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Multifidelity regression of sparse plasma transport data available in disparate physical regimes
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Physical data are typically generated by experiments and computations in limited parameter regimes. When
datasets generated using such disparate methods are combined into one dataset, the resulting dataset is typ-
ically sparse, with dense “islands” in a potentially high-dimensional parameter space, and predictions must
be interpolated among such islands. Using plasma transport data as our example, we propose a multifidelity
Gaussian-process regression framework that incorporates physical data from multiple sources at multiple
fidelities. The impact of the proposed framework varies from little improvement over simpler approaches to
qualitatively changing the prediction with consistently increased confidence in regions lacking high-fidelity
data. By varying low- and high-fidelity data sources, we demonstrate an approach for determining when multi-
fidelity Gaussian-process regression adds value over single-fidelity regression and therefore when its additional
computational costs are merited. We also examine the case in which the outputs of the low- and high-fidelity
models correspond to different physical quantities, one of which may be intrinsically computationally cheaper
to compute. We conclude by analyzing strategies for sampling high-fidelity data for use in this framework, and
we develop a simple sampling approach for reducing regression error across large gaps in data.
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I. INTRODUCTION

The generation of high-fidelity (HF) data requires sub-
stantial resources that limit the volume of data that can be
generated. Moreover, the size and scope of datasets are con-
strained by the experimental accessibility of physical regimes
and by the applicability and efficiency of computational mod-
els. These limitations can be addressed by combining data
from several sources to form a dataset that contains multiple,
separated point clouds that can be “interpolated.” For exam-
ple, the equation of state can be measured in one regime with
a laser-heated diamond anvil cell [1] and computed in another
regime with accurate electronic-structure methods [2]. Or,
one may combine experimental data obtained along a shock
Hugoniot with computational data available only at very low
temperatures. Computational models for equations of state,
atomic properties, and charged-particle transport [3–6] can
also be combined to create a larger dataset.

Combining data sources in this way creates two challenges.
First, predictions will be based on data in potentially very
different physical regimes. Second, while it is natural to con-
sider adding lower-fidelity (LF) data, which can be generated
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cheaply, to datasets to cover a parameter space more uni-
formly, it is not clear how to exploit such LF data in making
predictions.

Machine-learning (ML) methods offer promising alterna-
tive frameworks for interpolating physical data [7–9]. ML
treats the interpolation problem as regression in a high-
dimensional space using nontraditional techniques such as
neural networks. Gaussian-process regression (GPR) [10] is
a nonparametric ML technique that interpolates data in mul-
tiple dimensions; importantly, GPR provides an uncertainty
estimate that can be used to suggest where new data points
should be acquired.

Here, we will explore GPR as an approach for interpolating
physical data. In particular, we will examine the situation
in which there are islands of HF data in parameter space,
possibly from different sources, and we will fill the space be-
tween these islands with easier-to-compute LF data. Such an
approach utilizes multifidelity (MF) extensions [11] of GPR.
Here, we use GPR to refer to the methodology described in
Ref. [10], and MF-GPR to refer to its MF extensions [11–14].

The generality of MF-GPR methods enables their use in
many disciplines and applications [15–22]. The original MF-
GPR framework has been improved to reduce the risk of
overfitting during the training procedure [14], to include non-
linear relationships between LF and HF models [12,13], and
to address concerns that arise with diverse data structures and
dataset selection [23,24].

This manuscript is organized as follows. As described in
the following section, we will illustrate our ML ideas us-
ing the example of ionic transport coefficients. The methods
we used to generate our dataset of ionic transport coeffi-
cients are discussed in Sec. II A. In Sec. II B, we compare
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single-fidelity regression methods and highlight the benefit of
GPR over simple cubic spline regression. We then transition
to MF regression and discuss the formulation of MF-GPR,
as introduced by Kennedy and O’Hagan [11], in Sec. II C.
Using toy examples, we show when MF-GPR adds value over
single-fidelity GPR; we also show where improvements to this
formulation are needed. We conclude Sec. II D by reporting a
table of computation times and regression errors for MF-GPR
and single-fidelity GPR to assess the cost-benefit tradeoff for
these methods.

Section III illustrates an approach for choosing an LF
model that is the most appropriate for an MF-GPR setting
and examines how this choice impacts the resulting MF-GPR
fit. A natural choice for LF and HF models are those with
the same output quantity (e.g., both predict the viscosity of a
system). However, the outputs of both models need not be the
same quantities. We explore the use of models in MF-GPR
that have different output quantities, as well as different levels
of computational complexity.

In Sec. IV A, we compare regression errors resulting from
single-fidelity GPR and MF-GPR analyses of sparse, disparate
plasma transport-coefficient datasets. We find that while MF-
GPR may result in modestly smaller errors compared to
single-fidelity GPR, the uncertainty of the MF-GPR predic-
tion is consistently much smaller. Finally, in Sec. IV B, we
compare three approaches for sampling HF data to reduce
the MF-GPR regression error. For a fixed number of HF data
points, a simple approach we explored outperforms sampling
from a uniform grid. We offer conclusions and discuss poten-
tial areas for future work in Sec. V.

II. DATASET AND REGRESSION METHODS

In this section, we discuss our dataset and review the ML
approaches we will employ in Secs. III and IV. We begin
in Sec. II A by describing plasma transport-coefficient data
and the fidelities of several commonly used models based on
the approximations they employ. In Secs. II B and II C, we
describe the GPR methodology, including standard, single-
fidelity GPR and its MF generalization. Our goals in Secs.
II B and II C are to answer the following questions: what
value does GPR add compared to simpler regression methods?
And, how does including data from multiple levels of fidelity
impact a prediction?

A. Ionic transport-coefficient dataset

For our study, we chose to explore MF-GPR in the context
of plasma ionic transport coefficients because plasmas span
many orders of magnitude in density, temperature and nuclear
charge. Plasmas can include many species, which makes it dif-
ficult to use a single (computational or experimental) method
to make accurate predictions. Computational methods that are
typically used can be divided into LF and HF methods by
examining the underlying assumptions of the models. More-
over, we can usually identify a limited parameter regime in
which each model is HF. These delineations occur because the
theoretical models that underpin the computational methods
are known to have high accuracy only in certain limits (e.g.,
asymptotically at high temperature); methods that are not

TABLE I. HF and LF models for the self-diffusion and viscosity
coefficients in each temperature regime. Each LF model is used
across the entire temperature range.

Coeff. T (eV) HF LF

D T < O(101) DFT-MD [25–28] HMP [30]
O(101) < T < O(103) – HMP [30]

T > O(103) SMT [29] HMP [30]
η T < O(101) DFT-MD [25–28] YGBI [32]

O(101) < T < O(103) – YGBI [32]
T > O(103) YVM [31] YGBI [32]

asymptotically accurate in a parameter regime are designated
as LF there. The limiting regimes typically depend on mul-
tiple dimensionless parameters (e.g., the Coulomb coupling
parameter and the degeneracy parameter) that rely on some
combination of nuclear charge, density, and temperature of the
system. We will use just the temperature of the system to spec-
ify the limiting regimes since models developed at extremes of
temperature tend to have very different assumptions.

