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Self-organized multistability in the forest fire model
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The forest fire model in statistical physics represents a paradigm for systems close to but not completely at
criticality. For large tree growth probabilities p we identify periodic attractors, where the tree density ρ oscillates
between discrete values. For lower p this self-organized multistability persists with incrementing numbers of
states. Even at low p the system remains quasiperiodic with a frequency ≈ p on the way to chaos. In addition,
the power-spectrum shows 1/ f 2 scaling (Brownian noise) at the low frequencies f , which turns into white noise
for very long simulation times.
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I. INTRODUCTION

Based mainly on numerical studies, we find that the stan-
dard forest fire model (FFM) from statistical physics [1,2]
shows a peculiar type of quasiperiodic oscillation. The be-
havior resembles a Feigenbaum map [3]; i.e., the average
oscillation period duration increases on the way to chaos and
critical behavior. However, there are no period-doubling bi-
furcation transitions. The characteristic oscillation frequency
fmax, as characterized by the peak in the power spectrum,
remains well defined for very low tree-growth probabilities,
i.e., when the timescales of tree growth, tree cluster ignition,
and tree cluster burn down become very different (full sepa-
ration of timescales [1]). fmax can be described using a model
reformulation introduced for relating the FFM with wildfire
models from ecology [4], allowing the calculation of effective
model parameters. On long timescales, i.e., for frequencies
well below fmax, time-dependent tree and fire densities ini-
tially follow a random walk (≈1/ f 2 scaling of the power
spectral density versus frequency f ) and approach white noise
(approximately flat spectrum) for very long simulations. Crit-
ical behavior, as typically characterized by 1/ f noise (pink
noise), only appears as a transition.

Historically, a slightly different FFM [5] has been sug-
gested as an example of self-organized criticality (SOC) [6]
to explain the origin of 1/ f noise. The concept of SOC means
that, without fine-tuning of parameters, a system drives itself
to a critical point characterized by temporal fluctuations of
a major variable around its mean and 1/ f scaling behavior
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of its power spectrum. SOC characterizes the dynamics of
many devices and natural systems, e.g. electronic devices [7],
biological systems [8], astrophysical processes [9], and cli-
mate [10].

However, it was soon realized that the model by Bak
et al. [5] shows “no indication of a nontrivial critical behav-
ior” [11]. Therefore, the slightly different Drossel-Schwabl
FFM (DS-FFM) [1] was introduced shortly later, yielding crit-
ical behavior in the case of a double separation of timescales.
However, this condition can be fulfilled more easily in the
model version suggested independently by Henley [2,12] with
instantaneous burning of connected tree clusters, since only
the timescales of tree growth and tree cluster ignition have
to be considered. We thus use Henley’s FFM version in this
paper (see model description below). It was also used in two
independent studies with huge system sizes [13,14]. Follow-
ing the early report that “typical states of the system are not
critical in the sense of being marginally stable locally,” [15]
they concluded that “all proposed scaling laws seem to be just
transient” [13] and “the DS-FFM is not critical in the sense of
being free of characteristic scales” [14].

Nevertheless, the DS-FFM yields an effective power-law
scaling behavior for the fire-frequency distribution versus fire
size [16], which is confirmed in an analytical approach [17]
and approximately consistent with observations of real forest
fires [18]. It can also fit well indices describing landscape
diversity versus average burnt area per year and several fire
properties versus fire size classes [4]. In this sense the practi-
cal applicability of the DS-FFM is well comparable [4] with
wildfire models from ecology, i.e., so-called landscape fire
succession models, although vegetation growth is determin-
istic and fire spread is stochastic in most ecology models,
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FIG. 1. Density state diagrams for the FFM (Henley’s version [2]) with system sizes (a) L = 200, (b) L = 400, and (c) L = 1000. The
tree densities ρ occurring along the temporal trajectories are plotted versus the tree growth probability p in the range 0.1 � p � 0.9. The
other model parameters are q = 0.0001, ρ0 = 0.5, and I = 8192. Gray scale corresponds to logarithmic occurrence of each tree density; no
occurrence is white.

contrary to the DS-FFM. Therefore, despite not yielding criti-
cal behavior in the strict sense of statistical physics—though a
kind of “weak” criticality may apply [19]—the DS-FFM still
seems a practically relevant and interesting model. We thus
fully agree with the very recent conclusion by Palmieri and
Jensen that “the peculiar scaling properties of the DS-FFM
should be regarded as an asset rather than a limitation” [20].
Hence, we study the short-term and long-term dynamics of
the DS-FFM with techniques from time series analysis and—
in addition to clarifying the fluctuation behavior—identify
a novel quasiperiodic behavior (a well-defined average os-
cillation period) that extends to the limit of separation of
timescales and can be characterized as self-organized multi-
stability (SOM).

