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Generalized mode-coupling theory (GMCT) has recently emerged as a promising first-principles theory to
study the poorly understood dynamics of glass-forming materials. Formulated as a hierarchical extension of
standard mode-coupling theory (MCT), it is able to systematically improve its predictions by including the exact
dynamics of higher-order correlation functions into its hierarchy. However, in contrast to Newtonian dynamics,
a fully generalized version of the theory based on Brownian dynamics is still lacking. To close this gap, we
provide a detailed derivation of GMCT for colloidal mixtures obeying a many-body Smoluchowski equation.
We demonstrate that a hierarchy of coupled equations can again be established and show that these, consistent
with standard MCT, are identical to the ones obtained from Newtonian GMCT when taking the overdamped
limit. Consequently, the nontrivial similarity between Brownian and Newtonian MCT is maintained for our
multicomponent GMCT. As a proof of principle, we also solve the generalized mode-coupling equations for
the binary Kob-Andersen Lennard-Jones mixture undergoing Brownian dynamics and confirm the improved
predictive power of the theory upon using more levels of the GMCT hierarchy of equations.
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I. INTRODUCTION

To this date, the physical mechanisms underlying the
liquid-to-glass transition are still not fully comprehended.
Since glassy dynamics manifests itself in numerous systems
across different length scales, e.g., atomic and molecular liq-
uids, polymers, colloids, granular materials, and even living
cells [1–11], a better understanding of this process is pivotal
to a wide range of research areas. The main problem, however,
remains that when a material transitions from a liquid to a
glassy or amorphous solid state, its viscosity or relaxation
time shows a tremendous nonlinear growth, while its structure
and related thermodynamic control parameters exhibit only
minor differences [12,13]. Consequently, a successful theory
for glassy dynamics not only needs to pick up on these subtle
structural changes, but also has to adequately magnify them
in order to accurately describe the dramatic dynamical slow-
down.

One of the few first-principles-based theories that is at least
partially capable of this task is mode-coupling theory (MCT)
[1,14–17]. This theory requires solely the static structure fac-
tor as input; from this structural information alone, it is able
to predict the intermediate scattering function and thus the full
microscopic relaxation dynamics of many glass-forming ma-
terials with qualitative and sometimes even semiquantitative
accuracy. Among its most notable successes are the prediction
of two-step relaxation patterns, stretched exponentials, and
universal scaling laws upon approaching the glass transition
point [1,14–18].

*l.m.c.janssen@tue.nl

Unfortunately, MCT often fails to reach full quantitative
accuracy; the primary reason for this resides in the theory’s
ad hoc Gaussian factorization and disregard of higher-order
correlation functions. In recent years so-called generalized
mode-coupling theory (GMCT) has therefore been intro-
duced as a means to limit the effect of this uncontrolled
approximation, with results that improve upon predictions of
standard MCT in a systematic, possibly convergent manner
[19–28]. The basic notion of this theory is to develop separate
equations of motion for higher-order correlation functions
instead of immediately applying a factorization approxima-
tion at the lowest possible order. This results in a hierarchy
of MCT-like equations [19–24,28]. So far, the explicit in-
clusion of more high-order correlators has been shown to
significantly enhance predictions in comparison to MCT, and
near-quantitative accuracy in the weakly supercooled regime
has already been reached [20]. Moreover, the theory has
no free parameters, still only uses the static structure fac-
tor as input, and has thus presented itself as a promising
first-principles theory to study the dynamics of glass-forming
materials.

However, most of the GMCT studies and the accompany-
ing derivations have focused primarily on systems governed
by Newtonian dynamics, while the few works based on
Brownian dynamics are restricted to single-component sys-
tems and time-independent properties [26,27]. Considering
that an appreciable number of studied glassy materials, in-
cluding polydisperse colloidal suspensions, is comprised of
particles experiencing overdamped dynamics, it becomes ap-
parent that a complete GMCT framework for multicomponent
systems governed by Brownian dynamics is desired. For stan-
dard MCT it is known that deriving the theory from either
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Newtonian or Brownian principles yields the same results
[24,29]. This subtle and nontrivial equivalency might be at-
tributed to the fact that in MCT all “fast” variables are
projected out and the differences between overdamped and
underdamped dynamics seem to be covered within these
“fast” variables. Since GMCT retains this method of project-
ing out “fast” variables and only extends it to higher-order
correlation functions, we expect the observed similarity to
persist upon generalizing the theory, although this is not a
priori evident.

In this work we seek to formally demonstrate this equiva-
lency by deriving a generalized MCT for colloidal mixtures
obeying a many-body Smoluchowski equation. Our work
significantly extends earlier GMCT studies [26,27] by ac-
counting both for the full time-dependence of the Brownian
relaxation dynamics and for polydisperse or multiple-particle-
species compositions. Below we first present our model
system and briefly recap the results of standard MCT. Next we
provide detailed derivations of the equations of motion for the
four-point and six-point density correlation functions and their
dependence on the higher-order six- and eight-point density
correlation functions (via the memory kernels), respectively.
We discuss the similarities between the developed equations
of motion and the lowest order MCT equation of motion and,
based on them, extract a hierarchy of equations describing
correlation functions of arbitrary order, thereby establishing
a generalized MCT for mixtures of Brownian particles. A
comparison is then made between Newtonian and Brownian
GMCT, which are shown to be identical after taking the over-
damped limit of the former. As a proof of principle, we also
employ our theory to study some features, primarily the crit-
ical temperature, of the Kob-Andersen binary Lennard-Jones
mixture [30]. This model system has been extensively studied
in the context of glassy physics, and earlier comparisons with
MCT have shown that the theory strongly overestimates the
critical temperature [24,31–33]. We confirm the improved
predictive power of GMCT by demonstrating that, upon in-
cluding more levels of the hierarchy of equations, the critical
temperature lowers in a possibly convergent manner towards
the simulation results.