Data in the low-temperature regime, loosely defined here
as T < O(101) eV, and in a high-temperature regime, defined
here as T > O(103) eV, will be generated using appropriate
LF and HF models.

For the self-diffusion transport coefficient D, we will use
the following HF models to generate data. At low temper-
atures, the HF data are obtained from density functional
theory molecular dynamics (DFT-MD) simulations [25–28],
which accurately calculate the electronic structure on-the-fly.
At high temperatures, the Stanton-Murillo transport (SMT)
model [29], which uses numerically computed cross-sections
and an effective interaction potential, is employed. The LF
model used across the entire temperature range is given by
Hansen, McDonald, and Pollock (HMP) for a one-component
plasma (OCP) [30].

Similarly, for viscosity η, we use one HF model at low
temperatures and a different HF model at high temperatures.
Once again, the HF data at low temperatures are obtained
from DFT-MD simulations. We employ the Yukawa viscosity
model (YVM) [31], which is based on a quasiuniversal form
fit to MD data, as our HF model at high temperatures. Our
LF model is derived from a correspondence between an OCP
system and a Yukawa system. The correspondence is obtained
from the Gibbs-Bogolyubov inequality [32]; this model will
be referred to as the YGBI model.

The HF and LF models for the self-diffusion and viscos-
ity coefficients in each temperature range are summarized
in Table I. These models are used in analyses presented in
Sec. IV A.

B. Single-fidelity regression

To provide a baseline to which results of MF-GPR can
be compared in later sections, we first consider approaches
that require only one level of data fidelity, i.e., single-fidelity
approaches. We consider cubic-spline regression and GPR.
Cubic-spline regression is a parametric regression method
that aims to determine the optimal parameters that define a
cubic-spline fit to data. In contrast, GPR is a nonparametric
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regression approach that determines the optimal function that
is fit to data. We begin with a brief overview of GPR that will
provide a framework for understanding its MF generalization.

We introduce GPR with a discussion of prior and posterior
distributions. Before observing the data, we have some prior
beliefs about functions that are suitable. These functions are
drawn from a prior distribution: a distribution of random func-
tions that are consistent with our prior beliefs about the data.
An example of a prior distribution is one in which the distribu-
tion of functions have zero mean at each input point and vary
smoothly over the entire input space. For plasma transport
data, we could impose constraints on our prior distribution
of functions to enforce nonnegativity and that the functions
reflect the known behaviors of different transport coefficients
(e.g., increasing with temperature). After constructing a prior
distribution, a posterior distribution is created by using avail-
able data to constrain the random functions by ensuring that
they pass through the observed data points. As we will see, the
mean and the covariance matrix of a posterior distribution are
the prediction and uncertainty estimates of GPR.

Defining the prior and posterior distributions for GPR re-
quires a kernel function that defines a measure of similarity
among the input variables of a dataset. The kernel function
determines the representation of the functions from the prior
and posterior distributions (e.g., smoothness, periodicity, etc.).
A common choice of kernel function, that we will use here, is
the squared-exponential kernel

k(xi, x j ; σ
2, �) = σ 2exp

(
− 1

2�2
‖xi − x j‖2

)
, (1)

where for d-dimensional data, we have m points xi ∈ Rd and
n points x j ∈ Rd . Evaluating the kernel k(xi, x j ; σ 2, �) gives
the i jth entry of the kernel matrix (or covariance matrix)
K ∈ Rm×n. The hyperparameters of (1) are the variance σ 2

and the length scale �; they will be compactly denoted as the
set θ ∈ {σ 2, �}. These hyperparameters reveal the strength and
extent of correlations in the data. As we will see, the values of
the hyperparameters are particularly useful for quantifying the
quality of MF-GPR methods.

A single-fidelity GPR problem is posed as follows: given
a set of n training points in d dimensions, represented by
the columns of a matrix XSF ∈ Rd×n and the corresponding
(scalar) output values y ∈ Rn of the unknown function at each
training point, predict the value of the unknown function at
a set of m test points X∗ ∈ Rd×m. As shown in Ref. [10], the
posterior distribution of the unknown function using GPR at
the new set of data points X∗ is a multivariate Gaussian with
mean μ∗ and covariance �∗ given by

μ∗(X∗) = K (X∗, XSF; θ )K (XSF, XSF; θ )−1y, (2)

�∗(X∗) = K (X∗, X∗; θ )

− K (X∗, XSF; θ )K (XSF, XSF; θ )−1K (XSF, X∗; θ ),
(3)

where the hyperparameters θ of the kernel function are deter-
mined by optimizing the log-likelihood function L(y, XSF, θ ),
as discussed in Ref. [10]. The function L measures the likeli-
hood that the observations are given by the values y at training
locations XSF for a given value of θ .

FIG. 1. Comparison of GPR and cubic-spline regression for a
single-fidelity viscosity dataset using the YVM for the element C at
ni = 5.01 × 1022 cm−3. The training points (black diamonds) were
fit using both GPR (blue line) and a cubic spline (gray dashed line).
The shaded bands show a 95% confidence interval around the GPR
fit. Locations of future HF training points are suggested by the
confidence band.

We now examine a simple example of GPR and com-
pare with a cubic-spline interpolation. Viscosity data were
generated using the YVM for the element C at ni = 5.01 ×
1022 cm−3, and fits to these data using GPR [33] and cubic-
spline regression [34] are shown in Fig. 1. The GPR fit,
denoted as “GPR,” corresponds to μ∗(X∗) from Eq. (2); the
shaded bands around μ∗(X∗) correspond to a 95% confidence
interval and are computed from Eq. (3). The fit generated
using cubic-spline regression on the same dataset is denoted
as “cubic spline.” For all GPR fits, the data were first scaled
to unit variance and zero mean. The hyperparameter opti-
mization routine was carried out using the limited-memory
quasi-Newton algorithm [35] with 15 random restarts, and
a measurement noise with a variance of 10−6 was added to
ensure that the kernel matrix K (XSF, XSF; θ ) for computing
the posterior distribution would be guaranteed to be positive-
definite (and therefore, invertible) during fitting. Both the
cubic-spline regression and GPR methods produced accurate
fits, as shown by comparison to the underlying true solution,
which is denoted with a black line in Fig. 1 and labeled
“exact.” A key difference between cubic splines and GPR is
that the GPR method provides a confidence interval (shaded
bands) around the GPR prediction—suggesting where addi-
tional data are needed to improve the prediction.

C. Multifidelity Gaussian-process regression

We now turn to the case where there are two sources of
data, one LF and one HF. The outputs of the LF model are
denoted as yLF ∈ RNLF and are evaluated at XLF ∈ Rd×NLF .
Similarly, the outputs from the HF model are denoted as
yHF ∈ RNHF and are evaluated at XHF ∈ Rd×NHF . Here, the
numbers of LF and HF data points are denoted as NLF and
NHF, respectively.

