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Active Brownian motion with directional reversals
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Active Brownian motion with intermittent direction reversals is common in bacteria like Myxococcus xanthus
and Pseudomonas putida. We show that, for such a motion in two dimensions, the presence of the two timescales
set by the rotational diffusion constant DR and the reversal rate γ gives rise to four distinct dynamical regimes: (I)
t � min(γ −1, D−1

R ), (II) γ −1 � t � D−1
R , (III) D−1

R � t � γ −1, and (IV) t � max(γ −1, D−1
R ), showing distinct

behaviors. We characterize these behaviors by analytically computing the position distribution and persistence
exponents. The position distribution shows a crossover from a strongly nondiffusive and anisotropic behavior
at short times to a diffusive isotropic behavior via an intermediate regime, II or III. In regime II, we show
that, the position distribution along the direction orthogonal to the initial orientation is a function of the scaled
variable z ∝ x⊥/t with a nontrivial scaling function, f (z) = (2π3)−1/2�(1/4 + iz)�(1/4 − iz). Furthermore, by
computing the exact first-passage time distribution, we show that a persistence exponent α = 1 emerges due to
the direction reversal in this regime.

DOI: 10.1103/PhysRevE.104.L012601

Active particles like bacteria, Janus colloids, and nanomo-
tors are self-propelled, show persistent motion, and manifest
novel collective and single particle behavior [1–9]. Minimal
statistical models capturing these features play a central role
in the theoretical understanding of active matter [10–12].
These models typically describe the overdamped motion of
a particle with a constant speed v0 along a stochastically
evolving internal orientation. The intrinsic nonequilibrium
nature makes exact analytical treatment much more challeng-
ing, even for the minimal models, compared to their passive
counterparts like Brownian motion. Nevertheless, analytical
results for the position distribution and first-passage proper-
ties in certain situations have been obtained for two basic
models—the so-called run-and-tumble particle (RTP) [13–18]
and the active Brownian particle (ABP) [19–25]. For RTP,
the internal orientation changes by a finite amount via
an intermittent “tumbling,” whereas it undergoes a rota-
tional diffusion for ABP. These models successfully describe
dynamics of bacteria like Escherichia coli and “catalytic
swimmers” [26–28].

Many microorganisms, such as Myxococcus xanthus
[29–32], Pseudomonas putida [33,34], Pseudoalteromonas
haloplanktis and Shewanella putrefaciens [35,36], and Pseu-
domonas citronellolis [37], however, show a distinctly
different dynamics. They undergo intermittent directional re-
versals, in addition to an ABP-like motion. The origin of
such reversals is different in different organisms; for example,
internal protein oscillations reverse the cell polarity, which
causes the directional reversal in Myxococcus xanthus [29,31],
while a reversal of swimming direction occurs due to the
reversal in the rotation direction of polar flagella in Pseu-
domonas putida [33,34]. The addition of the drastic reversal
dynamics to the rotational diffusion gives rise to a host
of emergent collective phenomena, including fruiting body

formation [30], the generation of rippling patterns [38], and
accordion waves [39].

Despite the widespread appearance of these direction re-
versing active Brownian particles (DRABPs), a theoretical
understanding of them is still lacking, even at the level
of single-particle position distribution. Another relevant ob-
servable for active particles like bacteria is the first-passage
time [41,42] to reach a particular target such as a food source,
a weak spot of the host, or toxins. For example, certain
starvation induced complex processes have been seen in Myx-
ococcus xanthus [30] and Pseudomonas putida [40], which in
turn would depend on the first-passage properties. Again, no
theoretical results are available for the first-passage statistics
of the DRABPs. In this Letter we obtain exact analytical
results for the position distribution and persistence exponents
describing the power-law decay of the survival probability,
thus providing a comprehensive theoretical understanding.

In two dimensions, the position x = (x, y) and orientation
θ of a DRABP evolve according to the Langevin equations,

ẋ(t ) = v0 σ (t ) cos θ (t ) ≡ ζx(t ), (1a)

ẏ(t ) = v0 σ (t ) sin θ (t ) ≡ ζy(t ), (1b)

θ̇ (t ) =
√

2DR η(t ), (1c)

where DR is the rotational diffusion coefficient and η(t ) is
Gaussian white noise, with 〈η(t )〉 = 0 and 〈η(t )η(t ′)〉 = δ(t −
t ′). The dichotomous noise σ (t ) alternates between ±1 at a
constant rate γ , triggering the direction reversal (see Fig. 1
for a typical trajectory).