II. THEORY

A. Brownian particles

Our model glassy system is an m-component mixture
consisting of N interacting spherical Brownian particles im-
mersed in a viscous medium with total volume V . Following
prior works on colloidal glasses, we neglect hydrodynamic
interactions, so that the equation of motion for each particle
is written as [32]

drα
i

dt
= ζ−1

α Fα
i + ξα

i . (1)

Here, rα
i denotes the position of the ith particle of type α, Fα

i
the interaction force acting on it, ζα the component-dependent
friction constant, and ξα

i a Gaussian thermal noise with zero
mean and variance 〈ξα

i (t )ξβ
j (t ′)〉noise = 2DαIδi jδαβδ(t − t ′),

with Dα the thermal diffusion coefficient, t the time, δ(t )
the Dirac delta function, δi j the Kronecker delta, and I the
unit matrix. Based on these equations the joint N-particle

probability density function (PDF) evolves in time via [29,34]

∂

∂t
PN (rN , t ) = �PN (rN , t ), (2)

where rN = (r1
1, ..., rm

Nm
) denotes the configuration space, and

the evolution (or Smoluchowski) operator � is given by

� =
m∑

α=1

Nα∑
i=1

Dα∇α
i · (∇α

i − βFα
i

)
, (3)

with Nα the number of particles of type α and β the in-
verse thermal energy. In equilibrium the PDF yields the
Boltzmann solution Peq(rN ) ∝ exp(−βU (rN )). This solution
depends solely on the total interaction potential U (rN ), which
is spherically symmetric and produces the interaction forces
Fα

i = −∇α
i U (rN ). Moreover, the friction constant and inverse

thermal energy are related to each other via the Stokes-
Einstein equation: βDα = ζ−1

α . Note that Dα represents the
intrinsic short-time diffusivity of the particles and should not
be confused with the long-time diffusion coefficient, which
may in fact violate the Stokes-Einstein equation upon ap-
proaching the glass transition point [18,32,35–37].

The collective motion of particles can then be described via
density modes

ρα (k) = 1√
Nα

Nα∑
j=1

eik·rα
j , (4)

where k is a wave vector and the factor 1/
√

Nα is added
for normalization. Our main probes to study the cooperative
diffusion and glassy behavior of the colloids are the so-called
partial intermediate scattering functions, which are the time
correlation between two such density modes:

Fα;β (k, t ) = 〈ρ∗
α (k)e�tρβ (k)〉. (5)

Note that they only depend on the absolute value k = |k|
due to the system being isotropic and that, as a result of
translational invariance, they are nonzero only when the wave
vectors in both density modes are equal. At time zero the time
correlation in Eq. (5) defines the static structure factor:

Fα;β (k, t = 0) ≡ Sα;β (k) = 〈ρ∗
α (k)ρβ (k)〉. (6)

We point out that averaging 〈...〉 is done with respect to the
equilibrium distribution Peq(rN ) and that the operator � works
on everything to its right including the PDF.

B. Mori-Zwanzig formalism

The framework of GMCT will be shown to consist of
a hierarchy of equations of motion for Fα;β (k, t ) and its
higher-order counterparts. To obtain an equation of motion for
such correlation functions we will employ the Mori-Zwanzig
projector operator formalism [38,39], which we briefly sum-
marize here. Consider any vector A whose elements Ai = [A]i

are functions of the configuration space rN and whose time
correlation is given by F(t ) = 〈A∗e�t A〉 or equivalently, in
the Laplace domain F(z) = 〈A∗(z − �)−1A〉. One can then
define a projection operator onto the subspace spanned by
A as P = |Ai〉S−1

i; j 〈A∗
j |, where we have adopted the Einstein

summation convention to sum over repeated indices, intro-
duced S = 〈A∗A〉, and the superscript −1 denotes the inverse

065302-2



GENERALIZED MODE-COUPLING THEORY FOR … PHYSICAL REVIEW E 104, 065302 (2021)

matrix of the respective quantity, i.e., S−1
i; j ≡ [S−1]i; j . Note

that the normalization S−1
i; j ensures the idempotency of P .

Typically, the elements in A are chosen to be slow or qua-
siconserved variables, which implies that P only retains the
slow part parallel to A, while removing the orthogonal or
fast part. Invoking Dyson decomposition, i.e., (z − �)−1 =
(z − �Q)−1 + (z − �Q)−1�P (z − �)−1, with Q = I − P ,
one can write the Laplace transform of the time derivative of
F(t ) as

zF(z) − S = 〈A∗�(P + Q)(z − �)−1A〉
= −H · S−1 · F(z) + K(z) · S−1 · F(z), (7)

where we have introduced H = 〈A∗�A〉 and K(z) =
〈A∗�Q(z − Q�Q)−1Q�A〉, which are normally referred to
as the diffusion matrix and the memory kernel, respec-
tively. However, in its present form the memory kernel
will not lend itself to MCT-like approximations [40,41].
We therefore follow standard procedure by converting it to
an irreducible memory kernel. Employing a further projec-
tion operator Pirr = |Ai〉H−1

i; j 〈A∗
j�|, with Qirr = I − Pirr , and

again invoking Dyson decomposition, we find that K(z) =
M(z) − M(z) · H−1 · K(z). Here the irreducible memory ker-
nel and evolution operator are given by M(z) = 〈A∗�Q(z −
�irr )−1Q�A〉 and �irr = Q�QirrQ, respectively. By combin-
ing the relation between both memory kernels and Eq. (7), one
arrives at

(I + M(z) · H−1) · (zF(z) − S) + H · S−1 · F(z) = 0. (8)

If we then convert back to the time domain, we find an equa-
tion of motion for our correlation function F(t ), which is given
by

∂

∂t
F(t ) + H · S−1 · F(z)

+
∫ t

0
M(t − t ′) · H−1 · ∂

∂t ′ F(t ′) = 0. (9)

We mention that this equation is exact, although the mem-
ory kernel, which is usually the self-correlation function of
so-called fluctuating forces, is often highly nontrivial and
requires approximations to be evaluated.