To understand how the LF data can be used in HF pre-
dictions with an MF method, consider this simple procedure

065303-3



STANEK, BOPARDIKAR, AND MURILLO PHYSICAL REVIEW E 104, 065303 (2021)

with three steps. First, in step (a), we combine the LF and
HF data into a single dataset with greater coverage than
the HF data alone offer. In step (b), we use LF data to influence
HF predictions by quantifying correlations between the LF
and HF datasets with a correlation hyperparameter, ρ. Finally,
step (c) of the procedure imposes a constraint that a prediction
at a HF data point ignores the LF data.

Each part of the above procedure is addressed by the origi-
nal MF-GPR formulation proposed by Kennedy and O’Hagan
[11], which begins by assuming that there is a linear map-
ping between fidelities that is described by the autoregressive
model

fHF(x) = ρ fLF(x) + δHF(x). (4)

The function δHF(x) is to be viewed as the error or bias
between the HF data and a scaled value of the LF data, where
the correlation hyperparameter ρ is the scaling term. Notice
that if the LF and HF data are uncorrelated, i.e., ρ = 0, then
δHF = fHF. The key idea in this approach is to use the LF
and HF data to learn the parameters governing the unknown
functions fLF and δHF and the hyperparameter ρ to be able to
predict the value of fHF at a test point x. The functions fLF and
δHF are typically assumed to be realizations of independent
Gaussian processes with zero mean and a kernel matrix K .

This means that on a test set X∗, fLF(X∗), and δHF(X∗) are
independent Gaussian random variables that are normally dis-
tributed as per

fLF(X∗) ∼ N [0, K (X∗, X∗; θLF)], (5)

δHF(X∗) ∼ N [0, K (X∗, X∗; θHF)], (6)

where θLF and θHF denote the hyperparameters for the LF
and HF models, respectively. The notation N (0, �) denotes
a multivariate Gaussian random variable with mean 0 and
covariance �. Because fLF and δHF are independent, it follows
that [36]

fHF(X∗) ∼ N [0, ρ2K (X∗, X∗; θLF) + K (X∗, X∗; θHF)]. (7)

For brevity, we denote

K11(X, X ′) ≡ K (X, X ′; θLF), (8)

K12(X, X ′) ≡ ρK (X, X ′; θLF), (9)

K21(X, X ′) ≡ K12(X, X ′), (10)

K22(X, X ′) ≡ ρ2K (X, X ′; θLF) + K (X, X ′; θHF). (11)

Equations (5)–(7) can be jointly written as [11,12]

⎡
⎣ fLF(XLF)

fHF(XHF)
fHF(X∗)

⎤
⎦ ∼ N

⎧⎨
⎩

⎡
⎣0

0
0

⎤
⎦,

⎡
⎣K11(XLF, XLF) K12(XLF, XHF) K12(XLF, X∗)

K21(XHF, XLF) K22(XHF, XHF) K22(XHF, X∗)
K21(X∗, XLF) K22(X∗, XHF) K22(X∗, X∗)

⎤
⎦

⎫⎬
⎭. (12)

The form of Eq. (12) reveals how the LF and HF data are
combined (i.e., through K12 and K21), completing step (a).
Note that when the hyperparameter ρ, which couples the LF
and HF models, is equal to zero, Eq. (12) reduces to two de-
coupled Gaussian processes. This means that when the LF and
HF models are uncorrelated, the LF data will not influence the
HF regression, resulting in one single-fidelity GPR at each fi-
delity level. Following the procedure for determining optimal
hyperparameters θ for a kernel function, the hyperparameter
ρ is also determined by optimizing a log-likelihood function,
as discussed in Sec. 2.4 of Ref. [11]. As a result of this opti-
mization procedure, if ρ turns out to have a large value, then
there is substantial correlation between the LF and HF models.
Otherwise, the LF and HF models are uncorrelated. Thus, the
correlation hyperparameter ρ determined from the MF dataset
directly quantifies the influence of the LF data on the HF fit,
completing part (b) of the procedure mentioned above.

We have shown how data from LF and HF models can
be combined into a single MF dataset and how the degree of
influence of LF data on fits to HF data can be quantified using
the correlation hyperparameter ρ. However, we still need to
show how to produce a fit to HF data using Eq. (12), while
also completing step (c) of the procedure mentioned above.
By conditioning the joint Gaussian prior distribution Eq. (12),
the predictive mean and the covariance matrix are obtained
from the Gaussian posterior distribution

f∗,HF|X∗, XLF, XHF, y ∼ N [K∗K−1y, K22(X∗, X∗)

− K∗K−1KT
∗ ], (13)

where f∗,HF denotes the posterior distribution of the HF data,
and

y ≡
[

yLF

yHF

]
, (14)

K∗ ≡ [K21(X∗, XLF) K22(X∗, XHF)], (15)

K ≡
[

K11(XLF, XLF) K12(XLF, XHF)
K21(XHF, XLF) K22(XHF, XHF)

]
. (16)

We note that the hyperparameters θLF and θHF of the kernels
and ρ are all determined simultaneously by optimizing the
log-likelihood function, as discussed in Refs. [11–13]. From
Eq. (13), the MF predictive mean and covariance for the HF
data are

μ∗,HF(X∗) = K∗K−1y, (17)

�∗,HF(X∗) = K22(X∗, X∗) − K∗K−1KT
∗ . (18)

Note that when X∗ = XHF, we have μ∗,HF(XHF) = yHF [37],
which guarantees that the regression will pass through the HF
data. This satisfies the constraint imposed in step (c) of the
procedure and is due to the independence assumption of fLF

and δHF, as discussed in Ref. [38].
To highlight how the MF-GPR approach given by Eq. (4),

which we denote as “linear MF-GPR,” may add value over
single-fidelity GPR, we consider the pedagogical case where
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FIG. 2. Comparison of linear MF-GPR and single-fidelity GPR
for a linear mapping between fidelities. The shaded bands represent a
95% confidence interval around a fit. The single-fidelity GPR result
is shown as a blue line; single-fidelity GPR is used to fit only the
HF data and does not recover the exact HF solution. The linear MF-
GPR result is shown in purple; linear MF-GPR accurately predicts
the exact HF solution by using the LF data in addition to the HF
data, and this result overlaps the exact HF solution. The confidence
interval for the linear MF-GPR fit is approximately the width of the
thickness of the purple line.

