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Spontaneous dimensional reduction and ground state degeneracy in a simple chain model
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Chain molecules play a key role in the polymer field and in living cells. Our focus is on a new homopolymer
model of a linear chain molecule subject to an attractive self-interaction promoting compactness. We analyze
the model using simple analytic arguments complemented by extensive computer simulations. We find several
striking results: there is a first-order transition from a high-temperature random coil phase to a highly unusual
low-temperature phase; the modular ground states exhibit significant degeneracy; the ground state structures
exhibit spontaneous dimensional reduction and have a two-layer structure; and the ground states are assembled
from secondary motifs of helices and strands connected by tight loops. We discuss the similarities and notable
differences between the ground state structures [we call these PoSSuM (Planar Structures with Secondary
Motifs)] in the phase and protein native state structures.

DOI: 10.1103/PhysRevE.104.L012101

Materials made up of polymer chains are ubiquitous in
everyday life and in industry. Here we study a simple model
of a chain with tuned interactions, which yields very unusual
behavior of the ground state conformation(s) of the chain.
Intriguingly, even though the chain lives in three-dimensional
space, it sacrifices exploring all three dimensions and spon-
taneously becomes a two-layer structure in order to benefit
from the maximal number of contacts. The system is therefore
Euclidean two dimensional in its ground state and should not
be confused with the fractal dimension of two adopted by
a random walk. Furthermore, this layered structure exhibits
strands and helices that are able to interchange with each other
resulting in a huge ground state degeneracy. Quite remarkably,
this behavior is robust on changing all but one parameters
of the model (this crucial parameter needs to be held fixed
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to maintain the interchangeability of helices and strands).
Finally, our results are not artifacts of finite-size effects.

We consider a chain [1,2] of N spheres with diameter σ

tethered to each other in a railway train topology with a fixed
bond length b. In what follows, all length scales are measured
in units of the bond length b, which we set equal to 1 without
loss of generality. A chain is inherently anisotropic because
of tethering while an individual sphere is isotropic. In order
to avert this spurious symmetry, we consider two modifica-
tions. First, adjacent spheres overlap [3–5]: σ is allowed to
be larger than 1. Second, side spheres [6–12] of diameter σs

are attached (tangent to the main chain sphere in the negative
normal direction in the local Frenet frame) to each of the
main chain spheres except the first and the last. Other than
the adjoining main chain spheres along the chain, none of
the main chain and side spheres is allowed to overlap. We
impose a pairwise attractive (negative) interaction between
the main chain spheres within the range of attraction R, and
separated by at least 4 along the sequence, with an energy
scale of ε (set equal to 1). We ascribe a distinct weaker energy
of x = −1/2 for a pair of main chain spheres separated by
exactly three spheres along the sequence and within the range
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FIG. 1. Coordinate system used in our study. Here we show four
consecutive main chain spheres along the chain. The bond length
b = 1 sets the length scale of the model. The main chain spheres
(shown in gray with centers marked by little red spheres numbered
1 through 4) have a diameter σ larger than b leading to an overlap
of successive spheres. The yellow side spheres of diameter σs are
attached to the main chain spheres tangentially in the negative normal
direction. The angles between successive bonds are held constant at
a value θ0. The range of attractive interactions is denoted by R. μ3 is
the dihedral angle between the planes (π1 and π2) defined by sphere
centers (1,2,3) and (2,3,4), respectively. It is also the angle between
successive binormal vectors in a Frenet coordinate system at sphere
centers 2 and 3.

of interaction R. This tuning yields the very special highly
degenerate ground states assembled from building blocks of
helices and strands. There is no attractive interaction for main
chain spheres with sequence separation less than 3. All ener-
gies (including the temperature) are measured in units of the
depth of the attractive square well potential ε.