In this work we shall take the density modes ρα (k), or
any higher-order (multilinear) combination of density modes,
as our dynamic variables Ai of interest. The Mori-Zwanzig
approach then allows us to immediately develop a formally
exact equation of motion for its time-correlation function. For
the memory kernel we will invoke generalized MCT-based
approximations to ultimately obtain a fully self-consistent set
of equations. The derivation of this theory will be outlined
below, and more explicit derivations are also included in the
Supplemental Material [42].

C. Mode-coupling theory

Let us first consider the standard MCT framework for
Brownian dynamics. Applying the Mori-Zwanzig projector
operator formalism with Ai = ρα (k), the time evolution of

Fα;β (k, t ) is given by the following equation [29,32,43]:

∂

∂t
Fα;β (k, t ) + Hα;γ (k)S−1

γ ;ε (k)Fε;β (k, t )

+
∫ t

0
dt ′Mα;γ (k, t − t ′)H−1

γ ;ε (k)
∂

∂t ′ Fε;β (k, t ′) = 0, (10)

where the collective two-point diffusion matrix governing the
short-time dynamics is given by

Hα;β (k) = −〈ρ∗
α (k)�ρβ (k)〉 = k2Dαδαβ. (11)

The crucial term of Eq. (10) is the irreducible two-point mem-
ory kernel Mα;β (k, t ), which contains the time-autocorrelation
function of the fluctuating forces. In MCT, these fluctuating
forces are projected onto the subspace of density doublets,
which are assumed to be the slowest modes after the single-
density modes [16]. We mention that for Brownian systems
such a projection is exact, since stress fluctuations can be
expressed by pair densities [44]. By subsequently invoking the
convolution approximation [45] and Gaussian factorization
[20] for the three- and four-point static density correlations,
respectively, which should be reasonable for systems not
prone to form networks [46], the memory kernel can be writ-
ten as [29,43]

Mα;β (k, t ) = 1

4

∑
q,q′

Dα

√
Nα

V α
μν (k, q)〈ρ∗

μ(q)ρ∗
ν (k − q)e�irrt

× ρμ′ (q′)ρν ′ (k − q′)〉 Dβ√
Nβ

V β

μ′ν ′ (k, q′), (12)

with �irr representing the irreducible evolution operator
[29,40,41,43]. The vertices, which represent the coupling
strength between different wave vectors, are written in terms
of the direct correlation function Cαβ (k) = δαβ − S−1

αβ (k) as

V α
μν (k, q) = k · q δανCαμ(q) + k · (k − q) δαμCαν (|k − q|).

(13)

It is apparent that the irreducible two-point memory kernel
requires an even more complex (unknown) irreducible four-
point dynamic density correlation, which prevents one from
finding numerical solutions. Approximations are therefore de-
sired, and in standard MCT this takes the shape of an ad hoc
factorization. In particular, the irreducible evolution operator
�irr is replaced by the full time-evolution operator �, and
the four-point density correlations are written as products of
two-point density correlations, yielding [29,43]

〈ρ∗
μ(q)ρ∗

ν (k − q)e�irrtρμ′ (q′)ρν ′ (k − q′)〉
≈ Fμ;μ′ (q, t )Fν;ν ′ (|k − q|, t )δq,q′

+ Fμ;ν ′ (q, t )Fν;μ′ (|k − q|, t )δk−q,q′ . (14)

Consequently, the irreducible two-point memory kernel sim-
plifies to [29]

Mα;β (k, t ) = 1

2

∑
q

Dα

√
Nα

V α
μν (k, q)Fμ;μ′ (q, t )

× Fν;ν ′ (|k − q|, t )
Dβ√
Nβ

V β

μ′ν ′ (k, q), (15)

065302-3



DEBETS, LUO, CIARELLA, AND JANSSEN PHYSICAL REVIEW E 104, 065302 (2021)

which, using the static structure factor Fα;β (k, t = 0) =
Sα;β (k) as the initial boundary condition, allows us to
self-consistently find a solution for Fα;β (k, t ) and study the
glassy dynamics of our colloidal mixture.

D. Extending towards generalized mode-coupling theory

Despite the remarkable successes of MCT [1,16,18,47],
several discrepancies between the theory and simulations or
experiments still persist [31,48–50], most notably, an overes-
timation of the glass transition. Inspired by previous studies
[19–27], we therefore seek to improve and generalize the
theory by developing a separate equation for the four-point
dynamic density correlations (and later continuing the pro-
cess for even higher-order correlations). Since we believe the
factorization to be the most severe approximation, we will
retain the four-point density correlations and only replace the
irreducible evolution operator by a full one. Moreover, to keep
calculations tractable and consistent with previous work on
Newtonian GMCT, we will also apply the diagonal approxi-
mation (q = q′, k − q = q′) [20,22,23,51], so that overall we

have

〈ρ∗
μ(q)ρ∗

ν (k − q)e�irrtρμ′ (q′)ρν ′ (k − q′)〉
≈ F (2)

μν;μ′ν ′ (q, |k−q|, t )δq,q′+F (2)
μν;ν ′μ′ (q, |k−q|, t )δk−q,q′ .