the LF and HF models have the form

yLF(x) = sin(2πx), (19)

yHF(x) = 1
3 sin(2πx), (20)

for x ∈ [0, 4]. Note that the LF and HF models are linearly
related by the factor of 1/3 in Eq. (20). Predictions from
single-fidelity GPR and linear MF-GPR are shown in Fig. 2,
with NHF = 6 and NLF = 22. For all MF-GPR and GPR fits,
the data were first scaled to unit variance and mean zero. The
hyperparameter optimization routine was carried out using
the limited-memory quasi-Newton algorithm for 15 random
restarts, and a measurement noise with a variance of 10−6

was added to each kernel matrix to ensure a positive-definite
matrix during fitting (see Ref. [39] for more information on
the numerical implementation used here). In Fig. 2, the lin-
ear MF-GPR fit, denoted by a purple solid line, corresponds
to μ∗,HF(X∗) from Eq. (17); the confidence bands around
μ∗,HF(X∗) were computed from Eq. (18) and are approxi-
mately the width of the thickness of the purple line. The
GPR fit, denoted by a blue solid line, corresponds to μ∗(X∗)
from Eq. (2), and the shaded confidence bands around μ∗(X∗)
are computed from Eq. (3). We see that inclusion of the LF
data leads to a more accurate prediction, as linear MF-GPR
recovers the exact HF solution. The GPR result, which is fit to
only the HF data, is unable to recover the HF true solution. In
addition, the 95% uncertainty band reported in Fig. 2 around
the fit is much narrower with linear MF-GPR than with GPR,
and the agreement of the linear MF-GPR fit with the HF true
solution persists even beyond the last HF data point. It is
important to note that all regression methods based on GPR

will generate a fit that will regress to the mean of the data
when the distance between a new test point and an HF training
point is greater than the length-scale of the kernel(s).

This particular example can also be viewed through an
information-theoretic lens. Observe that the LF and HF mod-
els have the same period of 1 s and therefore, according to
the Nyquist-Shannon sampling theorem [40,41], the sampling
period must be less than 0.5 s to reconstruct the HF model with
sufficient accuracy. Note that the HF data by themselves do
not satisfy the Nyquist-Shannon sampling rate. Thus, a GPR
fit to the given HF data will be unable to recover the exact HF
solution. If the LF model is sampled sufficiently to satisfy the
Nyquist-Shannon sampling theorem, then it allows the linear
MF-GPR model to recover the exact HF solution. If the LF
model is not sampled sufficiently or if the LF model has a
different frequency than the HF model, then the LF model is
uncorrelated with the HF and, therefore, does not add any new
information to the MF-GPR.

Lastly, we note that the LF model introduces bias in the
resulting MF regression, and the MF-GPR fit is dependent on
the choice of LF model; we compare various choices of LF
models and their impact on MF-GPR in Sec. III.

Figure 2 illustrates how the autoregressive model Eq. (4)
results in more accurate fits to HF data when the LF and
HF models are related linearly. However, in many cases, the
LF and HF models may be related nonlinearly, and schemes
beyond the original MF-GPR approach [11] are needed. In
recent years, there have been many improvements to the orig-
inal MF-GPR approach that explore more efficient numerical
schemes [42], transform input data to more accurately predict
discontinuities in HF data [12], have the ability to learn a
nonlinear mapping between LF and HF models [13], and more
accurately propagate uncertainty between fidelity levels [14].
The approach proposed in Ref. [13] goes beyond the linear
autoregressive scheme Eq. (4) by allowing for a spatially
dependent nonlinear mapping between fidelities; we denote
this mapping as z(·).

Following Ref. [13], the modified autoregressive equation
that includes this mapping is

fHF(x) = z[x, fLF(x)] + δHF(x), (21)

where z(·) is sampled from of a Gaussian process. Note that
z[x, fLF(x)] is now a Gaussian process of a Gaussian process
and is referred to as a “deep GP” [43,44]. While the form
of Eq. (21) has been shown to provide improvements over
simpler models [43], computing the mean and covariance of
the posterior distribution corresponding to Eq. (21) is often
computationally intractable [44]. To address this intractability,
the Gaussian-process prior fLF(x) is often replaced with the
corresponding posterior distribution f∗,LF(x) [42], resulting in
a recursive multifidelity model (i.e., performing GPR at each
fidelity level separately and then propagating the results to
each successive level of fidelity).

Replacing fLF(x) with f∗,LF(x) in Eq. (21) and using the
independence assumption of z[x, fLF(x)] and δHF(x) results in
a compact recursive multifidelity formulation [13]

fHF(x) = g[x, f∗,LF(x)], (22)

where the prior distribution g includes dependencies of both
x and f∗,LF(x). It is shown in Ref. [13] that this recursive
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multifidelity model Eq. (22) can be modeled by using a kernel
of the form

kg(xi, x j ) = kρ (xi, x j ; θρ )k f [ f∗,LF(xi ), f∗,LF(x j ); θ f ]

+ kδ (xi, x j ; θδ ). (23)

In contrast with the linear autoregressive model Eq. (4), the
kernel kρ is now a spatially-dependent scaling factor respon-
sible for measuring the correlations between the LF and HF
models, k f measures the correlations of the outputs of the
GPR performed on the LF data, and kδ accounts for the bias
between the LF and HF data; in this work, each term in
Eq. (23) is represented by a kernel of the form in Eq. (1).

The set of hyperparameters (variance and length scale) for
each kernel is denoted by θρ, θ f , and θδ , respectively. Im-
portantly, unlike the linear autoregressive formulation Eq. (4)
where all hyperparameters at all fidelity levels are trained
simultaneously, the hyperparameters at each fidelity level us-
ing the recursive formulation Eq. (22) are trained separately.
This aspect greatly reduces computation costs associated with
hyperparameter estimation. When the correlations between
the LF and HF data are small, the product kρk f will be close
to zero, and the MF-GPR fit approximately recovers the GPR
fit to the HF data. Recall that this was also the case for the
correlation hyperparameter ρ in Eq. (4). The product kρk f in
Eq. (23) is plotted in Sec. III to reveal the effectiveness of
different choices of LF models.

Next, we turn to the three steps for making an MF predic-
tion using Eq. (22) with kernel Eq. (23). These are discussed
in detail in Ref. [13]; for completeness, we summarize them
here. Step 1 involves performing GPR on the lowest-fidelity
data. This includes optimizing the kernel hyperparameters
using the LF data. Step 2 takes as input the trained GPR
model from Step 1, together with the HF data, to construct
the posterior distribution according to the kernel in Eq. (23)
(see Eq. (2.14) of Ref. [13]). The last step, Step 3, calculates
the predictive mean and covariance by sampling the poste-
rior distribution using numerical integration techniques (e.g.,
Monte Carlo [13,14]). Numerical integration is necessary be-
cause unlike the prior distributions of single-fidelity GPR and
linear MF-GPR, the prior distribution in Eq. (22) may not be
Gaussian. As a result, we will be unable to express its poste-
rior distribution as a Gaussian. More details of the MF-GPR
approach used in this work and its numerical implementation
can be found in Refs. [13,14,39].

