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Steps minimize dissipation in rapidly driven stochastic systems
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Micro- and nanoscale systems driven by rapid changes in control parameters (control protocols) dissipate
significant energy. In the fast-protocol limit, we find that protocols that minimize dissipation at fixed duration
are universally given by a two-step process, jumping to and from a point that balances jump size with fast
relaxation. Jump protocols could be exploited by molecular machines or thermodynamic computing to improve
energetic efficiency, and implemented in nonequilibrium free-energy estimation to improve accuracy.
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The birth of thermodynamics as a modern science can be
traced to Carnot’s study of the design principles for ener-
getically efficient heat engines described in Reflections on
the Motive Power of Fire [1]. In classical thermodynamics,
minimum-dissipation protocols are important in the design of
macroscopic heat engines describing, for example, adiabatic
(no heat loss) and quasistatic (infinitely slow) compression of
gas by a piston. Nearly 200 years later, the field of stochastic
thermodynamics [2,3] similarly studies the design principles
governing the ability to dynamically vary control parameters
and perform work at minimum energetic cost (minimum dissi-
pation), but now in micro- and nanoscale fluctuating systems.
Minimum-dissipation protocols inform our understanding of
the design principles of biological molecular machines [4,5]
and are of practical use to single-molecule experiments [6],
free-energy estimation [7–11], and thermodynamic comput-
ing [12,13].

In contrast to macroscopic systems that are well described
by averages of thermodynamic quantities, the stochastic fluc-
tuations in microscopic systems are large relative to the mean
and cannot be ignored. The work done on a stochastic system
by a control protocol is a fluctuating quantity that depends
on the entire protocol history, making it particularly difficult
to optimize. General optimization requires minimizing over
all possible paths through control-parameter space, which
cannot be solved in general [14]. Despite advances relating
optimal-control to optimal-transport theory, even numerical
optimizations are still limited to relatively simple systems
[15].

Although general solutions are intractable, we have gained
considerable insight into minimum-dissipation protocols by
considering simple systems. For example, Schmiedl and
Seifert [14] showed that for a Brownian particle diffusing
in a harmonic potential with time-dependent minimum or
stiffness, minimum-dissipation protocols exhibit jump discon-
tinuities. It was posited that jumps in control parameters are
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a general feature of minimum-dissipation protocols, and they
have since been observed in a number of different systems
[16–18].

More general insight can be gained by approximating the
mean work in relevant limits. For slow protocols, linear-
response theory yields an approximation for the mean work,
from which the approximate minimum-dissipation protocol
can be calculated [19]. Despite its success, the linear-response
formalism relies on near-equilibrium approximations that
break down for fast protocols, miss key features of the exact
minimum-dissipation protocol (e.g., jumps in control param-
eters), and for short duration can perform worse than naive
(constant-velocity) protocols [20].

While minimum-dissipation protocols for slowly driven
systems are relatively well understood, comparatively little
is known about rapidly driven systems. In this Letter we
focus on fast protocols and find a universal design prin-
ciple: The minimum-dissipation protocol consists of jumps
at the beginning and end of the protocol, spending the en-
tire duration at the control-parameter value that optimally
balances the initial force-relaxation rate (IFRR) (7b) with
the jump size (13). Our results are physically intuitive, ap-
ply to a wide range of stochastic systems, and generalize
easily to multidimensional control. To illustrate this, we cal-
culate the minimum-dissipation protocols in a diverse set of
systems described by Fokker-Planck or master-equation dy-
namics with single-dimensional (Fig. 1) or multidimensional
control (Fig. 4). Combining our results with known minimum-
dissipation protocols in the slow limit [19], we demonstrate
that a simple interpolation scheme produces protocols that
reduce dissipation at all speeds (Fig. 3).