(16)

As a result, the memory kernel becomes a function of
the diagonal four-point dynamic density correlation function
F (2)

α1α2;β1β2
(k1, k2, t ) = 〈ρ∗

α1
(k1)ρ∗

α2
(k2)e�tρβ1 (k1)ρβ2 (k2)〉:

Mα;β (k, t ) = 1

2

∑
q

Dα

√
Nα

V α
μν (k, q)

× F (2)
μν;μ′ν ′ (q, |k − q|, t )

Dβ√
Nβ

V β

μ′ν ′ (k, q). (17)

Having simplified the irreducible to a diagonal four-point
density correlation, we can now once more resort to the
Mori-Zwanzig projection operator formalism to describe its
dynamics. Using Ai = ρα1 (k1)ρα2 (k2) in Eq. (9), the equation
of motion for the four-point density correlation function yields

∂

∂t
F (2)

α1α2;β1β2
(k1, k2, t ) + H (2)

α1α2;γ1γ2
(k1, k2)

(
S(2)

)−1

γ1γ2;ε1ε2
(k1, k2) F (2)

ε1ε2;β1β2
(k1, k2, t )

+
∫ t

0
dt ′M (2)

α1α2;γ1γ2
(k1, k2, t − t ′)

(
H (2)

)−1

γ1γ2;ε1ε2
(k1, k2)

∂

∂t ′ F
(2)
ε1ε2;β1β2

(k1, k2, t ′) = 0. (18)

In this equation the collective diffusion matrix and static structure factor are naturally extended towards their four-point tensorial
counterparts:

H (2)
α1α2;β1β2

(k1, k2) =−〈
ρ∗

α1
(k1)ρ∗

α2
(k2)�ρβ1 (k1)ρβ2 (k2)

〉
= k2

1Dα1δα1β1 Sα2;β2 (k2) + k2
2Dα2δα2β2 Sα1;β1 (k1), (19)

and

S(2)
α1α2;β1β2

(k1, k2) = 〈
ρ∗

α1
(k1)ρ∗

α2
(k2)ρβ1 (k1)ρβ2 (k2)

〉
≈ Sα1;β1 (k1)Sα2;β2 (k2),

where the latter is approximated using Gaussian factorization, which, from this point onward, will be done throughout for static
correlations. Moreover, the four-point irreducible memory kernel reads

M (2)
α1α2;β1β2

(k1, k2, t ) = 〈
ρ∗

α1
(k1)ρ∗

α2
(k2)�Q(2)e�

(2)
irr tQ(2)�ρβ1 (k1)ρβ2 (k2)

〉
. (20)

Unfortunately, the complexity of the latter term hinders any analytical progress, and our strategy to develop Brownian-GMCT
is therefore to simplify it by invoking a similar strategy as is done in MCT. Realizing that the second-order fluctuating forces
consist, to leading order, of products of three density modes [20,26], we seek to project the second-order fluctuating forces onto
the subset of density triplets. More concretely, this translates to replacing 〈ρ∗

α1
(k1)ρ∗

α2
(k2)�Q(2) → 〈ρ∗

α1
(k1)ρ∗

α2
(k2)�Q(2)P3 and

Q(2)�ρβ1 (k1)ρβ2 (k2)〉 → P3Q(2)�ρβ1 (k1)ρβ2 (k2)〉 in the four-point irreducible memory kernel using the projection operator

P3 = 1

6

∑
q1,q2,q3

∣∣ρμ1 (q1)ρμ2 (q2)ρμ3 (q3)
〉
χ123

〈
ρ∗

ν1
(q1)ρ∗

ν2
(q2)ρ∗

ν3
(q3)

∣∣. (21)

Note that the factor 1/6 corrects for double counting and that the normalization χ123 = S−1
μ1;ν1

(q1)S−1
μ2;ν2

(q2)S−1
μ3;ν3

(q3) is chosen
in accordance with Gaussian factorization. Due to this projection, the memory kernel takes on the more familiar form of two
“vertices” enclosing a correlation one step above in the hierarchy, which in this case is a six-point irreducible correlation function:

M (2)
α1α2;β1β2

(k1, k2, t ) ≈ 1

36

∑
q1...q6

〈
ρ∗

α1
(k1)ρ∗

α2
(k2)�Q(2)ρμ1 (q1)ρμ2 (q2)ρμ3 (q3)

〉
χ123

× 〈
ρ∗

ν1
(q1)ρ∗

ν2
(q2)ρ∗

ν3
(q3)e�

(2)
irr tρμ4 (q4)ρμ5 (q5)ρμ6 (q6)

〉
χ456

〈
ρ∗

ν4
(q4)ρ∗

ν5
(q5)ρ∗

ν6
(q6)Q(2)�ρβ1 (k1)ρβ2 (k2)

〉
.

(22)
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Following the detailed derivation reported in the Supplemental Material [42], it is possible to reduce the left vertex to〈
ρ∗

α1
(k1)ρ∗

α2
(k2)�Q(2)ρμ1 (q1)ρμ2 (q2)ρμ3 (q3)

〉
χ123

=
[(

Dα1√
Nα1

δk1,q1+q2δk2,q3δα2ν3

(
k2

1δα1ν1δα1ν2 − k1 · q1δα1ν2 S−1
α1;ν1

(q1) − k1 · q2δα1ν1 S−1
α1;ν2

(q2)
))

+ ({q1, ν1 ↔ q3, ν3}) + ({q2, ν2 ↔ q3, ν3})

]
+ [{k1, α1 ↔ k2, α2}], (23)

while the right vertex yields an identical expression. Here, the double-arrow contributions correspond to the aforementioned
terms enclosed by the same brackets except for a swapping of the indicated wave vectors and particle labels. Inserting both
results, evaluating the Kronecker deltas, and exploiting the symmetry of the different vertex terms allows us to rewrite the
memory kernel as

M (2)
α1α2;β1β2

(k1, k2, t )

≈ 1

4

∑
q,q′

[
Dα1√
Nα1

V α1
μν (k1, q)

(〈
ρ∗

μ(q)ρ∗
ν (k1 − q)ρ∗

α2
(k2)e�

(2)
irr tρμ′ (q′)ρν ′ (k1 − q′)ρβ2 (k2)

〉 Dβ1√
Nβ1

V β1
μ′ν ′ (k1, q′)

+ 〈
ρ∗

μ(q)ρ∗
ν (k1 − q)ρ∗

α2
(k2)e�

(2)
irr tρμ′ (q′)ρν ′ (k2 − q′)ρβ1 (k1)

〉 Dβ2√
Nβ2

V β2
μ′ν ′ (k2, q′)