Recall that the LF and HF models given by Eqs. (19) and
(20) are linearly related, with the quantity in Eq. (20) equal
to the quantity in Eq. (19) multiplied by a coefficient of 1/3.
To highlight the limitations of the linear MF-GPR approach
given by Eq. (4), we now consider LF and HF models of the
form

yLF(x) = sin(8πx), (24)

yHF(x) = x sin(8πx), (25)

for x ∈ [0, 1]. Note that the coefficient by which Eq. (24) is
multiplied to get Eq. (25) has been changed from 1/3 to x.
As a result of this mapping, we expect that predictions made
using Eq. (17) will be of poor quality. This expectation is
verified in Fig. 3, which shows a comparison between predic-

FIG. 3. Comparison of two MF-GPR approaches. One MF-GPR
approach assumes a linear relationship between the fidelity levels
[see Ref. [11] and Eq. (4)] and is denoted as “linear MF-GPR.”
The other approach assumes a nonlinear mapping between fidelity
levels [see Ref. [13] and Eq. (22)] and is denoted as “MF-GPR”;
the shaded bands represent a 95% confidence interval around the fit.
The MF-GPR approach that assumes a nonlinear mapping between
fidelities (orange solid line) is able to recover the underlying exact
HF solution, in contrast to the MF-GPR approach that assumes a
linear mapping between fidelity levels (purple solid line).

tions from Eq. (4) and Eq. (22), with NHF = 8 and NLF = 30.
We find that MF-GPR not only exhibits excellent agreement
with the exact HF solution but also has far smaller confidence
bands than those obtained with the linear MF-GPR model.
Figure 3 illustrates the ability of MF-GPR to produce accurate
results with limited HF data by incorporating additional data
from an LF model that is not linearly related to the HF model.

It would be undesirable to restrict MF-GPR approaches to
plasma transport-coefficient data to linear relationships alone,
as such data are known or derived to be accurate in certain
physical regimes that need not be related linearly. The plasma
transport coefficients we are considering illustrate this point;
they are obtained using a variety of methods (recall Sec. II A)
that have no simple, prescribed relationship to each other.
Thus, we will use the nonlinear formulation of MF-GPR
Eq. (22) throughout the reminder of this work, referring to
it simply as “MF-GPR.”

D. Error calculations and computation cost

We have shown the benefit of MF regression over single-
fidelity techniques by considering toy examples. However, the
computational cost of MF-GPR over single-fidelity GPR can
not be disregarded. Thus, we would like to determine the cost-
benefit tradeoff for using MF-GPR over single-fidelity GPR.
To begin, we define an error metric to measure the regression
error between the HF test set and MF-GPR/GPR predictions.
The metric we use is the root-mean-square error (RMSE)

RMSE =
√√√√ 1

Ntest

Ntest∑
i=1

‖yi,true − yi,pred‖2, (26)
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TABLE II. Average computation time t and regression errors for single-fidelity GPR and MF-GPR Eq. (22) fits using the LF and HF
model Eqs. (24) and (25). Each entry is an average over ten fits, and the hyperparameters for each fit were trained using the limited-memory
quasi-Newton algorithm with 15 random restarts. For the RMSE values, the numbers in brackets denote the power of ten that the value in
front of the brackets is multiplied by (e.g., 3.2[−1] = 0.32). The column labeled t∗

GPR shows the computation time for single-fidelity GPR
normalized by the computation time when NHF = 8. The computational cost of single-fidelity GPR increases by a factor of two when the
number of HF training points increases by roughly ten. We note that when NLF = 50 and NHF = 13, MF-GPR is six times more expensive than
single-fidelity GPR but reduces the regression error by more than two orders of magnitude.

NLF NHF t∗
GPR tMF-GPR/tGPR RMSEGPR RMSEMF-GPR

30 8 1 6 ± 1 3.2[−1] 8.7[−3]
34 9 1.0 ± 0.1 6 ± 1 3.5[−1] 1.5[−2]
38 10 1.0 ± 0.1 5 ± 1 3.8[−1] 9.4[−4]
43 11 1.3 ± 0.7 6 ± 3 3.5[−1] 1.1[−3]
50 13 1.1 ± 0.1 6 ± 1 3.6[−1] 2.0[−3]
60 15 1.1 ± 0.2 8 ± 2 1.1[−1] 1.9[−4]
75 19 1.4 ± 0.2 7 ± 2 9.0[−3] 1.5[−4]
100 25 1.2 ± 0.2 8 ± 2 5.4[−3] 9.9[−5]
150 38 1.7 ± 0.3 7 ± 2 3.1[−4] 7.7[−5]
300 75 2.1 ± 0.3 10 ± 2 2.1[−4] 6.5[−5]

where i denotes the location of a test point, Ntest is the total
number of test points, yi,true is the true solution at location i,
and yi,pred is the value of the fit (MF-GPR or GPR) at location
i. Table II compares the computational costs, which includes
the costs of both hyperparameter training and predictions, and
regression errors for the GPR and MF-GPR methods using the
LF and HF model Eqs. (24) and (25). We find that while MF-
GPR is roughly six to ten times more expensive than single-
fidelity GPR, the MF-GPR method results in regression errors
that are often a couple orders of magnitude lower than those
obtained with single-fidelity GPR.

III. MULTIFIDELITY REGRESSION OF PLASMA
TRANSPORT-COEFFICIENT DATA

In Secs. II B and II C, we have demonstrated the effec-
tiveness and limitations of single-fidelity GPR and different
MF-GPR approaches using toy examples. Additionally, in
Sec. II D, we assessed the cost-benefit tradeoff between GPR
and MF-GPR approaches. We illustrated the fact that rela-
tive to single-fidelity GPR, MF-GPR increases computation
cost but decreases prediction error. While these toy examples
were useful for building intuition and providing a baseline for
computation-cost and error estimates, we will now consider
real data generated for ionic plasma transport coefficients; we
will begin by analyzing what role the choice of LF model
plays in MF-GPR. The LF and HF models will be chosen from
those listed in Table I.

We first consider two choices for the LF model for predict-
ing the viscosity for the element C at ni = 5.01 × 1022 cm−3,
as shown in Fig. 4. MF-GPR fits produced using the LF SMT
model are shown in Fig. 4(a), and fits produced using the LF
YGBI model are shown in Fig. 4(b). The HF training data
were computed from the YVM. The inserts in Fig. 4 show the
kernel matrix corresponding to kρk f in Eq. (23).

In Fig. 4(a), with the SMT model used as the LF model, we
see that the only nonzero values of the kernel matrix occupy
the diagonal and quickly decay to zero a short distance from
the diagonal, corresponding to a small length scale for the

kernel. Because the entries of the kernel matrix have nearly
zero magnitudes, the MF-GPR fit is nearly equivalent to the
fit obtained by performing GPR on the HF data alone; this
equivalence explains the overlap of the fits produced by GPR
and MF-GPR.

In Fig. 4(b), with the YGBI model used as the LF model,
two findings are of note. The first is that there are regions
where the MF-GPR and GPR fits do not overlap; this is most
clearly seen around T = 0.2 eV. Second, the entries of the
kernel matrix are nonzero away from the diagonal, implying
substantial correlations between the LF and HF data. How-
ever, the values are nearly constant throughout the matrix,
differing from each other by at most by 1%. Thus, in contrast
with the MF-GPR fit shown in Fig. 4(a), the MF-GPR fit
shown in Fig. 4(b) includes information from the LF data
and suggests correctly that the LF and HF data differ by an
approximately constant shift.