Derivation. Consider a stochastic thermodynamic system
described by dynamics of the form

∂ p�(x, t )

∂t
= L[x,λ(t )] p�(x, t ), (1)

where p�(x, t ) is the probability distribution over microstates
x at time t given the control protocol �, and L[x,λ(t )]
is the operator describing the system’s time evolution. L
is the drift-diffusion operator for Fokker-Planck, and the

2470-0045/2021/104(2)/L022101(6) L022101-1 ©2021 American Physical Society

https://orcid.org/0000-0002-3855-4979
https://orcid.org/0000-0001-7066-1590
https://orcid.org/0000-0003-4815-4722
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.L022101&domain=pdf&date_stamp=2021-08-05
https://doi.org/10.1103/PhysRevE.104.L022101


BLABER, LOUWERSE, AND SIVAK PHYSICAL REVIEW E 104, L022101 (2021)

transition-rate matrix for master-equation dynamics. The sys-
tem is in contact with a heat bath at temperature T such
that the equilibrium probability distribution over microstates
x at fixed control parameters λ is π (x|λ) ≡ exp{β[F (λ) −
U (x,λ)]}, for internal energy U (x,λ) and free energy F (λ) ≡
−kBT ln

∑
x exp[−βU (x,λ)], where β ≡ (kBT ) for Boltz-

mann’s constant kB. The average excess work Wex ≡ W − �F
by an external agent changing control parameters λ according
to protocol � is

〈Wex〉� = −
∫ �t

0
dt

dλT

dt
〈δf (t )〉�, (2)

where a bold symbol denotes a column vector and superscript
T the transpose. f ≡ −∂U/∂λ are the forces conjugate to the
control parameters, and δf ≡ f − 〈f〉eq the deviations from
the equilibrium averages. Angle brackets 〈· · · 〉� denote a
nonequilibrium ensemble average over the control-parameter
protocol �. Here, we hold fixed the initial (λi) and fi-
nal (λf ) control parameters, consistent with nonequilibrium
free-energy estimation [7,8,10,11,20–29] but distinct from
optimizations that constrain the initial and final probability
distributions [13,30].

If the total duration �t is short compared to the system’s
natural relaxation time τ (a fast protocol), expanding the
probability distribution in �t/τ around an initial equilibrium
distribution gives

p�(x, s) = π (x|λi ) + p1
�(x, s)

�t

τ
+ O

[(
�t

τ

)2]
, (3)

for s ≡ t/�t and first-order coefficient p1
�(x, s). Plugging (3)

up to O(�t/τ ) into (1) gives

∂ p1
�(x, s)

∂s
≈ L[x,λ(s)] π (x|λi ), (4)

with L ≡ τL the dimensionless time-evolution operator. Solv-
ing for p1

�(x, s) and substituting into (3) yields

p�(x, s) ≈ π (x|λi ) + �t

τ

∫ s

0
ds′L[x,λ(s′)]π (x|λi ). (5)

Multiplying by conjugate forces f , integrating over mi-
crostates x, and changing the time variable back to t gives

〈f (t )〉� ≈ 〈f〉λi +
∫ t

0
dt ′ Rλi [λ(t ′)], (6)

for the initial force-relaxation rate (IFRR)

Rλi [λ(t )] ≡
∫

dx f (x) L[x,λ(t )]π (x|λi ) (7a)

= d〈f〉λi

dt

∣∣∣∣
λ(t )

, (7b)

the rate of change of the conjugate forces at the current
control-parameter values (averaged over the initial equilib-
rium distribution).

Within this approximation, the average excess work is

〈Wex〉� ≈ 〈Wex〉λi −
∫ �t

0
dt

dλT

dt

∫ t

0
dt ′ Rλi [λ(t ′)]. (8)

The first right-hand side (RHS) term is the excess work
during an instantaneous jump between the initial and fi-
nal control-parameter values, which equals the relative
entropy kBT D(πi||πf ) ≡ kBT

∫
dx πi ln[πi/πf ] between the

initial πi ≡ π (x|λi ) and final πf ≡ π (x|λf ) equilibrium prob-
ability distributions [31]. Integrating (8) by parts gives our
main theoretical result: For a sufficiently short duration, the
excess work is

〈Wex〉� ≈ kBT D(πi||πf ) −
∫ �t

0
dt RT

λi
[λ(t )][λf − λ(t )]. (9)

The second RHS term is the first-order correction in �t , an ap-
proximation for the saved work Wsave ≡ kBT D(πi||πf ) − Wex

compared to an instantaneous protocol. We emphasize that
these results stem from the short-time approximation of (3)
and do not involve any linear-response approximation. Rather
than the small-force and long-duration approximations typical
of linear-response and steady-state frameworks [32–34], we
make no direct assumptions on the strength of driving and
instead assume a short duration so that the probability dis-
tribution remains near the initial equilibrium distribution.