II. MODEL DESCRIPTION

In this study, we use Henley’s version of the FFM [2,12].
Each cell on a L × L square lattice can either be empty or
occupied by a tree. Initially, trees are randomly placed with
the density ρ0 = 0.5. In each time step, new trees grow on
empty cells with a probability p. In addition, lightning can
strike each cell with a probability q � p followed by the
burning of the whole nearest-neighbor cluster of trees. Thus,
all cells connected to the stricken cell via paths of trees be-
come empty. In our simulations we consider linear system
sizes L between 200 and 1000, p values between 0.01 and
0.9, and q = 0.0001. We note that comparisons with more
detailed wildfire models from ecology show that the size of
the cells should be roughly between 6 and 55 ha [4,21], so that
each “tree” does in fact describe the behavior of larger areas
of forest. Hence, a simulation with L = 1000 can represent
a forest of up to 500 000 km2, which is about 1/6 of the
total forest area in the U.S.A. The simulations for Fig. 1(c)
(L = 1000, 1000 different values of p) took approximately
four days of single-processor CPU time.

Initially, nearest-neighbor clusters of trees are small, as
characterized by the correlation length ξ from percolation
theory [22,23], but when the density ρ of trees approaches
the critical two-dimensional percolation threshold ρc ≈ 0.593

on the square lattice, a so-called infinite cluster emerges,
spanning the whole system. Thus, lightning strikes become
much more efficient with increasing ρ. Rough approximations
yielded astronomically large ratios θ = p/q ≈ 1040 [13] or
1037 [20] for reaching the universality class of percolation,
where the average ρ shall approach ρc and the fire-size distri-
bution, i.e., the size distribution of lightning stricken clusters,
shall approach the distribution of percolation clusters. Never-
theless, the fire-size distribution already shows a power-law
scaling over several orders of magnitude for much smaller
values of θ [4,16] closer to the values for real forests.

III. SELF-ORGANIZED MULTISTABILITY

The surprisingly rich dynamics of the model can be seen
in Fig. 1, where the tree density ρ is plotted versus the tree
growth probability p for the second halves of the considered
I = 8192 time steps (to avoid possible transient behavior) and
three system sizes. For p � 0.5 and the two larger systems
[Figs. 1(b) and 1(c)], one can see that the system has reached
an attractor with period two, as it jumps between a low ρ � ρc

with only small isolated patches of trees and a rather high
ρ � ρc, where most cells form a dense spanning cluster. In
this situation, obviously, a large fire will occur each second
time step, consuming the spanning cluster. However, there
are also regimes with attractors of period three (p ≈ 0.4) and
four (p ≈ 0.25), the latter apparently becoming unstable for
the largest considered system [Fig. 1(c)]. For small systems,
the periodic attractors are also not ideal, since weaker side
lines appear next to the strong periodic lines in Fig. 1(a). We
note that quite similar pictures emerge for the fire density
φ, although only single lines appear in the (quasi)periodic
regimes.

To understand the temporal dynamics of the FFM in more
detail, we focus on examples of the tree-density trajectory ρ(t )
as shown in Fig. 2. For p = 0.1, Fig. 2(b), the share of tree
cells fluctuates irregularly around xi ≈ 0.4. Visual inspection
suggests quasiperiodic oscillations with a period T of approxi-
mately 10 iterations. Similarly, quasiperiodic oscillations with
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FIG. 2. Typical post-transient time series of tree density for
growth probabilities (a) p = 0.05, (b) p = 0.1, (c) p = 0.2, (d) p =
0.4, and (e) p = 0.8. The other model parameters are L = 200,
q = 0.0001 and ρ0 = 0.5. The horizontal line in (d) indicates the
theoretical percolation threshold ρc ≈ 0.593. Points represent data—
connecting lines are added for clarity. Animated simulations using
the same parameters can be found under the following internet links:
[29] (a), [30] (b), [31] (c), [32] (d), [33] (e) (trees shown in white,
empty sites in black)

a period of approximately T = 5 iterations are observed for
p = 0.2 in Fig. 2(c).

The corresponding frequencies can also be identified in the
power spectra shown in Figs. 3(b)–3(f) for several values of p.
The quasiperiodic oscillations yield peaks with local maxima
at frequencies fmax = 1/T . In particular the spectrum for p =
0.05 shown in Fig. 2(a) indicates quasiperiodic oscillations
with a frequency fmax ≈ 0.05, corresponding to a period of
T = 20 iterations, although the periodicity can hardly be seen
with the naked eye in the time series in Fig. 2(a). These results
suggest the relationship fmax ≈ p.