A comparison of the sizes of the confidence bands for the
MF-GPR results in Figs. 4(a) and 4(b) show that the MF-GPR
fit in Fig. 4(b) is superior to that in Fig. 4(a). The choice of the
YGBI model as the LF model for MF-GPR in Fig. 4(b) results
in a superior fit because the YGBI model provides additional
information that is used to improve the fit. This additional
information can be seen in the kernel matrix computed from
kρk f ; an LF model for which kernel entries off the diagonal
are nonzero improved the MF-GPR fit over the GPR fit more
than an LF model for which the kernel entries are close to
zero. Thus, we have found that the kernel matrix computed
from kρk f is a natural indicator of when an LF model is
insufficient for MF-GPR and that a different, or more precise,
LF model is needed to impact the MF-GPR fit. When kernel
matrix entries decay rapidly to zero off the diagonal, it would
be best to consider alternative LF models.

In Fig. 4, we considered LF and HF models that both
predict the same quantity. ML models have been developed
in which the LF and HF models do not predict the same
quantity; for example, the prediction of rainfall using an el-
evation model has been examined [45,46]. As discussed in
Refs. [45,46], a large amount of elevation data are available,
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FIG. 4. MF-GPR prediction of the viscosity of the element C at
ni = 5.01 × 1022 cm−3 versus temperature. In both panels (a) and
(b), GPR was performed using the HF training data computed from
the YVM, and the GPR results are compared with those of an MF-
GPR model constructed using data from both an HF model and an
LF model. (a) The LF model is given by the SMT model. (b) The
LF model is given by the YGBI model. The inserts in panels (a) and
(b) display the kernel matrix from kρk f with optimized hyperparam-
eters. In panel (a), little correlation is found between the HF and
LF models, as the only nonzero entries of the kernel matrix are on,
or close to, the diagonal; in panel (b), however, the correlation is
substantial, as demonstrated by the extent of the nonzero values off
the diagonal of the kernel matrix, as shown in the insert.

but only a minimal amount of rainfall data are available;
together, these data have been used to construct MF rainfall
models. Similarly, a large amount of self-diffusion coefficient
data and a minimal amount of viscosity data are available,
and MF models of plasma transport coefficients could be
constructed using both data sources. Thus, we also consider
LF and HF models that do not predict the same quantity. In
particular, we assess the validity of using the self-diffusion
coefficient (LF model) as a predictor for the viscosity (HF
model).

MF-GPR fits for viscosity of the element C at ni = 5.01 ×
1022 cm−3 using self-diffusion data for the LF model and
viscosity data for the HF model are shown in Fig. 5; two dif-
ferent LF models for predicting the self-diffusion coefficient
are considered. In both Figs. 5(a) and 5(b), HF data were
calculated from the YVM model. In Fig. 5(a), the LF data

FIG. 5. Using self diffusion as the LF model to predict viscosity.
The reduced transport coefficients φ ∈ {D∗, η∗} are shown for the
element C at ni = 5.01 × 1022 cm−3 versus temperature. In both
panels (a) and (b), GPR was performed using the HF training data
computed from the YVM, and the GPR results are compared with
those of an MF-GPR model constructed using data from both an
HF model and an LF model. (a) The LF model is the reduced self-
diffusion coefficient D∗ from the HMP model. (b) The LF model is
D∗ computed from the SMT model. The inserts display the kernel
matrix from kρk f with optimized hyperparameters.

were computed using the HMP model, and in Fig. 5(b), the
LF data were computed from the SMT model. The transport
coefficients have been reduced such that D∗ = D/ωpa2

i and
η∗ = η/miniωpa2

i . Here, ωp = (4πniZ2e2/mi )1/2 is the ion
plasma frequency, and ai = (4πni/3)−1/3 is the ion-sphere
radius, where ni is the ion number density, Z is the mean
ionization state, e is the elementary charge, and mi is the ion
mass. The inserts once again show the kernel matrix kρk f .

Figure 5 demonstrates that using self-diffusion coefficient
data as our LF model and viscosity as our HF model substan-
tially improves the MF-GPR model of the viscosity compared
to using viscosity data for both models. What we mean by
this is that the LF data used in both panels of Fig. 5 are more
strongly correlated with the HF data than the LF data used
in Fig. 4(a) are. A comparison between the kernel matrices
shown in the insert of Fig. 4(a) and in the insert of both panels
of Fig. 5 demonstrates this point; in contrast to Fig. 4(a), the
kernel matrices shown in both panels of Fig. 5 have a nonzero
value away from the diagonal. This means that the LF data
used in both panels of Fig. 5 have a larger contribution to the
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FIG. 6. MF-GPR and GPR fits, with 95% confidence intervals (shaded bands), of the self-diffusion coefficient versus temperature for
multiple elements. The models used to generate this data are given in Table I. Panels (a)–(d) show MF-GPR and GPR fits obtained using a
portion (filled diamonds) of the HF data (all diamonds). Panels (e)–(h) compare MF-GPR and GPR fits obtained using all of the available data;
GPR is fit to only HF data, whereas MF-GPR uses both the LF and HF data. In general, the MF-GPR fit is less prone to spurious oscillations
than the GPR fit, and the size of the uncertainty band is much smaller with MF-GPR than with GPR.

MF-GPR model than the LF data used in Fig. 4(a) does. Also
note that the entries of the kernel matrix in both panels of
Fig. 5 are not a constant value, in contrast with the entries in
the kernel matrix shown in the insert in Fig. 4(b). Therefore,
the LF and HF data used in both panels of Fig. 5 are not related
by a shift but rather by a nonlinear relationship. Compar-
isons of the kernel matrix kρk f provide valuable insight into
the effectiveness of an LF model in an MF-GPR framework
by quantifying the spatial extent of correlations and type of
relationship between the low- and high-fidelity models e.g.,
linear or nonlinear. In particular, these comparisons revealed
the effectiveness of using self-diffusion LF data to predict
viscosity HF data. As self-diffusion data are more readily
available and are cheaper to compute than viscosity data,
Fig. 5 illustrates how MF-GPR provides improved estimates
of viscosity at low computational cost where it has not been
measured.

In addition to selecting a sufficient LF model for MF-GPR,
it is imperative to include data in the LF and HF datasets that
capture essential special features of a physical system. For
example, it is possible that neither the LF data nor the HF data
include information about features such as sudden changes
(i.e., a jump discontinuity). For plasma transport coefficient
data, sudden changes in quantities such as the electrical con-
ductivity may result from a phase transition. In the absence
of such data, MF-GPR is incapable of predicting a discon-
tinuity. If this behavior is known in advance, then the LF
and HF models should be sampled accordingly to ensure that
the MF-GPR framework has sufficient training data near the
discontinuity; then, an MF-GPR approach capable of handling
a discontinuity, such as that described in Ref. [12], can be
used.