Initial force-relaxation rate. The IFRR can be intuitively
understood by considering one-dimensional exponential re-
laxation. For a discrete jump from an initial control-parameter
value λi to an intermediate value λ, an exponentially relaxing
mean conjugate force obeys

〈 f (t )〉� = 〈 f 〉λi + (〈 f 〉λ − 〈 f 〉λi )e
−t/τ (λ), (10)

where τ (λ) is the relaxation time of the conjugate force.
The IFRR is the initial slope of the mean conjugate force
as it relaxes towards equilibrium (7b), which for exponential
relaxation is

Rλi (λ) = 〈 f 〉λi − 〈 f 〉λ
τ (λ)

. (11)

Under simple exponential relaxation, τ (λ) is the same relax-
ation time defined in Ref. [19] for slow protocols, thereby
connecting short- and long-duration control.

For a small control-parameter jump λ − λi, static linear-
response theory, 〈 f 〉λi − 〈 f 〉λ ≈ β(λ − λi )〈δ f 2〉λi , implies
that the IFRR further simplifies to

Rλi (λ) ≈ 〈δ f 2〉λi (λ − λi )

τ (λ)
. (12)

The relaxation rate is zero at the initial control-parameter
value and increases with larger control-parameter jumps
which drive the system further from equilibrium.

Minimum-dissipation protocols. Equation (9) allows for
relatively straightforward optimization to determine the short-
time efficient protocol (STEP), satisfying the Euler-Lagrange
equation

∂

∂λ

[
RT

λi
(λ)(λf − λSTEP)

]∣∣
λSTEP = Rλi (λ

STEP). (13)

As an algebraic equation, the solution is a point in control-
parameter space, thus the STEP consists of two jumps: a jump
at the start from its initial value to the optimal value λSTEP,
and at the end from the optimal value to the final value. The
STEP is a jump protocol provided the time-evolution operator
L is independent of time derivatives of the control parameters.
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FIG. 1. Short-time efficient protocols (STEPs) for a single spin in
a time-dependent magnetic field (blue dots), Brownian particle in a
translating harmonic potential (black dashed), Brownian particle in a
harmonic potential with time-dependent stiffness (black dashed), and
a two-state binding/unbinding reaction system with variable binding
and unbinding rates controlled by the chemical-potential difference
(red dashed-dotted).

For Fokker-Planck dynamics this is satisfied if the system is
driven by a (generally time-dependent) scalar potential.

To illustrate the two-step minimum-dissipation protocol we
have calculated the STEP for diverse model systems (Fig. 1).
In the translating- and breathing-trap systems described by
Fokker-Planck dynamics (Supplemental Material I [35]), the
STEP jumps halfway between the two endpoints, consistent
with the results of Ref. [14]. The single-spin-flip and two-state
binding/unbinding reaction systems are described by master-
equation dynamics (Supplemental Material II and III [35]),
with STEPs that jump to points that are respectively larger
and smaller than halfway between the initial and final control-
parameter values. Specific jump sizes for the STEP depend on
the functional form of the IFRR, but the minimum-dissipation
protocol always consists of jumps to and from an intermediate
control-parameter value.

The STEP jumps to the point in control-parameter space
that maximizes the short-time power savings

Pst
save(λ) ≡ RT

λi
(λ)(λf − λ) (14)

due to relaxation at intermediate λ. The STEP balances a
fast relaxation rate Rλi with a large final jump λf − λ. The
STEP spends the duration �t relaxing at λSTEP, so for a
short duration Pst

save(λSTEP)�t is the work saved relative to an
instantaneous protocol.

To demonstrate the energetics of the STEP, consider the
thermodynamic cycle consisting of tightening and loosening a
harmonic trap (Fig. 2). For a quasistatic (infinitely slow) pro-
tocol, work equals the free-energy difference, which exactly
cancels for a cyclic process. An instantaneous protocol has
an additional contribution, which for tightening (loosening)
the trap equals the relative entropy between the open (closed)
and closed (open) states. The relative entropy is dissipated
as heat during equilibration between tightening and loosening
the trap (outer vertical arrows). The STEP spends the duration