In this Letter, we show that the presence of the two
timescales, D−1

R and γ −1, gives rise to four distinct dynam-
ical regimes: (I) t � min(γ −1, D−1

R ), (II) γ −1 � t � D−1
R ,

(III) D−1
R � t � γ −1, and (IV) t � max(γ −1, D−1

R ), each
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FIG. 1. A typical trajectory of a DRABP generated by discretiz-
ing (1), where, in a small interval �t, the particle reverses the direc-
tion with probability γ�t and with probability 1 − γ�t performs
an ABP: {�x(t ),�y(t )} = v0σ (t )�t{cos θ (t ), sin θ (t )}; �θ (t ) =√

2DR�t χ , where χ is drawn from a standard normal distribution.
The arrows indicate the instantaneous velocity vectors. The inset
shows a long-time trajectory [which resembles a Brownian trajec-
tory] with the two end points marked. See [44] for an animation.

characterized by a different dynamical behavior. Indeed, for
Myxococcus xanthus, the well-separated timescales (γ −1 �
102 s and D−1

R � 106 s [43]) make regimes I, II, and IV
experimentally accessible. We find that the position distri-
bution shows a crossover from a strongly nondiffusive and
anisotropic behavior at short times to an eventual isotropic
diffusive behavior via an intermediate regime, II or III, whose
behaviors are very different. In regime I, starting from the
origin with a fixed orientation θ0, the position distribution of
a DRABP is strongly anisotropic and shows a plateau-like
structure around the origin accompanied by a single peak near
v0t along θ0 [Figs. 2(a) and 3(a)]. For γ > DR the anisotropy
persists in intermediate-time regime II, however, with a peak
at the origin [Fig. 2(b)]. In particular, we show that the posi-
tion distribution along the direction orthogonal to the initial
orientation has the scaling form

P(x⊥, t ) = 1

v0t

√
γ

8DR
f

(
x⊥
v0t

√
γ

8DR

)
, (2)

with an exact nontrivial scaling function,

f (z) = 1√
2π3

�

(
1

4
+ iz

)
�

(
1

4
− iz

)
, (3)

where �(z) is the gamma function. The tails of f (z) decay
exponentially [Fig. 3(b)]. Regime III appears for DR > γ

where the distribution is Gaussian [Fig. 3(c)] with variance
v2

0/(2DR). The distribution is also a Gaussian in late-time
regime IV, albeit with a different variance, v2

0/[2(2γ + DR)]
[Figs. 2(c) and 3(d)].

The persistence property also shows distinct behaviors in
dynamical regimes I–IV. We show that the directions paral-
lel and orthogonal to the initial orientation are characterized
by different persistence exponents, α‖ and α⊥, respectively,
which are summarized in Table I. The most noteworthy is
the persistence exponent α⊥ = 1 in intermediate regime II,
emerging due to the presence of the direction reversal. In
particular, in the limit γ → ∞ and DR → 0, the first-passage
time distribution for the perpendicular component has the
scaling form

F⊥(t ; x⊥0) = x⊥0

√
2γ 3/2

v3
0 t2

√
DR

f

(
x⊥0

v0t

√
γ

8DR

)
, (4)

where f (z) is given by Eq. (3) and x⊥0 is the initial position.
In fact, for γ > DR, we find that α⊥ shows a nonmonotonic
behavior: α⊥ = 1/4 at short times (regime I), crosses over to
α⊥ = 1 in regime II, and finally reaches the Brownian value
α⊥ = 1/2 at late times (regime IV).

Position distribution. We begin by considering the po-
sition distribution. The correlated nature of the effective
noises ζx,y(t ) in Eq. (1) makes the dynamics nondiffusive and
anisotropic at short times (see Sec. I of the Supplemental
Material [44] for details). In the following we first consider
the two extreme regimes (I and IV) before coming to the inter-
mediate regimes (II and III). We set x(0) = y(0) = 0 without
any loss of generality.

Short-time regime I. Starting from the initial orientation
θ (0) = θ0 and σ (0) = 1, for t � D−1

R the effective noises can
be approximated as

ζx(t ) ≈ v0σ (t )[cos θ0 − φ(t ) sin θ0], (5a)

ζy(t ) ≈ v0σ (t )[sin θ0 + φ(t ) cos θ0], (5b)

where φ(t ) = √
2DR

∫ t
0 η(s) ds denotes a standard Brown-

ian motion. Here we have approximated cos φ(t ) � 1 and
sin φ(t ) � φ(t ) for t � D−1

R as φ(t ) ∼ √
DRt � 1 [22].

