph means that its adjacency
matrix belongs to the class of circulant matrices, whose eigen-
spectrum can be calculated analytically. Further, when k is
maximal, such that the number of neighbors to which a node
is connected equals the rest of the graph, GRG corresponds to
KN , the complete graph on N nodes. The KM defined on KN ,
in turn, corresponds to the case of all-to-all connectivity first
considered by Kuramoto [4]. For these reasons, we chose to
focus on the KM defined on GRG in this work. In previous
work [19], however, we have introduced an operator-based
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approach to the structure of random graphs. In future work, we
aim to extend the present results to understand the connection
between nonlinear dynamics and random graphs with various
structural features.

The existence of a complex-valued formulation of the Ku-
ramoto model that permits an analytical solution raises an
important example in nonlinear dynamics. While Eq. (1),
which includes the sine coupling interaction term and the
network adjacency matrix, appears analytically intractable, in
this case a reformulation in the complex domain provides an
algebraic approach to the Kuramoto dynamics which serves
as a canonical description for synchronization phenomena in

nature. While this reformulation may not generalize beyond
the Kuramoto model, the ability of this approach to provide
insight in this case suggests that representations in number
fields beyond R may represent opportunities for future insight.

The authors thank M. Ly, E. Bienenstock, and T. P.
Coleman for insightful discussions. L.M. was supported by
BrainsCAN at Western University through the Canada First
Research Excellence Fund (CFREF) and by the NSF through
a NeuroNex award (Grant No. 2015276). J.M. was supported
by the Natural Sciences and Engineering Research Council of
Canada (NSERC) under Grant No. R0370A01.

[1] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R.
Spigler, Rev. Mod. Phys. 77, 137 (2005).

[2] S. H. Strogatz, Sync: The Emerging Science of Spontaneous
Order (Hyperion, 2003).

[3] S. H. Strogatz, Nature (London) 410, 268 (2001).
[4] Y. Kuramoto, Int. Symp. Math. Theor. Phys. 30, 420 (1975).
[5] D. C. Roberts, Phys. Rev. E 77, 031114 (2008).
[6] P. van Mieghem, Delft U Technical Report, 2009.
[7] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.104.L022201 for additional calculations on
the case of inhomogeneous intrinsic frequencies.

[8] S. H. Strogatz and R. E. Mirollo, J. Phys. A 21, L699
(1988).

[9] P. J. Davis, Circulant Matrices (Wiley, New York, 1979).
[10] J. R. Dormand and P. J. Prince, J. Comput. Appl. Math. 6, 19

(1980).

[11] The simulation code to reproduce all figures in this work is
available at our GitHub site: http://mullerlab.github.io.

[12] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440
(1998).

[13] C. F. Cadieu and K. Koepsell, Neural Comput. 22, 3107 (2010).
[14] R. E. Mirollo and S. H. Strogatz, SIAM J. Appl. Math. 50, 1645

(1990).
[15] L. F. Abbott and C. van Vreeswijk, Phys. Rev. E 48, 1483

(1993).
[16] G. B. Ermentrout and D. Kleinfeld, Neuron 29, 33 (2001).
[17] S. Sinha and W. L. Ditto, Phys. Rev. Lett. 81, 2156 (1998).
[18] T. C. Kietzmann, C. J. Spoerer, L. K. A. Sörensen, R. M. Cichy,

O. Hauk, and N. Kriegeskorte, Proc. Natl. Acad. Sci. USA 116,
21854 (2019).

[19] M. Rudolph-Lilith and L. E. Muller, Phys. Rev. E 89, 012812
(2014).

L022201-5

https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1038/35065725
https://doi.org/10.1103/PhysRevE.77.031114
http://link.aps.org/supplemental/10.1103/PhysRevE.104.L022201
https://doi.org/10.1088/0305-4470/21/13/005
https://doi.org/10.1016/0771-050X(80)90013-3
http://mullerlab.github.io
https://doi.org/10.1038/30918
https://doi.org/10.1162/NECOa00048
https://doi.org/10.1137/0150098
https://doi.org/10.1103/PhysRevE.48.1483
https://doi.org/10.1016/S0896-6273(01)00178-7
https://doi.org/10.1103/PhysRevLett.81.2156
https://doi.org/10.1073/pnas.1905544116
https://doi.org/10.1103/PhysRevE.89.012812