FIG. 2. Thermodynamic cycle in the force vs control-parameter
plane for the breathing harmonic trap driven by instantaneous (red
dotted), STEP (green dashed-dotted), and quasistatic (black dashed)
protocols. Arrows denote the protocol direction for transitions be-
tween open (λi) and closed (λf ) states, shown schematically. The
area under each curve gives the average work done by the respective
protocol, the area under the quasistatic curve is the free-energy dif-
ference �Fi→f = Ff − Fi, the area between the instantaneous (dotted)
and quasistatic (dashed) curves is the relative entropy [e.g., 〈W 〉λi −
�Fi→f = kBT D(πi||πf )], and the area between the STEP (dashed-
dotted) and instantaneous (dotted) curves is the saved work 〈Wsave〉
(shaded rectangles). Control-parameter endpoints satisfy λi/λf =
1/2, with a duration �t/τ = 2/5 for the fastest relaxation time
τ = 1/(2λf ).

relaxing at an intermediate control-parameter value, resulting
in saved work approximated by the area of the rectangle with
the width given by the final jump size λf − λSTEP and the
height by Rλi (λ

STEP)�t . To maximize the saved work (rectan-
gle area) the STEP optimally balances the IFRR (determining
the height) with the final jump size (width).

For a single control parameter, if the duration is sufficiently
short the gain Gsave ≡ 〈Wsave〉des

� /〈Wsave〉naive
� in saved work by

the STEP is

GSTEP
save ≈ maxλ

[
Pst

save(λ)
]

Pst
save(λ)

, (15)

where an overbar denotes the spatial average Pst
save(λ) ≡

(�λ)−1
∫ λf

λi
dλ Pst

save(λ), “naive” the constant-velocity proto-
col, and “des” a designed protocol. The gain from a STEP
is greatest when the power savings Pst

save(λ) is sharply peaked.
Interpolated protocols. In order to design a protocol that

performs well for any duration, we combine the STEP
(optimal for fast protocols) with the minimum-dissipation
protocol from linear-response theory (optimal for slow pro-
tocols). The linear-response protocol is continuous and when
driven by a single control parameter proceeds at velocity
dλ/dt ∝ [ζ (λ)]−1/2, where ζ (λ) is the generalized friction
coefficient [19]. We assume the shape of the protocol from
linear-response theory remains unchanged (i.e., dλ/dt ∝
[ζ (λ)]−1/2) but with an initial jump (λSTEP − λi )/(1 + �t/τ )α

and final jump (λf − λSTEP)/(1 + �t/τ )α , where the constant
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(a)

(b)

FIG. 3. Benefit in the breathing harmonic trap from designed
protocols relative to the naive (constant-velocity) protocol, as a
function of the duration �t scaled by the fastest integral relaxation
time τ . The different designed (“des”) protocols include the exact
optimal [14] (“opt,” solid black), linear-response optimized (“slow
opt,” dashed blue), STEP (“fast opt,” red dots), and interpolated
optimal protocol (“inter opt,” dashed-dotted green). (a) Difference
between the work done by the naive (constant-velocity) and designed
protocols. (b) Gain Gsave ≡ 〈Wsave〉des

� /〈Wsave〉naive
� in saved work. The

solid red line in (b) denotes the short-duration limit (15). Control-
parameter endpoints satisfy λi/λf = 16, and the interpolated protocol
uses α = 1 and fastest integral relaxation time τ = 1/(2λi ) [20].

α controls the crossover from slow to fast approximations.
For our simple systems we empirically find α = 1 performs
relatively well.

Figure 3 shows the improvement from designed protocols
relative to naive (constant velocity) for the model system
of a breathing harmonic trap. The difference between naive
and designed work [Fig. 3(a)] shows the expected asymp-
totic behavior in the short- and long-duration limits: scaling
as �t (slope of one) for small �t/τ and (�t )−1 (slope of
negative one) for large �t/τ . Both the fast and slow designed
protocols perform worse than naive (the difference is nega-
tive) for large and small �t/τ , respectively. The fast-protocol
approximation (9) breaks down for a long duration because
the conjugate-force relaxation rate decreases as the system
approaches equilibrium at λ, whereas (9) assumes a constant
relaxation time. However, the interpolated protocol performs
well for any duration, and the largest work saved compared to
naive is for an intermediate duration. The gain Gsave quantifies
the percent increase in saved work from designed protocols
relative to naive, where a gain greater than one indicates the
designed does less work than the naive. For this system, the
largest gain in saved work occurs in the fast limit (small �t/τ )
for the STEP, interpolated, and exact optimal protocols.