)]
+ [{k1, α1, β1 ↔ k2, α2, β2}], (24)

which is very reminiscent of (12) and therefore lends itself to similar approximations. In particular, we can again replace the
irreducible operator with a full evolution operator and apply the diagonal approximation, which for second order comes down
to q = q′, k1,2 − q = q′, and retaining only diagonal correlations [20,22,23]. Combined with the assumption that k1 
= k2, the
memory kernel finally reduces to

M (2)
α1α2;β1β2

(k1, k2, t ) ≈ 1

2

∑
q

(
Dα1√
Nα1

V α1
μν (k1, q)F (3)

μνα2;μ′ν ′β2
(q, |k1 − q|, k2, t )

Dβ1√
Nβ1

V β1
μ′ν ′ (k1, q)

)
+ ({k1, α1, β1 ↔ k2, α2, β2}),

(25)

and thus becomes a function of the diagonal six-point density correlation:

F (3)
α1α2α3;β1β2β3

(k1, k2, k3, t ) = 〈
ρ∗

α1
(k1)ρ∗

α2
(k2)ρ∗

α3
(k3)e�tρβ1 (k1)ρβ2 (k2)ρβ3 (k3)

〉
. (26)

To recapitulate, we now have a set of two coupled
equations for the two- and four-point density correlations,
Eqs. (10) and (18), which can be solved self-consistently
by using an approximate expression for the six-point density
correlation function, using as input the static structure factor
and the initial boundary conditions. Normally, this is done
by factorizing the six-point correlation function in terms of
its lower-order counterparts [20,26]. This system of two cou-
pled equations constitutes a first improvement upon standard
MCT, since it pushes the factorization approximation back to
a higher-order correlation function, hence the name second-
order GMCT.

E. Hierarchy of GMCT equations

We are, however, by no means forced to introduce a
factorization at the level of the six-point density correla-
tions. In fact, the entire process laid out for the four-point
density correlation function can be equally repeated for
the diagonal six-point density correlations. Using Ai =
ρα1 (k1)ρα2 (k2)ρα3 (k3) in (9) yields an equivalent equation of
motion for F (3)

α1α2α3;β1β2β3
(k1, k2, k3, t ) [see Eq. (S27)], which,

after simplifying the irreducible six-point memory kernel, can
be shown to depend on the diagonal eight-point density cor-
relation functions (see Supplemental Material [42] for more

details). An inspection of the simplified second [Eq. (25)] and
third [Eq. (S33)] order irreducible memory kernels then shows
that they are very similar and we may, in agreement with
previous work on GMCT, observe a hierarchy of equations
starting to unfold [19–24,28,52]. Extrapolating the observed
behavior, we define a general 2n density correlation function,

F (n)
{αi};{βi}({ki}, t )

= 〈
ρ∗

α1
(k1) . . . ρ∗

αn
(kn)e�tρβ1 (k1) . . . ρβn (kn)

〉
, (27)

which, using Ai = ρα1 (k1) . . . ραn (kn) in (9), obeys the follow-
ing equation of motion:

∂

∂t
F (n)

{αi};{βi}({ki}, t ) + H (n)
{αi};{γi}({ki})

× (
S(n)

)−1

{γi};{δi}({ki}) F (n)
{δi};{βi}({ki}, t )

+
∫ t

0
dτM (n)

{αi};{γi}({ki}, τ )(H (n) )−1
{γi};{δi}({ki})

× ∂

∂t
F (n)

{δi};{βi}({ki}, t − τ ) = 0. (28)

Here {αi} = {α1, ..., αn} and {ki} = {k1, ..., kn} denote sets of
n particle labels and wave vectors, respectively, and the gen-
eralized static structure and collective diffusion tensors are
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given by

S(n)
{αi};{βi}({ki}) = 〈

ρ∗
α1

(k1) . . . ρ∗
αn

(kn)ρβ1 (k1) . . . ρβn (kn)
〉

≈
n∏

i=1

Sαiβi (ki ) (29)

and

H (n)
{αi};{βi}({ki}) = −

〈
ρ∗

α1
(k1) . . . ρ∗

αn
(kn)�ρβ1 (k1) . . . ρβn (kn)

〉

=
n∑

i=1

(
Dαi k

2
i δαiβi

∏
j 
=i

Sα jβ j (k j )

)
,

respectively. Finally, using {αi 
= j} to represent the set {αi}
without the element α j , introducing the component-dependent
number density nα = Nα/V , and taking the thermodynamic
limit, i.e.,

∑
q → V

(2π )3

∫
dq, the generalized memory kernel

may be written as

M (n)
{αi};{βi}({ki}, t )

=
∫

dq
16π3

( n∑
j=1

Dα j

√nα j

V
α j
μν (k j, q)F (n+1)

μν{αi 
= j };μ′ν ′{βi 
= j}

× (q, |k j − q|, {ki 
= j}, t )
Dβ j

√nβ j

V
β j

μ′ν ′ (k j, q)

)
. (30)

Note that n = 1, 2, 3 correspond to Eqs. (17), (25), and (S33),
respectively (with the latter presented in the Supplemental
Material) and that the memory kernel forms the link between
each equation of motion and the next via its dependence on
the 2(n + 1) density correlation functions. Overall, we are
now left with a hierarchy of connected integrodifferential
equations which are subject to the initial boundary conditions
F (n)

{αi};{βi}({ki}, t = 0) = S(n)
{αi};{βi}({ki}) and, in principle, can go

up to arbitrary order in n. For computational reasons, however,
one must close the hierarchy at a suitable order n = nmax.
Increasing the value of nmax pushes the factorization to higher-
order correlation functions (see Sec. III for more details).