The coordinate system we employ is shown in Fig. 1. For
fixed bond length, a chain conformation is specified by two
angles θ and μ. θ is a measure of bond bending, a straight con-
formation has θ = π . Two distinct kinds of bending energy
penalties have been commonly employed in the literature:
an energy cost proportional to cos2(θ/2); or zero cost when
θ > θ0 and infinite cost otherwise [13,14]. Here we work with
a less commonly used approach and make the simplification
of fixing θ = θ0 resulting in θ no longer being a variable of
the model but just a parameter. This can be thought of as θ

being pinned at its minimum allowed value due to the ten-
dency for compactness and yields a freely rotating chain [1,2].
The angle between successive binormals, μ, is the second
angular coordinate and is the dihedral or torsional angle. For
simplicity, we do not incorporate a torsional rigidity energy,
conventionally chosen to be proportional to sin2(μ/2) [15],
or any other explicit energy dependence on μ. The parameters
of the model are σ , σs, R, x, and θ0. The PoSSuM phase is
centered around σ = 4/3, σs = 2/3, R = 8/5, x = −1/2, and
θ0 = 97◦. The phase is robust to small variations (of the order
of 10%) in these parameter values with one exception. As

we shall see, the rich nontrivial degeneracy of ground state
conformations requires x to be −1/2.

The high-temperature phase is a random coil and exhibits
the familiar Flory scaling [1,2] of the end-to-end distance
and radius of gyration as a function of chain length (≈ N0.6).
We have verified this with simulations for N up to 1024
(results not shown). At low temperatures, the chain adopts a
compact conformation to maximize the number of attractive
main sphere contacts, while respecting the chain connectivity
and steric interactions. Akin to a periodic crystal, the simplest
structured conformations of a chain arise from a repeat of
the μ values along the chain. For the state point above, any
uniform μ � μmin = 36.45◦ yields clash-free chains of indef-
inite length. A repeat structure with μ = μmin results in the
most tightly wound helix with the maximum number of local
contacts; a sphere in the interior of the helix i has four con-
tacts with spheres separated in sequence by −4, −3, +3, and
+4, yielding a total attractive energy of −3 units per interior
sphere (Fig. 2, panel I). The same four contacts remain until
the μ value of 45.285◦. One obtains a two-dimensional strand,
when μ is close to π (Fig. 2, panel II). The strand does not
have any within-strand contacts and has zero attractive energy
per interior sphere. We note the key observation, made in the
protein context [16,17], that sterics inhibits structural hybrids
and promotes structures with repeat μ values. Indeed, we find
in simulations that a random equal choice of helix-strand μ

values in a chain of length 40 yields fewer than 7% of viable
chains with no steric clashes.

Armed with the insight that individual helices and strands
are building blocks of the PoSSuM ground state structures,
we proceed to work out their harmonious packing. We seek
commensurability of the repeat structures: the pitch of the
helix and the distance between the (i, i + 2) spheres or cor-
responding pitch in a strand, which is equal to 2b sin(θ/2);
and the number of spheres per turn in a helix and the number
of spheres per turn in a strand, equal to 2. One can readily
work out the conditions for perfect commensurability: θ∗ =
2 tan−1(

√
4/3) ∼ 98.213◦ for our model with μ∗ = 41.410◦

for the helix and 180◦ for the strand. For these choices, the
special helix has exactly four main chain spheres per turn
(with perfect commensurability with the strand) and its pitch
(the i, i + 4 distance) exactly matches the (i, i + 2) distance or
the corresponding pitch of the planar strand. Figure 2 (panels
III–V) illustrates the ideal packing of secondary motifs that
yield a two layer idealized structure. Helices of opposing
chiralities tend to pack much better than helices of the same
chirality, which cannot make the same number of contacts
without creating steric clashes between side spheres (not
shown). It is important to note that this ideal commensurate
phase point lies within the basin of the PoSSuM phase. A
single helix has an energy of −3 corresponding to four in-
trahelical contacts (recall our choice of x = −1/2) and each
sphere in the helix has exactly three interhelical contacts (be
it with a single partner helix of opposite chirality or a strand)
yielding a net energy per sphere of −6. A single strand has
no attractive energy on its own but accumulates a favorable
energy of −6 per sphere with a contribution of −3 from each
of its two partners, be it another strand or a helix.