Multidimensional control. Optimization of multidimen-
sional control protocols has seen a recent surge in interest,
primarily driven by possible improvements to nonequilib-
rium free-energy estimates in fast-switching simulations
[36,37]. Previous calculations of minimum-dissipation proto-
cols which observed jumps were limited to one-dimensional
optimization. A significant advantage of the present ap-

(a)

(b)

(c)

(d)

FIG. 4. (a) Nine-spin ferromagnetic Ising model (internal black
spins) with fixed boundary conditions (external gray spins). The
multidimensional control parameter is two external magnetic fields,
hb (blue) applied to horizontal-edge spins and hg (green) applied to
vertical-edge spins. (b) Short-time power savings (14) as a function
of control parameters (hb, hg). Red line: Naive protocol; red star:
hSTEP (13). (c) Work difference between designed and naive protocols
(dotted red), and its short-duration approximation (9) (solid red).
(d) Gain Gsave ≡ 〈Wsave〉des

� /〈Wsave〉naive
� in saved work for multidimen-

sional STEP relative to naive (dotted red), and its short-duration limit
(15) (solid red). Control-parameter endpoints are hi = (−2, −2) and
hf = (2, 2), with duration �t and fastest relaxation time τ = N/k0,
for N = 9 spins and single-spin-flip attempt rate k0.

proximation is that it permits simple multidimensional
control-protocol optimization. Equation (13) implies that for
multidimensional control the STEP consists of jumps to and
from the control-parameter point λSTEP.

To illustrate, we consider a nine-spin Ising model with
frustrated boundary conditions (Fig. 4) [38,39]. We use a
two-dimensional control parameter h = (hb, hg) of magnetic
fields applied to the midedge spins [Fig. 4(a)] which initially
hold the system in the spin-down state and reverse during
the protocol, driving the system to invert its magnetization.
Supplemental Material IV [35] gives the model details.

The power saving (14) vanishes at the initial and final
control-parameter values, respectively corresponding to a zero
relaxation rate and zero final jump size [Fig. 4(b)]. By jump-
ing past control-parameter regions with small power saving,
the STEP outperforms the naive protocol for a short duration,
as quantified by the difference between naive and designed
work [Fig. 4(c)] and the gain in saved work [Fig. 4(d)]. Indeed,
for a short duration the STEP more than doubles the work
saved by the naive protocol (i.e., has gain greater than two).

Discussion. We have developed an approximation for work
in the fast-protocol limit (9) that permits straightforward
optimization (13) simply from the initial force-relaxation
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rate (IFRR), Eq. (7b). We find that jumps are a univer-
sal feature of minimum-dissipation protocols in this fast
limit, which we illustrate with several model systems under
single- (Fig. 1) or multidimensional control (Fig. 4). Jumps
minimize dissipation for fast protocols because the relax-
ation rate is approximately constant, with no diminishing
returns from spending the entire duration at a single control-
parameter value. Therefore, the STEP jumps between the
fixed control-parameter endpoints to spend the entire duration
at the control-parameter value that maximizes the product
of the IFRR and the subsequent jump size (14). This breaks
down for slow protocols since with sufficient time at a single
control-parameter value, the relaxation rate decreases over
time; indeed, in the slow limit the minimum-dissipation pro-
tocol is continuous [19]. We combine these two seemingly
disparate limits with a simple interpolation scheme, producing
protocols that perform well for any duration (Fig. 3).

One important application of minimum-dissipation proto-
cols is to free-energy estimation, which aids the design of
novel ligands for targeted protein binding [10,24–29]. Quite
generally, the accuracy of free-energy estimates decreases
with increasing dissipation [7,8,20–23]. Based on the results
of Ref. [14], jump protocols have been used to reduce dissipa-
tion and improve free-energy estimates [8], but previously it
was unknown whether jumps would always reduce dissipation
in these more complex systems, and there was no simple pro-
cedure to find the optimal jump size. The present formalism

demonstrates that jumps are a general feature and gives a
simple optimization procedure applicable to multidimensional
control. This makes protocol optimization tractable for a con-
siderably expanded range of systems.