To summarize, we have demonstrated that a multicom-
ponent GMCT formalism can be constructed for Brownian
systems governed by a many-body Smoluchowski equa-
tion. A comparison of our presented results with recent
work on multicomponent Newtonian GMCT [24] shows
that in the overdamped limit both hierarchies of equations
are completely identical. This demonstrates that the non-
trivial similarity between Brownian and Newtonian systems
witnessed for standard MCT is maintained for GMCT. Inter-
estingly, this also implies that the equilibrium Smoluchowski
operator in the equilibrium-distribution scalar product in
Brownian GMCT essentially acts in an analogous manner as
the double appearance of the Liouville operator in Newtonian
GMCT.

F. Long-time limit

We finalize our discussion of the theory by mentioning
that, based on the derived equations of motion, we can also
formulate a relation for the long-time limit of the 2n density
correlation functions or the so-called nonergodicity parame-
ters f . Taking the Laplace transform of (28) and invoking the

final value theorem, we have

H (n)
{αi};{γi}({ki})(S(n) )−1

{γi};{δi}({ki}) f (n)
{δi};{βi}({ki})

+ m(n)
{αi};{γi}({ki})(H (n) )−1

{γi};{δi}({ki})

× (
f (n)
{δi};{βi}({ki}) − S(n)

{δi};{βi}({ki})
) = 0, (31)

where the long-time limits are defined as

f (n)
{αi};{βi}({ki}) = lim

t→∞ F (n)
{αi};{βi}({ki}, t ), (32)

and

m(n)
{αi};{βi}({ki})

= lim
t→∞ M (n)

{αi};{βi}({ki}, t )

=
∫

dq
16π3

(
n∑

j=1

Dα j

√nα j

V
α j
μν (k j, q)

f (n+1)
μν{αi 
= j};μ′ν ′{βi 
= j}(q, |k j − q|, {ki 
= j})

Dβ j

√nβ j

V
β j

μ′ν ′ (k j, q)

)
.

(33)

For the nonergodicity parameters we thus find a similar hier-
archy of, in this case geometric equations, which must also be
closed at a suitable order nmax to allow for the obtainment of
practical results.

Finally, we mention that it is straightforwardly shown that
the lowest order equation of this hierarchy is independent
of the diffusivities Dα [53]. In other words, the location of
the glass transition is independent of kinetic parameters in
standard MCT. It is not immediately clear whether this also
holds true for the higher-order equations, i.e., for GMCT.
Interestingly, we have found that the critical temperatures for
higher-order GMCT in this work seem to change when we
vary the ratio between the different diffusion constants Dα

while using the same structural input. We have also verified
that this behavior is robust when choosing different mean-
field closures. GMCT might therefore be better equipped to
deal with asymmetric intrinsic diffusivities, which have been
shown to influence long-time dynamics in binary mixtures
[54], although for hard spheres they do not seem to influence
the critical density [55].

III. NUMERICAL DETAILS

A. GMCT numerics

Our aim is to self-consistently solve the hierarchies of
equations for different closure levels nmax. To attain such
solutions we will employ the following mean-field closure for
nmax > 1 [20,24]:

M (nmax )
{αi};{βi}({ki}, t )

≈ 1

nmax − 1

∑
j

M (nmax−1)
{αi 
= j};{βi 
= j}({ki 
= j}, t )Fα j ;β j (k j, t ), (34)

where we have taken into account the invariance of
F (n)

{αi};{βi}({ki}, t ) under the exchange {ki, αi, βi ↔ k j, α j, β j},
and the factor 1/(nmax − 1) ensures that at t = 0 both sides
are equal under Gaussian factorization. Note that this closure
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is equivalent to assuming F (nmax+1)(t ) ∼ F (nmax )(t ) × F (1)(t )
and is therefore consistent with the standard MCT approxi-
mation, i.e. (14), when setting nmax = 1. Using these closures
we find explicit expressions for all correlation functions up
to F (nmax )

{αi};{βi}({ki}, t ), although we will concentrate mainly on
F (1), which is usually measured in simulations and exper-
iments. Moreover, by increasing the hierarchy level nmax,
the factorization approximation naturally gets shifted towards
higher-order correlations F (nmax+1)

{αi};{βi} ({ki}, t ), which can system-
atically improve predictions for both single-component and
binary systems [19–24,26,27].

Fixing the closure tells us how many integrodifferential
equations to include, but we also require a numerical scheme
to solve each of them. For this we exploit the system’s ro-
tational symmetry to rewrite the three-dimensional integral
over q present in (30) in terms of two bipolar coordinates q =
|q|, p = |k j − q|, which are subsequently approximated by a
double Riemann sum [56] using an equidistant wave-vector
grid kσ = [0.2, 0.6, . . . , 39.8] (with σ the unit of length). To
retrieve solutions for the time-evolution equation (28), we can
then utilize a generalization of Fuchs’ algorithm [57]. For
this, we determine the first Nt = 32 points in time using a
Taylor expansion with a step size �t = 10−6, subsequently
double the time step and numerically integrate the equations
of motion, and repeat the duplication each time the next Nt/2
time points have been calculated.

B. Brownian dynamics simulations

As a proof of principle for our theory, we seek to predict the
glassy behavior of a Kob-Andersen binary Lennard-Jones (LJ)
mixture [30] of Brownian particles. This system consists of
NA = 800, NB = 200 particles of type A and B, respectively.
The position of each particle obeys (1), where we set ζA,B =
ζ0 = 1.0 (so that DA = DB = kBT/ζ0 with kB Boltzmann’s
constant and T the temperature), and the interaction forces
are derived from the following interparticle potential:

Vαβ (r) =
{

4εαβ

[( σαβ

r

)12 − ( σαβ

r

)6 + Cαβ

]
, r � rc

αβ,

0, r > rc
αβ.

(35)

The interaction parameters, i.e., εAA = 1, εAB = 1.5, εBB =
0.5, σAA = 1, σAB = 0.8, σBB = 0.88, are chosen to give
good glass-forming mixtures and the constant Cαβ fixes the
potential to zero at the cutoff radius rc

αβ = 2.5σαβ . Brownian
dynamics simulations are then carried out using LAMMPS [58].
We impose periodic boundary conditions, fix the cubic box
size to L = 9.41σAA so that the number density equals N/V =
1.2, equilibrate the system at different temperatures, and after-
wards track the particles over time. All results are presented
in reduced units where σAA, εAA, εAA/kB, and ζ0σ

2
AA/εAA

represent the units of length, energy, temperature, and time,
respectively [32].