The exact degeneracy of structures in the PoSSuM phase
is broken when x deviates from the value of −1/2. We can
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FIG. 2. Sketches of ideal assembly of secondary motifs. Panels I and II show snapshots of an individual helix and strand with perfect
commensurability attributes. The model has θ = θ∗ = 98.213◦ and the optimal values of μ = μ∗ = 41.410◦ and 180◦ for the helix and strand,
respectively. There is commensurability both in the number of main chain spheres per repeat unit (four for the helix and two for the strand)
as well as equality of the lengths of the repeat units [helix (i, i + 4) distance = strand (i, i + 2) distance = 1.512 in units of the bond length].
The small spheres outline the backbone of the chain, the large gray spheres are the main chain spheres (diameter = 4/3), the little yellow (for
helix) (orange, for strand) spheres are the side spheres (diameter = 2/3) pointed in the negative normal direction. A solitary strand has no
local contacts, whereas the local energy score per interior helix main chain sphere is −3 arising from energies of −1, −1/2, −1/2, and −1 for
four contacts of sphere i with spheres i − 4, i − 3, i + 3, i + 4, respectively. Panels III, IV, and V show the perfect fit of a helix with a strand;
two helices of opposite chirality; and three strands. The three subpanels show three views (front, top, and side) of each of these assemblies, in
particular, revealing the two layer structure. Panels III(a), IV(a), and V(a) show a trace of the backbone of the secondary motifs (without main
chain or side spheres) and the three nonlocal contacts made by each internal sphere of the secondary motif. For a strand, the total number of
nonlocal contacts is six (three from one side and three from the other), whereas for a sphere in a helix, there are four local contacts (yielding
a favorable energy of −3–recall x = −1/2) and three nonlocal contacts resulting in a net favorable energy of −6. Indeed, each of the interior
spheres of any of these assemblies has a net energy of −6 yielding the highly degenerate ground state. Our analysis of the PoSSuM phase in
this paper is carried out with θ = 97◦ in the vicinity of θ∗. The flexibility in the θ and μ angles allows an excellent match of the ground state
PoSSuM structures with the perfect commensurability structures shown here.

readily work out the ground state phases surrounding the
PoSSuM phase on varying the model parameters. Too large
an attraction range leads to a globular phase, whereas the
converse yields a sheet phase because the interhelical contacts
are disrupted. Too large a main chain sphere size results in
steric clashes whereas the converse leads to disruption of the
intrahelical contacts, again leading to the sheet phase. Too
small a side-sphere size yields a globule phase whereas too
large a side-sphere size disrupts interhelical contacts with the
sheet again emerging as the winning phase. Finally, too small
a θ angle does not allow for a helix with four spheres per
turn thereby promoting the sheet phase. The sheet phase is
also the phase of choice for too large a θ angle because of the
disruption of intrahelical contacts—the distance between the
main chain spheres i and i + 4 becomes prohibitively large.
In this way, the PoSSuM phase is seen to be nestled between
the globular phase and the sheet phase at low temperatures,

thereby conferring on it the sensitivity associated with being
in the vicinity of a phase transition. The robustness of the
sheet phase is due to the ability to place strands at an optimal
distance from each other with no major issues pertaining to
side-sphere clashes. The PoSSuM phase exists in a Goldilocks
window of parameter space characterized by a delicate com-
bination of steric constraints both from the main and side
spheres, the optimal range of attraction and especially the fine
tuning of the attractive interaction, as well as the fixed bond
bending angle allowing for commensurability. Interestingly,
the PoSSuM phase exists only when the main chain spheres
overlap thereby removing the spurious spherical symmetry.