Although we focused on systems with known equations
of motion, the IFRR (7b) and short-time power savings (14)
are easily estimated without detailed dynamical information:
The system only needs to be equilibrated at a single control-
parameter value; the protocol can be very short; the average
converges with few samples; and the STEP is found using
standard optimization techniques applied to (14). The STEP
can thus be computed relatively inexpensively, easing the
determination of minimum-dissipation protocols in rapidly
driven complex chemical and biological systems. This opens
the door to improve the energetic efficiency in thermody-
namic computing [12,13] and the accuracy of nonequilibrium
free-energy estimates in simulations and single-molecule ex-
periments [6,7,20,21].

Acknowledgments. This work is supported by an SFU
Graduate Deans Entrance Scholarship (S.B.), an NSERC CGS
Doctoral fellowship (M.D.L.), an NSERC Discovery Grant
and Discovery Accelerator Supplement (D.A.S.), and a Tier-II
Canada Research Chair (D.A.S.), and was enabled in part by
support provided by WestGrid [41] and Compute Canada Cal-
cul Canada [42]. The authors thank John Bechhoefer, Jannik
Ehrich, and Joseph Lucero (SFU Physics) for enlightening
feedback on the manuscript.

[1] S. Carnot, E. Clapeyron, and R. Clausius, in Reflections on the
Motive Power of Fire: And Others Papers on the Second Law
of Thermodynamics, edited by E. Mendoza (Dover, New York,
1960).

[2] C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011).
[3] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[4] A. I. Brown and D. A. Sivak, Phys. Canada 73 (2017).
[5] A. I. Brown and D. A. Sivak, Chem. Rev. 120, 434 (2019).
[6] S. Tafoya, S. J. Large, S. Liu, C. Bustamante, and D. A. Sivak,

Proc. Natl. Acad. Sci. USA 116, 5920 (2019).
[7] D. K. Shenfeld, H. Xu, M. P. Eastwood, R. O. Dror, and D. E.

Shaw, Phys. Rev. E 80, 046705 (2009).
[8] P. Geiger and C. Dellago, Phys. Rev. E 81, 021127 (2010).
[9] S. Blaber and D. A. Sivak, Phys. Rev. E 101, 022118 (2020).

[10] J. D. Chodera, D. L. Mobley, M. R. Shirts, R. W. Dixon, K.
Branson, and V. S. Pande, Curr. Opin. Struct. Biol. 21, 150
(2011).

[11] D. D. Minh and J. D. Chodera, J. Chem. Phys. 131, 134110
(2009).

[12] T. Conte, E. DeBenedictis, N. Ganesh, T. Hylton, J. P.
Strachan, R. S. Williams, A. Alemi, L. Altenberg, G. Crooks,
J. Crutchfield et al., arXiv:1911.01968.

[13] K. Proesmans, J. Ehrich, and J. Bechhoefer, Phys. Rev. Lett.
125, 100602 (2020).

[14] T. Schmiedl and U. Seifert, Phys. Rev. Lett. 98, 108301 (2007).
[15] E. Aurell, C. Mejía-Monasterio, and P. Muratore-Ginanneschi,

Phys. Rev. Lett. 106, 250601 (2011).
[16] A. Gomez-Marin, T. Schmiedl, and U. Seifert, J. Chem. Phys.

129, 024114 (2008).

[17] H. Then and A. Engel, Phys. Rev. E 77, 041105 (2008).
[18] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck,

Europhys. Lett. 89, 20003 (2010).
[19] D. A. Sivak and G. E. Crooks, Phys. Rev. Lett. 108, 190602

(2012).
[20] S. Blaber and D. A. Sivak, J. Chem. Phys. 153, 244119

(2020).
[21] F. Ritort, C. Bustamante, and I. Tinoco, Proc. Natl. Acad. Sci.

USA 99, 13544 (2002).
[22] J. Gore, F. Ritort, and C. Bustamante, Proc. Natl. Acad. Sci.

USA 100, 12564 (2003).
[23] S. Kim, Y. W. Kim, P. Talkner, and J. Yi, Phys. Rev. E 86,

041130 (2012).
[24] C. E. M. Schindler, H. Baumann, A. Blum, D. Böse, H.-P.

Buchstaller, L. Burgdorf, D. Cappel, E. Chekler, P. Czodrowski,
D. Dorsch et al., J. Chem. Inf. Model. 60, 5457 (2020).