To obtain the marginal position distributions P(x, t ) and
P(y, t ) corresponding to Eqs. (5), we adopt a trajectory based

FIG. 2. Dynamical evolution of the position distribution P(x, y, t ) for the case γ > DR obtained from numerical simulations. Here we have
taken γ = 0.1, DR = 0.01, and initial orientation θ0 = π/4. (a), (b), and (c) correspond to t = 1 (regime I), t = 50 (regime II), and t = 200
(regime IV), respectively. The strong anisotropy in regime I persists in the intermediate regime II, eventually disappearing at large times
(regime IV). See [44] for a movie. For γ < DR the intermediate regime in (b) is replaced by regime III, which looks similar to (c).
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FIG. 3. Marginal position distribution P(x, t ) in the different
dynamical regimes: (a) t � min(D−1

R , γ −1), (b) γ −1 � t � D−1
R ,

(c) D−1
R � t � γ −1, and (d) t � max(D−1

R , γ −1). The symbols are
from numerical simulations, while solid black lines correspond to
the analytical predictions given by Eqs. (6) (up to n = 2), (2), (8),
and (7) for (a)–(d), respectively. Here v0 = 1, and we have used
initial orientation θ0 = π/4 for (a), (c), and (d) and θ0 = π/2
for (b).

approach. The trajectory of the DRABP over a time interval
[0, t] can be divided into (n + 1) intervals, punctuated by n di-
rection reversals; σ remains constant between two consecutive
reversals. We show that, for a specific sequence of intervals
with duration {s1, s2, . . . , sn+1}, the distribution of the final
position x is a Gaussian with mean cos θ0

∑n+1
i=1 (−1)isi and

variance bn sin2 θ0, where

bn = 2DR

n+1∑
i=1

[
i−1∑
j=1

(−1)i+ j sis j (t j + t j−1) + s2
i

3
(ti + 2ti−1)

]
.

Here ti = ∑i
j=1 s j , with t0 = 0 and tn+1 = t . The position

distribution is then obtained by taking weighted contribu-
tions from all such trajectories. Skipping details (see Sec. III
of [44]), we get

P(x, t ) = e−γ t

v0 sin θ0

√
2π

∞∑
n=0

γ n
∫ t

0

n+1∏
i=1

dsi
δ
(
t − ∑n+1

i=1 si
)

√
bn

× exp

[
−

(
x + v0 cos θ0

∑n+1
i=1 (−1)isi

)2

2v2
0 sin2 θ0bn

]
, (6)

TABLE I. Persistence exponents for the x⊥ and x‖ com-
ponents of the DRABP as defined by decay of the survival
probability S(t ) ∼ t−α in the different dynamical regimes: (I) t �
min(D−1

R , γ −1), (II) γ −1 � t � D−1
R , (III) D−1

R � t � γ −1, and
(IV) t � max(γ −1, D−1

R ).

Persistence
exponent I II III IV

α⊥ 1/4 1 1/2 1/2
α‖ 0 1/2 1/2 1/2

where each term corresponds to trajectories with a fixed num-
ber n of reversals. We also obtain the y-marginal distribution
P(y, t ) in the same manner, whose explicit form is given
in [44].

Equation (6) provides the exact time-dependent marginal
distribution for the process (5). Even though the infinite series
cannot be summed explicitly to obtain a closed-form expres-
sion, it can be systematically evaluated numerically to obtain
P(x, t ) for arbitrary γ and t . In fact, for t � γ −1, it suffices
to consider the first few terms to get a reasonably good esti-
mate of the marginal distributions [44]. Figure 3(a) compares
this estimate, evaluated up to n = 2 terms, with P(x, t ) ob-
tained from numerical simulations. Clearly, this perturbative
approach is extremely successful in accurately predicting the
characteristic shape of the distribution, with a wide plateau
near the origin and a peak near x = v0t , in this short-time
regime (regime I).

Physically, the peak in the distribution is a manifestation
of the ABP nature of the motion—the n = 0 term, corre-
sponding to the no reversal case, correctly predicts the peak.
The emergence of the plateau, however, is a direct conse-
quence of the reversal events—for t � D−1

R , the orientation
θ evolves slowly, and the dynamics can be thought of as
a one-dimensional RTP with an effective velocity v0 cos θ0.