IV. REGRESSION OF SPARSE DISPARATE DATA

In this section, we will use MF-GPR to predict transport
coefficients when HF data are available in disparate physi-
cal regimes. We will consider a transport-coefficient dataset,
which has “gap” regions, i.e., temperature ranges in which no
HF data are available, as shown in Table I.

This section is organized as follows. First, we use MF-
GPR to fit gapped transport-coefficient data as a function of
temperature. Then, we consider a higher-dimensional feature
space of ion number density and temperature. We conclude
by varying the approach used to sample the HF dataset. We
find that using a low-discrepancy sequence [47] to select data-
sampling locations yields smaller regression errors than does
sampling data on a uniform grid.

A. Self-diffusion and viscosity predictions versus temperature

We apply MF-GPR to gapped transport-coefficient data for
the elements H, He, Be, and Fe. We first consider an HF
training set that consists of only four data points—two points
at both high and low temperatures—and thus features a large
gap between the patches of HF data. Then, this gap is reduced
in size by including all HF points in the training set.

This approach is illustrated in Fig. 6, which shows MF-
GPR and GPR fits for the self-diffusion coefficient. In the
top row, we note that multiple inflection points in the GPR
predictions for He, Be, and Fe can be seen, while the MF-GPR
fits are monotonically increasing. For Fe, a large oscillatory
pattern is seen in the GPR fit. These oscillations are not
physical and are likely due to the hyperparameters responsible
for specifying the length scale of the kernel Eq. (1). With
MF-GPR, oscillations do not appear, as the three terms in
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FIG. 7. MF-GPR and GPR fits, with 95% confidence intervals (shaded bands), of the viscosity coefficient versus temperature for multiple
elements. The models used to generate this data are given in Table I. Panels (a)–(d) show MF-GPR/GPR fits obtained using a portion (filled
diamonds) of the HF data (all diamonds). Panels (e)–(h) show MF-GPR fits obtained using all of the data. In general, the MF-GPR fit is less
prone to oscillations than is the GPR fit which uses only HF data.

Eq. (23) do not restrict the form of the fit to a single length
scale. Similar patterns are observed for the viscosity in Fig. 7.

B. Viscosity predictions versus temperature and number density

Because only a small amount of HF data were used in
the work described in Sec. IV A, a well-defined error met-
ric could not be reported. Therefore, we constructed an HF
dataset in the ni-T plane containing 900 points sampled

FIG. 8. The regions of the temperature and number-density space
where HF and LF models were used to generate viscosity data for
the MF training dataset. The red dashed lines indicate the divisions
between the regions. In the regions labeled as “1” and “3,” both HF
and LF data are available. In the region labeled as “2,” only LF data
are available. The models used for each region are listed in Table III.

on a grid. The data were generated using the YVM for H
and Fe, and these data will act as a test set for the results
described in this section. The dataset spans a temperature
range of T = 101–104 eV and an ion number density of ni =
1018–1026 cm−3.

Next, we constructed an MF training dataset. When this
MF training dataset is used together with the HF test set
described above, we will be able to compute regression errors
for GPR and MF-GPR using Eq. (26), now in ni-T space. With
the view of mimicking the scenario of datasets containing
“gaps,” as discussed in Sec. IV A, an MF training dataset was
constructed to contain a region lacking HF data. We chose the
YGBI model as our LF model and assumed that this LF model
can be evaluated everywhere in the domain.

Figure 8 illustrates the concept of physical regimes that
include an area or “gap” in which no HF data exist. The figure
shows three regions, labeled as “1,” “2,” and “3.” In regions
1 and 3, both the HF (YVM) and LF (YGBI) models can
be evaluated. The area between the red dashed lines, denoted
with a 2 and labeled as “no HF data,” shows the region where
no HF data are available. We refer to this region as the “gap

TABLE III. HF and LF models for the viscosity used in the
temperature/number-density regions shown in Fig. 8. The same LF
model is employed across all regions.

Region HF LF

1 YVM [31] YGBI [32]
2 – YGBI [32]
3 YVM [31] YGBI [32]
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TABLE IV. Sampling approaches used to sample the MF training dataset. The LF data were always evaluated on a grid; sampling methods
for the HF data varied.

HF sampling LF sampling Description

Grid Grid HF and LF data were sampled on an evenly spaced grid in ni and T .
Halton-23 [48] Grid HF data were sampled using a Halton-23 sequence. LF data were

sampled on an evenly spaced grid in ni and T .
Hybrid Grid The HF dataset includes the four extreme corners of the domain and

data sampled using a Halton-23 sequence. The LF data were sampled
on an evenly spaced grid in ni and T .

region.” A summary of the choices of LF and HF models for
all of the regions shown in the figure are given in Table III.

Having defined the models used to generate the test and
training datasets, we will describe, below in Sec. IV B 1,
the three HF sampling approaches we used to create the MF
training dataset.

1. Sampling methods for HF data

We used three approaches to sample the HF gapped dataset
initially: an evenly spaced grid, a low-discrepancy sequence,
namely, a Halton-23 sequence [48], and a hybrid method
that used both approaches. For the LF data, we restricted the
sampling approach to an evenly spaced grid. The details of

each sampling approach are discussed below and summarized
in Table IV.

To place data on an evenly spaced grid, we first specify the
total number of HF data points (e.g., NHF = 100). Then, the
grid spacing is computed by

�x = xu − x�√
NHF

, (27)

where x ∈ {ni, T }, and the subscripts “u” and “�” denote the
upper and lower bounds of x, respectively. Using Eq. (27) to
determine the spacing between HF points is straightforward;
however, we note that to refine the grid spacing by a factor
of two, four times as many HF data points are needed. As a
result, the evenly spaced grid approach becomes increasingly

FIG. 9. MF-GPR prediction of the viscosity of the element Fe using NLF = 100 and NHF = 12. The HF data were sampled (a) on a
uniformly spaced grid, (b) using a Halton-23 sequence, and (c) using our hybrid method. Top row: The locations of the HF training data
(filled black diamonds) and LF training data (open blue circles) used to construct the MF training dataset are shown. The red dashed lines
denote the boundaries between the regions shown in Fig. 8. Bottom row: The absolute differences between the predicted viscosities ηpred and
the true viscosities ηtrue are shown. The hybrid sampling approach improves the prediction in the gap region between the dashed white lines.
Note that the failure of the Halton-23 sampling approach to include the boundaries of the HF data in the training set results in large errors at
the boundaries.
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FIG. 10. The RMSE of log10(η) for GPR and MF-GPR fits for the element H using different HF sampling methods. We sampled NHF and
NLF points from the gapped dataset shown in Fig. 8. The models used to generate the data are specified in Table III. Each RMSE value was
determined from an average of ten fits, and standard deviations for the values are shown as error bars. The HF data were sampled (a) on an
evenly spaced grid, (b) using a Halton-23 sequence, and (c) using our hybrid method. We note that in most cases, MF-GPR outperformed GPR.

computationally expensive as the dimension of the input space
increases.