Based on the simulation data, partial structure factors
Sα;β (k) and intermediate scattering functions Fα;β (k, t ) have
been calculated for different temperatures up to two decimal
numbers (values at more detailed temperatures are obtained
via linear interpolation). The structure factors are rewritten in
terms of an equidistant grid via cubic spline and polynomial
extrapolation for the first two grid points. In combination

with the set temperature (or diffusion coefficient) and number
densities, they will then serve as input for the multicompo-
nent GMCT equations, from which we find the corresponding
theoretically predicted Fα;β (k, t ) and fα;β (k). In the following
section we will discuss the effect of increasing the closure
level nmax on the predicted dynamics, with a prime focus
on the critical temperature, and we also compare our results
to our own simulation results and previous (Brownian and
Newtonian dynamics) simulations of the same system shown
in Refs. [24,31–33,46].

IV. RESULTS & DISCUSSION

A. Nonergodicity parameter

Before proceeding to calculate the full dynamics, let us
first focus on the long-time limit of the intermediate scattering
functions fα;β (k). These nonergodicity parameters serve as a
convenient probe to find the critical temperature Tc at which
an idealized glass transition occurs according to our theory.
During such a transition the value of fα;β (k) jumps discontin-
uously from zero to a finite value, indicating that the system
never fully relaxes and ergodicity is broken. Solving Eqs. (31)
and (33), and inspecting the resulting nonergodicity parame-
ters allows us to retrieve the critical temperature, whose values
(up to three decimal points) are listed for different closure lev-
els in Figs. 1(a)–1(c). It can be seen that Tc decreases in value
upon going to higher-order GMCT. In fact, when we plot the
critical temperature as a function of nmax [see Fig. 1(d)], we
may observe it moving and possibly converging towards the
value T sim

c = 0.435 obtained in both Newtonian and Brow-
nian dynamics simulations [31–33]. To confirm a rigorous
pattern of convergence, however, we must push our results
towards larger values of nmax, which so far has proved to be
numerically demanding and is therefore left for future work.

Having specified the critical points, we now take a closer
look at the details of the corresponding nonergodicity pa-
rameters, which are plotted for the relevant particle-type
correlations in Figs. 1(a)–1(c). The curves show that for
each correlation the nonergodicity parameter at the criti-
cal temperature retains a qualitatively similar shape for all
considered closure levels. At the same time we observe a
small quantitative increase of f c

AA and f c
BB for larger nmax,

which is consistent with the results of earlier work on
single-component GMCT [22,26,27] and physically reflects
a slowdown of the collective relaxation dynamics. To test how
the predicted nonergodicity parameters compare to simulation
results of the same system, we have also included the simula-
tion data from Ref. [46] into Figs. 1(a)–1(c). It can be seen
that the theoretically predicted nonergodicity parameters for
each correlation and closure level are fairly consistent with
the ones from simulation. Moreover, we note that increasing
nmax initially yields quantitatively better results (especially for
f c
AA), although for the largest considered value of nmax = 3 the

agreement is already slightly worse, with GMCT overshooting
the peak values. We mention that this overshooting of peak
values has also been observed with respect to experimental
results in previous work on single-component GMCT [26,27].
In a sense it reiterates the surprising ability of MCT to very
accurately predict the nonergodicity parameters at a density or
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FIG. 1. [(a)–(c)] The critical nonergodicity parameters as a function of wave number k, calculated for different GMCT closures nmax at
the respective critical temperatures Tc. The circles denote the simulation results from Ref. [46]. (d) The predicted critical temperature Tc as a
function of closure level nmax. Note that Tc decreases with increasing GMCT closure and seems to systematically move (and possibly converge)
towards the value obtained in simulations, T sim

c = 0.435 (dashed line).

temperature relatively far away from the true glass transition
point. To better understand the quantitative disagreement of
GMCT due to overshooting and test whether it proceeds in
a convergent manner, akin to the observed decrease of the
critical temperature, would require higher orders nmax to be
included and a more accurate pinning down of the critical
temperatures [22]; due to computational complexity, the crit-
ical temperature is here only determined up to three decimal
numbers. Still, these results already suggest that extending the
framework of GMCT from monodisperse towards multicom-
ponent systems keeps its improved predictive power in terms
of critical temperature intact and does not introduce any new
qualitative flaws.

B. Dynamics and the relaxation time

Next, to study the effect of going to higher-order GMCT
on the full dynamics of the system, we have also solved the
time-dependent hierarchy of equations posed by Eqs. (28) and
(30) for different closure levels nmax and temperatures T . The
calculated intermediate scattering functions (for all particle-
type correlations and normalized by the static structure factor)
are shown for the first three closure levels and a subset of
considered temperatures in Figs. 2 and 3. To illustrate the
quantitatively improved predictive power of GMCT, we first
focus on Fig. 2, where the temperature is kept fixed at a value
of T = 0.7 and only the closure level has been varied. Being
relatively far from the critical temperature T sim

c = 0.435, one

FIG. 2. Intermediate scattering functions as a function of time obtained directly from Brownian dynamics simulations or from binary
GMCT. The latter results correspond to different closure levels. We have chosen a fixed temperature T = 0.7 and wave numbers k = 7.4σ−1

AA

(a), k = 5.8σ−1
AA (b), and k = 7.8σ−1

AA (c) close to the first peak of Sαβ (k).
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FIG. 3. Intermediate scattering functions as a function of time obtained from binary GMCT for different closure levels and different
temperatures. We have chosen wave numbers k = 7.4σ−1

AA (a), k = 5.8σ−1
AA (b), and k = 7.8σ−1

AA (c) close to the first peak of Sαβ (k).