Now, for small values of γ , the trajectories with a single flip
contribute a constant value (the plateau) γ e−γ t/(2v0 cos θ0).
This agrees well with the exact result [Eq. (6)] to leading order
in γ . Interestingly, such a plateau with a boundary peak has
been observed for motile bacteria in emulsion droplets [45].

The anisotropic nature of the distribution in this short-time
regime is a direct artifact of the fixed initial orientation. If,
instead, the initial orientation is chosen uniformly, the posi-
tion distribution becomes isotropic, and an additional peak
emerges at the origin (Fig. 3 of [44]).

Long-time regime IV. For a given time t , mathematically,
this regime can be accessed by taking both large DR and large
γ (� t−1). For large DR and arbitrary γ , the effective-noise
autocorrelation becomes (see Sec. II of [44]) 〈ζa(t )ζb(t ′)〉 ≈
2Deffδa,b [DR + 2γ ] exp(−[DR + 2γ ]|t − t ′|), where 2Deff =
v2

0/(DR + 2γ ). Thus, in the limit DR, γ → ∞, it tends to
2Deffδa,bδ(t − t ′), which results in the isotropic Gaussian dis-
tribution,

P(x, y, t ) ≈ 1

2Defft
G

(
x√

2Defft
,

y√
2Defft

)
, (7)

with G(x̃, ỹ) = e−(x̃2+ỹ2 )/2/(2π ). The corresponding
x-marginal distribution (which, obviously, is also a Gaussian)
is plotted in Fig. 3(d) along with the data from numerical
simulations; excellent agreement validates our prediction.

Intermediate-time regime III. This regime corresponds to
DR � t−1 � γ , where 〈ζa(t )ζb(t ′)〉 → (v2

0/DR)δa,b δ(t − t ′).
Therefore, the typical position distribution is again Gaussian
with width v0

√
t/DR,

P(x, y, t ) ≈ DR

v2
0t

G

(
x

v0
√

t/DR
,

y

v0
√

t/DR

)
, (8)

with G(x̃, ỹ) = e−(x̃2+ỹ2 )/2/(2π ). Note that this result is the
same as in the case of ABP for t � D−1

R [22]; adding direc-
tional reversal does not change the physical scenario in this
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regime. We validate this prediction with numerical simula-
tions in Fig. 3(c).

Intermediate-time regime II. The correlated noise leads to
an intriguing behavior in this regime, γ −1 � t � D−1

R . For
t � γ −1, the frequent reversals lead to a Gaussian white noise
ξ (t ) with zero mean and correlator 〈ξ (t )ξ (t ′)〉 = γ −1δ(t − t ′).
Thus, for t � D−1

R , from Eqs. (5), the effective noises can be
approximated as

ζx(t ) ≈ v0 ξ (t )[cos θ0 − φ(t ) sin θ0], (9a)

ζy(t ) ≈ v0 ξ (t )[sin θ0 + φ(t ) cos θ0]. (9b)

Equations (9) describe a Brownian motion with stochastically
evolving diffusion coefficients. Some specific versions of such
models have been studied recently [46] in a different context.

The Gaussian nature of ξ (t ) for a fixed {φ(s)} trajectory
allows us to evaluate the characteristic function, 〈eik·x〉 =
〈exp [− 1

2 kT �(t ) k]〉φ , where k = (kx, ky)T and �(t ) is the
correlation matrix whose explicit form is given in Sec. IV
of [44]. The subscript φ denotes averaging over the Brownian
paths {φ(s)}, which can be performed using the path integral
approach. This yields [44]

〈eik·x〉 = 1√
cosh ωt

exp

[
−ω tanh ωt

4DR

(
kx + ky tan θ0

ky − kx tan θ0

)2]
,

(10)

where ω = v0
√

2DR/γ (ky cos θ0 − kx sin θ0). Of particular
interest are the distributions along and orthogonal to the initial
orientation, denoted by x‖ and x⊥ respectively. Setting θ0 = 0
gives x⊥ ≡ y and x‖ ≡ x.

Putting kx = 0, ky = k in Eq. (10) yields 〈eikx⊥〉 =
[cosh(v0kt

√
2DR/γ )]−

1
2 , which leads to the nontrivial dis-

tribution announced in Eqs. (2) and (3) for x⊥. Figure 3(b)
shows excellent agreement between Eq. (3) and the nu-
merical simulations. The tails of the distribution decay as
∼ exp[−π |x⊥|/(2

√
2�)], where the characteristic length scale

� = v0t
√

DR/γ is the rms displacement [Eq. (14) in the Sup-
plemental Material] in regime II. It is evident from the ballistic
scaling form (2) that the variance ∝ t2 (Eq. (14) in [44]).
On the other hand, ky = 0, kx = k give 〈eikx‖ 〉 = e−v2

0 k2 t/(2γ ),
which leads to a Gaussian distribution with variance v2

0t/γ ,
indicating diffusive fluctuations. This drastically different na-
ture of the fluctuations for x⊥ and x‖ leads to the anisotropic
distribution seen in Fig. 2(b).