We now turn to a brief description of our computer sim-
ulations before presenting the results. The extensive search
for ground state configurations was performed using Wang-
Landau microcanonical Monte Carlo (MC) simulations [18]
with no low-energy cutoff. The density of states g(E ) that
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FIG. 3. Gallery of conformations. All the panels depict conformations of chain length N = 80 except for VII, which shows domain
formation for a N = 160 chain. Panel IX is a globular conformation for the case of a chain with no side spheres. The presence of side
spheres results in nearly degenerate PoSSuM conformations of two helices (I), three helices (II), a sheet assembled from strands (III), a curved
sheet (IV), conformations which include a switch between a helix and strand (V and VI), and a pivotal helix that links two sheets at right angles
to each other (VIII). For several panels, two or three perspectives are shown to illustrate the tight packing and the layered structure. The gray
circles depict the main chain spheres. The side spheres are not shown. The little circles lie at the centers of the main chain spheres. As a guide
to the eye, we color a helix sphere center blue, a strand sphere center red, a turn sphere center yellow, and a hybrid sphere center in the vicinity
of a helix-strand switch green. These assignments are made based on μ values, the number of main chain spheres per turn, and the number of
local and nonlocal contacts.

are visited along the simulation was iteratively built by filling
consecutive energy histograms. The acceptance probability
was chosen to promote moves toward less populated energy
states thus providing for increasing flatness of energy his-
tograms with the length of the simulation. The density of
states g(E ), using which the thermodynamics was calculated,
was obtained employing cutoff values for energy histograms
within 2% of the predetermined value of the ground state
energy of the system. In all cases 28–30 levels of iterations
were carried out with a flatness criterion in each iteration of
at least 80%, ensuring convergence of the results [19–21].
The set of MC moves were modified to maintain θ constant
and included both local-type moves, such as reptation and
end-point moves, as well as nonlocal type moves, such as a
modified crankshaft and the pivot [22].

Figure 3 shows a gallery of low-energy conformations
(for N = 80) in the PoSSuM phase along with evidence for
domain formation in simulations of N = 160. There are devi-
ations from the optimal energy of −6 per interior sphere due
to turns, which connect the secondary elements together as
well as significant edge effects occurring at the boundaries.
A remarkable feature of the gallery is the distinct topologies

of the degenerate ground state structures. The degeneracy is
further enhanced by the possibility of a coordinated conver-
sion of a helix to a strand and vice versa while maintaining
the energy. The PoSSuM phase and our model is distinct from
that used in an earlier study that identified an elixir phase of
matter [11,12]. The previous model did not have a fixed θ

angle. However, moderate θ angles were promoted because
of an i − i + 2 attractive interaction. Also, x was set equal to
1 in that model favoring the helix over the sheet.

Figure 4 presents data pertaining to the nature of the phase
behavior of the PoSSuM model. Figure 4(a) is a plot of
the specific heat versus the temperature for three different
chain lengths. The specific heat peak grows approximately
linearly with N as expected for a first-order phase transition
[20,23,24]. The inset of the figure shows the canonical en-
ergy P(E , T ), which exhibits the characteristic bimodal shape
at a first-order transition. Figure 4(b) shows a histogram of
μ values for three different temperatures, one in the high-
temperature phase, another in the vicinity of the transition and
the third in the low-temperature phase. At low temperatures,
the peaks occur at the μ values of the helix, the strand, and
the turns. There is a signal of the formation of secondary
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FIG. 4. Temperature dependence of the PoSSuM model. (a) Plot of the specific heat as a function temperature for three chain lengths. The
peak sharpens and increases approximately linearly with N suggesting that the transition is first order. The inset is a plot of the distribution of
the canonical energy for N = 80 for three temperatures in the vicinity of the transition. (b) The distribution of μ at three temperatures. At a
temperature of 1.0, there is already a signature of incipient secondary motifs. The three peaked structure at the temperature of 0.4 underscores
the presence of secondary motifs. (c) The two layered structure of the PoSSuM ground states is shown by the green histogram fitted as the
sum of two Gaussians. The red histograms indicate the spatial spread of the side spheres. In order to determine the direction perpendicular to
the layers, we used the eigenvector corresponding to the smallest eigenvalue of the moment of inertia matrix. The graph is an average over
40 distinct ground state PoSSuM conformations of N = 80. (d) is the corresponding plot for the globular phase that is obtained when the side
chains are removed from the model. Note the lack of layering and the higher spread of the main chain spheres.