Instead of restricting the locations of HF data to points
on an evenly spaced grid, their locations may be determined
randomly. However, two HF points chosen in this way could
be extremely close together, and in such a circumstance,
calculations would be repeated at roughly the same location
in parameter space. By enforcing a constraint on the min-
imum distance between two points, calculating HF data at
close locations can be avoided. An alternative to enforcing
a constraint on the distance between data sampling locations
is to use a low-discrepancy sequence to determine sam-
pling locations; this is the second of our sampling methods.
Low-discrepancy sequences consist of “quasirandom” num-
bers that are generated deterministically, and points con-
structed using these numbers as coordinates cover a domain
more quickly and evenly than do points constructed with

random numbers as coordinates. Here, we use a Halton-23
low-discrepancy sequence [48]. In the name “Halton-23,”
“23” denotes the bases 2 (for dimension ni) and 3 (for dimen-
sion T ); the bases 2 and 3 were chosen as they are mutually
prime, which results in a uniform, limiting density of the
points in the sequence [48].

While use of only a low-discrepancy sequence to deter-
mine HF sampling locations reduces the chance of performing
repeated calculations, the edges of the domain may not be
included in an HF dataset constructed in this way. If a specific
domain is desired, then it is necessary to augment the low-
discrepancy sequence locations with data along the domain
boundary. To ensure coverage in a fixed domain, we used
a hybrid sampling method. In this hybrid method, the four
extreme corners of the domain of the HF dataset are sampled
first. Then, the remainder of the allocated HF data points are
sampled using a low-discrepancy sequence.

FIG. 11. The RMSE of log10(η) for the element H using MF-GPR with different MF training sets constructed using various HF sampling
approaches. (a) The HF data were sampled on a grid. (b) The HF data were sampled using a Halton-23 sequence. (c) The HF data were sampled
using our hybrid approach.
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FIG. 12. The RMSE of log10(η) for the element Fe using MF-GPR with different MF training sets constructed using various HF sampling
approaches. (a) The HF data were sampled on a grid. (b) The HF data were sampled using a Halton-23 sequence. (c) The HF data were sampled
using our hybrid approach.

The three sampling approaches we used are summarized
in Table IV. In Fig. 9, we compare the MF-GPR prediction of
the viscosity using each of these sampling methods, for NLF =
100 and NHF = 12. In the top row, we show the locations in
the ni-T plane where the HF data, indicated by filled black
diamonds, and the LF data, indicated by open blue circles,
were sampled using each method. The bottom row shows heat
maps of the absolute error between the prediction and the true
solution, for each sampling method; differences between the
sampling methods are apparent. In particular, the regression
error in the gap region is substantially smaller with the hybrid
method than with the grid method.

2. Regression error

Fits produced using GPR and MF-GPR are shown in
Fig. 10, with the HF sampling approach varied as described
in Table IV. Each point in the figure shows an average of 10
fits, with error bars indicating one standard deviation from the
average. For MF-GPR, the LF data were sampled from a grid,
and the cases NLF = 25 and 400 are shown. The GPR fits were
carried out using only the HF data from the MF dataset. We
see that the RMSE decreases as NHF increases for all methods,
and that the MF-GPR fit yields smaller RMSE values than does
GPR. In almost all cases, MF-GPR performs at least as well
as GPR.

We next computed the RMSE of fits to HF viscosity data
for different combinations of NHF and NLF for H and Fe. The
results for H are displayed in Fig. 11, and for Fe, they are
displayed in Fig. 12; each column in the figure corresponds
to a different HF sampling method. We note that the RMSE
values for NHF = NLF = 4 should be the same in columns
(a) and (c), because the hybrid method first samples the four
corners from the grid and then adds points sampled using
the Halton-23 sequence. The average value of the RMSE for
NHF = NLF = 4 in column (a) is within one standard deviation
of the average value of the RMSE for the same case in column

(c), and vice versa. Therefore, we do not consider these dif-
ferences to be statistically significant. As shown in Figs. 11
and 12, fits generated using the hybrid sampling approach
result in smaller RMSE values overall than do those generated
using a simple grid approach. It is also worth noting that the
pure Halton-23 method often produced higher RMSE values
than did the grid method; this is because the boundaries of
the domain were not sufficiently sampled in the HF training
set. As a result, the MF-GPR fit tends to the mean of the HF
data, and the largest errors are incurred near the boundaries,
as shown in Fig. 9.

V. CONCLUSIONS AND OUTLOOK

We have investigated the use of MF-GPR to interpolate
plasma transport data over a wide parameter space in which
HF data are available in localized patches. We have examined
the improvements in both the predicted mean and the pre-
dicted uncertainty that MF-GPR provides over GPR. We have
seen that in most cases, MF-GPR results in a lower uncer-
tainty than does single-fidelity GPR, sometimes by an order
of magnitude. Examining the hyperparameters governing the
structure of the kρk f kernel reveals the improvement in the
mean and uncertainty, or lack thereof, given by the LF data.

As a “black-box” regression method, MF-GPR provides
increased reliability over single-fidelity methods, as trends
from LF models are used during regression where HF data
are sparse; the use of such LF trends enables MF-GPR to
reduce the occurrence of nonphysical oscillations or inflection
points that occur with single-fidelity GPR. In addition, confi-
dence bands generated by MF-GPR and GPR suggest where
additional HF data are needed once a fit has been produced;
simpler regression methods do not offer this benefit.

From an experimental-design perspective, HF data are of-
ten sampled on a grid that is refined uniformly when finer
resolution is needed [49]. We found that when performing
MF-GPR, sampling HF data on a uniformly spaced grid can
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bias length-scale hyperparameters and results in larger regres-
sion errors. Therefore, we developed a simple hybrid approach
for initially sampling HF data that combines sampling both
on a grid and using a low-discrepancy sequence, resulting in
smaller regression errors.

The results here can be expanded upon in multiple ways.
For example, the MF-GPR framework could be extended to
include physically motivated constraints, such as enforcing
nonnegativity [50]. Additionally, we restricted the work here
to the self-diffusion and viscosity transport coefficients, but
other transport coefficients, such as the thermal conductivity,
the resistivity, and the interdiffusion coefficient in plasma
mixtures, can also be investigated. The sampling methods de-
scribed here can also be improved upon greatly and optimized
for higher-dimensional feature spaces to avoid the curse of
dimensionality. However, our approaches offer a starting point
that highlights the importance of avoiding regressing beyond
the bounds of available data in a GPR/MF-GPR setting.

Through the confidence intervals it provides, the GPR ap-
proach suggests where it would be most useful to generate
additional data; the confidence of a fit would be improved
most by obtaining additional HF data points in regions with
the greatest uncertainties. Comparing GPR and MF-GPR re-
sults show the utility of generating LF data in parallel with
HF datasets. In addition, it could be possible to improve the
ML approach itself by developing customized kernels for this
application [51–53].
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