First-passage properties. We next consider the survival
probability, which is the cumulative distribution of the first-
passage time. We set θ0 = 0 so that x‖ = x and x⊥ = y. Let
Sy(t ; y0) denote the probability that, starting from some arbi-
trary position y(0) = y0, the y component of the position has
not crossed the y = 0 line up to time t ; Sx(t ; x0) is defined
similarly.

The most interesting scenario appears for γ > DR, where
Sy(t ) shows three distinct persistence behaviors in the three
different dynamical regimes. For θ0 = 0, Eq. (5b) leads to ẏ =
v0σ (t )φ(t ). Now, for t � γ −1, this can be approximated as a
random acceleration process ẏ � v0σ (0)φ(t ), for which the
persistence exponent is 1/4 [47,48]. Therefore, in short-time
regime I, we expect αy = 1/4, which is verified in Fig. 4(a)
using numerical simulations.
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FIG. 4. Sy(t ) vs t for γ > DR: (a) shows the crossover from αy =
1/4 (regime I) to αy = 1 (regime II) for a fixed DR = 10−5 and y0 =
0.001. (b) shows the crossover from αy = 1 (regime II) to αy = 1/2
(regime IV) for γ = 1 and y0 = 0.1.

In intermediate-time regime II the effective y dynamics
[see (9b)] becomes ẏ = v0ξ (t )φ(t ) for θ0 = 0. We compute
the survival probability by solving the corresponding Fokker-
Planck equation with an absorbing boundary condition at
y = 0. This leads to a new persistence exponent αy = 1 in
the context of active particles. In fact, in the limit γ → ∞
and DR → 0, we find the exact first-passage time distribu-
tion (4), which we verify using numerical simulations in
Sec. V of [44]. This result is consistent with the recently
obtained first-passage behavior for the diffusing diffusivity
model [49]. We show the crossover from αy = 1/4 to αy = 1
near t ∼ γ −1 using numerical simulations in Fig. 4(a).

In large-time regime IV, as discussed earlier, the particle
behaves like an ordinary diffusion process with an effective
diffusion constant. Consequently, the survival probability de-
cays with the Brownian exponent αy = 1/2 as seen from the
numerical simulations in Fig. 4(b). The crossover from αy = 1
to αy = 1/2 occurs around t ∼ D−1

R .
If DR > γ , we effectively see two distinct exponents αy =

1/4 in the short-time regime (regime I), which crosses over to
αy = 1/2 in regime III and remains the same for large times
(regime IV). We also study Sx(t ), which shows Brownian
behavior at all times except in regime I, where αx = 0 due
to the fact that the particle always survives for t � γ −1 (see
Fig. 6 in [44]). A summary of the exponents in all the regimes
is provided in Table I.

In conclusion, we provided a comprehensive analytical
understanding of the DRABP that models a wide range of
bacterial motion. The DRABP shows many different features:
the presence of the direction reversal along with rotational
diffusion gives rise to four distinct dynamical regimes, each
of which corresponds to a different position distribution and
persistence exponent. In particular, we found that the position
distributions in the short-time and intermediate-time regimes
have certain unique features very different from ordinary ABP
and RTP. The short-time regime is characterized by the emer-
gence of a plateau. The intermediate regime γ −1 � t � D−1

R
shows a unique scaling behavior [see Eqs. (2) and (3)]. We
also found a persistence exponent α = 1, which has not been
seen in active motions so far, in the same regime.

Our work opens up the possibility to explore a wide range
of problems in the study of active motions both experimen-
tally and theoretically. Our results for the position distribution
may be verified in experiments with dilute solutions of
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bacteria [30,34] or artificial active colloids [50]. Moreover,
it would be really interesting to observe the nonmonotonic
persistence exponent behavior from single-particle tracking.
In this Letter we have considered the direction reversal to be
a Poissonian process. Studying the effect of other reversal-
time distributions, like � distributions [51,52] or a power law,
is a challenging open question. It would also be interesting

to study the effect of interaction on DRABP, which would
help us understand the complex phenomena seen in experi-
ments [38,39].
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