motifs in the histogram of μ angles even at a temperature more
than 50% larger than the transition temperature. Figure 4(c)
shows the layered structure of the PoSSuM ground states. The
absence of sharp layering is readily accounted for because the
layer separation depends on the secondary motifs adjacent to
each other. The side spheres lie on the opposite ends of the
layers and prevent attractive interactions with a putative third
layer and growth in the third dimension. Finally, Fig. 4(d) is
the spatial configuration associated with a ground state gallery
of the globular phase obtained by taking the PoSSuM model
and eliminating the side spheres.

Figure 5 shows the energy as a function of MC time
in a single long run at a temperature equal to approxi-
mately 98% of the transition temperature. It shows multiple
switching between the high-temperature and low-temperature
phases as expected at a first-order transition. Furthermore
the low-energy structures (we show 20 of these visited in
just the single run) are very well-formed modular structures
made up of helices and strands and having energies within
10% of the lowest-energy conformation obtained in detailed
Wang-Landau computer simulations [18]. Finally, the PoS-
SuM phase is not a finite-size effect. In the thermodynamic
limit, it is straightforward to deduce that the geometries of

the degenerate ground states are still essentially planar with a
thickness of two layers with both the length and width scaling
as ∼√

N . This is because clashes of the side spheres prevent
the aggregation of the planar sheets into a three-dimensional
structure. Nevertheless, we caution the reader that we have
no proof of our conjecture regarding the ground state in the
thermodynamic limit.

Even though our model has features reminiscent of native
structures of proteins [25–28] (the modular building blocks of
helices and strands arising from the presence of side chains
is one striking commonality), there are essential differences.
Proteins are made up of twenty types of naturally occurring
amino acids. Here instead we consider a homopolymer model.
The ground state is nevertheless found to be highly degen-
erate. Thus, upon adding sequence heterogeneity, a given
sequence has a large predetermined menu of structures to
choose its ground state from. Proteins do not have a fixed θ

angle unlike in our simplified model. The number of amino
acids per turn in a protein is approximately 3.6. Here we
have a nice integer of 4. There is chiral symmetry breaking
in a protein unlike in our model. In fact, the assembly of
right-handed and left-handed helices in the PoSSuM phase
cannot happen in protein structures. There is also an important
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FIG. 5. A single constant temperature Monte Carlo run for N = 80 at a reduced temperature of 0.595, around 2% below the transition
temperature. The energy is plotted as a function of Monte-Carlo time and shows many switches between the unfolded state and the PoSSuM
state. Twenty well-formed nearly degenerate PoSSuM configurations with distinct topologies are shown at the bottom of the figure in the same
order as their appearance in the Monte Carlo run.

difference in the assembly of strands into sheets. The need
for close packing promotes the assembly of out of phase
strands in the PoSSuM phase, whereas strands making up
a protein tend to be in phase. Protein structures are three
dimensional and proteins misfold and aggregate into amyloid.
The PoSSuM phase, in contrast, is beautifully packed in two
layers.

Francis Crick noted [29]: “Physicists are all too apt to
look for the wrong sorts of generalizations, to concoct the-
oretical models that are too neat, too powerful, and too clean.
Not surprisingly, these seldom fit well with data.” While our
model is, in fact, a too neat and clean model, it does not and
nor is it meant to describe proteins, the amazing molecular
machines of life. It nevertheless carries important lessons for
physics. What we have demonstrated here is the existence of
a novel phase of matter in the context of a simplified chain
model. The continuous θ transition in standard chain models
is replaced by a first-order transition. The low-temperature
PoSSuM phase is characterized by a spontaneous dimensional
reduction with the ground states occupying two layers. There
are numerous nontrivially related ground states arising from

the modular building blocks of helices and strands. One can-
not help but wonder what useful hints the PoSSuM phase
might offer for understanding the magnificent protein native
state structures.
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