For Fig. 3(a) we have identified the frequency fmax of each
peak and plotted it versus p. The local peak in each spectrum
is located using a moving window of four values in which
a parabola is fitted. fmax is then given by the position of the
parabola with highest maximum; small f values are excluded
to avoid the systematic increase at low frequencies. The initial
approximately linear relationship for p � 1 can be described
by the analytical formula derived by Zinck and Grimm [4]
for representing the DS-FFM in the form of a landscape fire
succession model as common in ecology. They calculated the
fire ignition probability P(t ) of a cell depending on the time
t since the last fire on the considered cell, P(t ) = 1 − [1 −
p(1 − ρc)]t , so that

fmax(p) = 1/T (p) = ln[1 − p(1 − ρc)]

ln(1 − P)
(1)

≈ −p(1 − ρc)/ ln(1 − P) for p � 1. (2)

Our fit to the data with slope ≈1.06 suggests that an average
fire ignition probability P ≈ 0.31 must be reached for the fire
if we assume ρc = 0.593. The approximate identity between

fmax and p makes sense as faster growth corresponds to a
higher overall evolution of the system.

While the linear relation for fmax(p) extends up to p ≈
0.25, we find a set of discrete steps between p ≈ 0.25 and
p = 0.9. The time series in Figs. 2(d) and 2(e) for p = 0.4 and
0.8 show that quasiperiodic oscillations with periods T = 3
and 2 iterations occur. The corresponding plateaus at fmax =
1/T are clearly seen in Fig. 3(a). While the highest plateau
for p � 0.54 has period 2, it can be seen in Fig. 3(b) that
an only slightly weaker peak at fmax = 1/3 also appears at
the edge of the plateau. The share of trees mostly jumps in
a regular fashion between three values. This peak dominates
the second plateau from p ≈ 0.33 to 0.52. The spectrum at
p = 0.31 in Fig. 3(e) finally shows a typical result for the
third plateau with fmax = 1/4. Therefore, the system appar-
ently drives itself not only towards fluctuations around critical
behavior in one parameter range (low values of p, see also be-
low), but also towards quasiperiodic attractors with different
characteristic periods in another parameter range (large values
of p)—a behavior that can be characterized as self-organized
multistability.

To better understand the discrete steps in fmax(p), let us
look again at Fig. 1. For the system size L = 200 also con-
sidered in the other figures, Fig. 1(a) shows a quite chaotic
regime at low values of p up to ≈0.2, where many densities
occur with similar probability. For p = 0.4 the system exhibits
three main densities that form the period-3 attractor, and a few
weaker ones, as also suggested by Fig. 2(d). For p > 0.6 only
two main densities are visible. We note that implementing pe-
riodic boundary conditions does not seem to have a significant
influence on the diagram.

Overall, with decreasing p, the number of densities in-
crements one by one, whereas the regions in between seem
chaotic. The p ranges with a larger number of densities be-
come smaller and, for even lower p, indistinguishable from
the chaotic behavior. The regions with a fixed number of
characteristic densities match the steps in Fig. 3(a). These
findings differ from what is know from the logistic map,
because (i) there is no period-doubling on the route to chaos,
but there are rather period increments by one, (ii) there seem to
be smaller nearly chaotic regimes between the quasiperiodic
regimes, and (iii) full chaos is never reached, since the sys-
tem still retains quasiperiodic behavior with a characteristic
frequency fmax down to the smallest considered values of p
and described by Eq. (2), although the peak in the power
spectrum becomes broader with decreasing p. In addition, we
see nearly monotonous increases in tree densities as function
of time followed by one sudden decrease (due to a large fire)
in each period [Figs. 2(b)–2(e)], while densities usually jump
between small and large values within periodic attractors of,
e.g., the logistic equation in a Feigenbaum scenario describing
the period-doubling transition of a dynamical system to chaos.

However, we would like to stress that quasiperiodic at-
tactors and self-organized multistability are not externally
triggered, since both processes, tree growth and lightning, are
completely stochastic in our FFM. In a previous paper re-
porting (log-)periodic behavior in the FFM [24], the periodic
attractors are caused by deterministically periodic lightnings.