[25] M. Aldeghi, V. Gapsys, and B. L. de Groot, ACS Cent. Sci. 4,
1708 (2018).

[26] B. Kuhn, M. Tichý, L. Wang, S. Robinson, R. E. Martin, A.
Kuglstatter, J. Benz, M. Giroud, T. Schirmeister, R. Abel et al.,
J. Med. Chem. 60, 2485 (2017).

[27] M. Ciordia, L. Pérez-Benito, F. Delgado, A. A. Trabanco, and
G. Tresadern, J. Chem. Inf. Model. 56, 1856 (2016).

[28] L. Wang, Y. Wu, Y. Deng, B. Kim, L. Pierce, G. Krilov, D.
Lupyan, S. Robinson, M. K. Dahlgren, J. Greenwood et al.,
J. Am. Chem. Soc. 137, 2695 (2015).

[29] V. Gapsys, S. Michielssens, J. H. Peters, B. L. de Groot,
and H. Leonov, in Molecular Modeling of Proteins, edited by
A. Kukol (Springer, New York, 2015), pp. 173–209.

L022101-5

https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1021/acs.chemrev.9b00254
https://doi.org/10.1073/pnas.1817778116
https://doi.org/10.1103/PhysRevE.80.046705
https://doi.org/10.1103/PhysRevE.81.021127
https://doi.org/10.1103/PhysRevE.101.022118
https://doi.org/10.1016/j.sbi.2011.01.011
https://doi.org/10.1063/1.3242285
http://arxiv.org/abs/arXiv:1911.01968
https://doi.org/10.1103/PhysRevLett.125.100602
https://doi.org/10.1103/PhysRevLett.98.108301
https://doi.org/10.1103/PhysRevLett.106.250601
https://doi.org/10.1063/1.2948948
https://doi.org/10.1103/PhysRevE.77.041105
https://doi.org/10.1209/0295-5075/89/20003
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1063/5.0033405
https://doi.org/10.1073/pnas.172525099
https://doi.org/10.1073/pnas.1635159100
https://doi.org/10.1103/PhysRevE.86.041130
https://doi.org/10.1021/acs.jcim.0c00900
https://doi.org/10.1021/acscentsci.8b00717
https://doi.org/10.1021/acs.jmedchem.6b01881
https://doi.org/10.1021/acs.jcim.6b00220
https://doi.org/10.1021/ja512751q


BLABER, LOUWERSE, AND SIVAK PHYSICAL REVIEW E 104, L022101 (2021)

[30] Y. Zhang, Europhys. Lett. 128, 30002 (2020).
[31] S. J. Large and D. A. Sivak, J. Stat. Mech.: Theory Exp. (2019)

083212.
[32] D. Ruelle, Phys. Lett. A 245, 220 (1998).
[33] M. Colangeli, C. Maes, and B. Wynants, J. Phys. A 44, 095001

(2011).
[34] U. M. B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani,

Phys. Rep. 461, 111 (2008).
[35] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.104.L022101 for model details [40].

[36] C. Chipot and T. Lelièvre, SIAM J. Appl. Math. 71, 1673
(2011).

[37] C. Dellago and G. Hummer, Entropy 16, 41 (2014).
[38] G. M. Rotskoff, G. E. Crooks, and E. Vanden-Eijnden, Phys.

Rev. E 95, 012148 (2017).
[39] M. Venturoli, E. Vanden-Eijnden, and G. Ciccotti, J. Math.

Chem. 45, 188 (2009).
[40] R. J. Glauber, J. Math. Phys. 4, 294 (1963).
[41] www.westgrid.ca.
[42] www.computecanada.ca.

L022101-6

https://doi.org/10.1209/0295-5075/128/30002
https://doi.org/10.1088/1742-5468/ab342b
https://doi.org/10.1016/S0375-9601(98)00419-8
https://doi.org/10.1088/1751-8113/44/9/095001
https://doi.org/10.1016/j.physrep.2008.02.002
http://link.aps.org/supplemental/10.1103/PhysRevE.104.L022101
https://doi.org/10.1137/10080600X
https://doi.org/10.3390/e16010041
https://doi.org/10.1103/PhysRevE.95.012148
https://doi.org/10.1007/s10910-008-9376-5
https://doi.org/10.1063/1.1703954
https://www.westgrid.ca/
https://www.computecanada.ca/