For larger system sizes, L = 400 and 1000 in Figs. 1(b)
and 1(c), the lines in the quasiperiodic regimes become
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FIG. 3. (a) Dependence of the frequency fmax = 1/T of the quasiperiodic oscillations on the tree growth probability p. Based on our
simulations with p values in the range 0.9 > p > 0.01 > q = 0.0001, we have determined the peak frequencies from power spectra. The inset
shows a double logarithmic plot of the same data with a linear fit (slope: 1.06 for 0.01 � p � 0.1). The blue dots indicate the data, for which
full power spectra are shown in panels (b–f), with p = 0.54 (b), 0.52 (c), 0.33 (d), 0.31 (e), and 0.05 (f). All spectra with blue lines have been
calculated by fast Fourier transform, using the second halves of I = 8192 iterations simulated for systems with L = 200. Additional spectra
with dotted lines are shown in (d) for larger L, in (e) for other q, and in (f) for larger I . We note that the spectra are not qualitatively influenced
by the lightning parameter q nor by the system size L, while increasing the simulation time I alters the low-frequency behavior. In the double
logarithmic plots of the spectra, the power-law P( f ) ∼ f −2 for low frequencies f is indicated by the light blue lines.

sharper, and the weaker additional lines vanish there. These
additional lines can thus be attributed to finite-size effects.
However, the widths of the quasiperiodic regimes also become
a bit smaller, so that the period-4 regime vanishes in the largest
simulations. Nevertheless, at least the period-2 attractor will
remain stable in the limit of infinite system size, and model
variants with modified fire spreading (see, e.g., Ref. [21]) will
probably retain attractors with higher periods for very large
system sizes.

IV. LONG-TERM SCALING BEHAVIOR

At low frequencies in the power spectra in Figs. 3(b)–3(f),
approximately between f = 10−3 and f = 10−2, we find a
power-law regime following P( f ) ∼ f −2 for simulations with
I = 8192 iterations. In other words, at timescales beyond the
quasiperiodicities, the system exhibits Brownian motion type
of fluctuations—and not 1/ f noise as previously believed.
This initial Brownian motion type of fluctuations thus seems
to come from decaying transient behavior, i.e., a random-walk
like motion of the system towards fluctuations around a steady
state. This seems consistent with the recent interpretation of
the FFM showing “self-organized quasi criticality” [19]; i.e.,
the system fluctuates around the (theoretical) critical point
without ever reaching it exactly.

However, for very long simulations, the low-frequency
power-law is gradually changing towards a flat spectrum,
P( f ) ∼ f 0, i.e., white noise, see dotted spectra in Fig. 3(f).
This effect seems to be independent of the system size L.
Initially, the fluctuations are like a random walk, but converge
to white noise for asymptotically large times. Since the system
needs memory to maintain long-term correlations, the vanish-
ing of temporal correlations might be attributed to the limited
memory in the finite-size system. Nevertheless, in the real
world it seems possible that forests are in the initial transient
regime, since the external parameters are not constant due to,
e.g., climate change.

V. FLUCTUATIONS

Finally, we want to characterize the system’s fluctuations in
the chaotic regime p < 0.1. Figure 4(a) shows that the average
density is nearly independent of the system size. However, the
densities’ standard deviation σρ scales as

σρ ∼ p1/2/L (3)

as shown in Figs. 4(b) and 4(c). This makes sense since with
increasing p the systems gains speed and correspondingly
stronger fluctuations can be expected. In addition, fluctuations
in a larger system become smaller proportional to one over the
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square root of the system size according to the central limit
theorem, and since the system size is N = L2 here, the ∼1/L
scaling shown in Figs. 4(c) agrees with expectations.

VI. DISCUSSION

In summary, we find four—to our best knowledge—yet
unknown properties of the FFM, the first two representing
self-organized multistability: (i) periodic attractors for large p,
(ii) quasiperiodic oscillations, where the frequency is approx-
imately proportional to p for lower p, (iii) Brownian motion
on even slower timescales, and (iv) square-root dependence of
the standard deviation on p and the system size.

In the standard FFM (Drossel-Schwabl and Henley ver-
sion) constant conditions and spatial homogeneity are as-
sumed. In the real world though, these assumptions are
challenged. Most wildfires are started by people, not light-
ning and the spatial occurrence is not random [25]. Wind,
orography, weather, and climate all influence the direction
and speed of wildfire spread [26]. Last but not least, forest
management can modify forest growth and fuel accumulation
and fire suppression efforts can limit the size of fires [27].
Together, these factors may make it difficult to confirm these
results empirically.

Nevertheless, we conclude that the FFM exhibits complex
spatio-temporal structures opening a perspective for further

research. In particular, it will be relevant to find out to what
extent the attractors of period three and two persist if the
system sizes are increased and how attractors with even longer
periods could be stabilized. Such stabilization can probably
be achieved by considering stochastic fire spread in addition
to stochastic tree growth as common in wildfire models from
ecology [4,21]. We note that most ecosystems are in fact fire
adapted [28]. That is, they have evolved to be burned at dif-
ferent time intervals. Therefore, the quasiperiodic oscillations
in the FFM we find here can probably predict or at least fit
these time intervals. It will also be interesting to see which of
our findings can be confirmed for the original DS-FFM, where
fires spread iteratively.
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