expects a liquid state with the intermediate scattering function
relaxing to zero at a timescale on the order of ∼101 [32]. This
is confirmed by our simulation results, which are also shown
in Fig. 2. However, at this temperature standard MCT (nmax =
1) incorrectly predicts a nonergodic glassy state, evident from
the fact that all components of Fαβ (k, t ) retain a plateau value
and do not relax to zero. In comparison, second-order GMCT
(nmax = 2) already correctly predicts a liquid state, although
the timescale at which the two-point density correlation func-
tions decay to zero is still overestimated with respect to the
values obtained in simulations. This timescale is seen to be
pushed back further towards its expected value upon moving
to third-order GMCT (nmax = 3), thereby demonstrating how
GMCT can systematically improve its predictions and pos-
sibly approach actual simulation results in the limit nmax →
∞. Moreover, we may note that the systematic improvement
occurs in almost the same fashion for each combination of
particle types (either AA, BB, or AB).

We now proceed to the temperature dependence of the
intermediate scattering functions, shown in Fig. 3. For all
closure levels, it is apparent that the relaxation of each com-
ponent of Fαβ (k, t ) takes an increasingly longer time upon
cooling the system, until, at a small enough temperature, it
fails to relax over the entire simulated time range. An inspec-
tion of the presented temperatures shows that the points at
which the intermediate scattering functions cease to decay
to zero are in agreement with the critical points obtained
from the long-time-limit calculations. Additionally, we may
observe that the overall shape of the relaxation curves is
similar across all closure levels. This suggests that higher-
order GMCT does not yield strong qualitative changes, and
we expect the celebrated MCT scaling laws [14,16,56] to
also hold for multicomponent GMCT. Note that this has al-
ready been rigorously shown for single-component GMCT
[22,23].

We conclude our discussion by exploring one of such scal-
ing laws, namely, the power law divergence of the relaxation
time, for our binary LJ mixture. As an operational definition
we follow Refs. [31,32] and let the relaxation time τα mark
the point at which the intermediate scattering function has de-
creased to e−1 of its initial value, i.e., Fαβ (k, τα )/Sαβ (k) = e−1

[with the wave number k corresponding to the first peak of
Sαβ (k)]. When described as a function of the reduced tem-
perature ε = (T − Tc)/Tc, these relaxation times are expected
to follow a power law divergence given by τα ∝ ε−γ , with γ

a critical exponent related to the fragility of the material. We
have plotted the values of τα obtained directly from our Brow-
nian dynamics simulations and the theoretically predicted
ones for different closures in Fig. 4. It can be seen that for each
component the theoretical results initially (down to ε � 0.1)
follow a power law (represented by a straight line) before vari-
ations start to occur for the higher-order GMCT results. We
believe that the observed deviations from a straight line when
approaching the critical temperature (smaller ε) are a result
of subtle inaccuracies in the static structure factors obtained
from simulations. Since changes in the static structure factor
are amplified for increasing order nmax, this can explain why
deviations become more evident when we go beyond MCT,
while for the latter an approximately straight line is retained
over the full investigated window of reduced temperatures.
Alternatively, it is also possible that our results are not fully
converged yet with respect to the wave-number grid, which for
computational reasons we have limited to Nk = 100 k points.
Taking this into account, we have only fitted the relaxation
times up to a value of ε ∼ 0.1, yielding for all particle-type
correlations and closures an exponent between γ ≈ 2.3 and
2.4. Fitting the simulation values for τα , which can also be
seen to follow a straight line, we, for all considered cases, find
an exponent between γ ≈ 2.3 and 2.4. Overall, these values
are in good agreement with each other and those retrieved in
Refs. [31,32], and suggest that increasing the GMCT closure
does not dramatically alter the critical exponent and thus the
calculated fragility for this particular model system. In com-
parison, for a hard-sphere system, GMCT has been shown to
predict a significant increase of the critical exponent [22].

V. CONCLUSION

In this work we have presented the first derivation of a fully
time-dependent, microscopic, generalized MCT for colloidal
mixtures obeying a many-body Smoluchowski equation. Our
theory is inspired by earlier, time-independent GMCT stud-
ies on monodisperse colloidal systems MCT [26,27] and
by previous work on time-dependent Newtonian GMCT
[20,21,24]. The framework we put forward consists of a hi-
erarchy of coupled integrodifferential equations describing
the time dependence of diagonal density correlation functions
of increasing order. For the first three entries, i.e., the two-,
four-, and six-point density correlation functions, the corre-
sponding equations of motion (and their dependence on the
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FIG. 4. The structural relaxation time corresponding to (a) AA, (b) BB, and (c) AB correlations as a function of the reduced temperature
for different GMCT closure levels. The results obtained directly from Brownian dynamics simulations are also added for reference.

four-, six-, and eight-point density correlation functions, re-
spectively) have been explicitly calculated. Subsequently, we
have extrapolated this hierarchical construct to describe corre-
lation functions of arbitrary order and thereby established our
fully generalized MCT. Using only the partial static structure
factors and no additional fit parameters as input, the hierarchy
can be closed at an order n and subsequently solved self-
consistently to retrieve the relaxation dynamics of a colloidal
mixture and study its glassy behavior. Moreover, a careful
inspection of the involved equations has shown that they, con-
sistent with standard MCT, are identical to the ones obtained
from Newtonian GMCT [24] when taking the overdamped
limit. The nontrivial similarity between Brownian and New-
tonian MCT is therefore maintained for our multicomponent
GMCT, where we highlight that such an equivalency is also
expected based on simulation results [24,31–33].

As an explorative demonstration of the theory, we have
used it to predict the glassy behavior of a three-dimensional
Kob-Andersen binary LJ mixture of Brownian particles. For
such a system the theory yields an ergodicity-breaking (ide-
alized glass) transition at decreasing critical temperatures
upon increasing the closure level nmax. In particular, this de-
crease seems to occur (at least for the considered closure
levels) in a convergent manner towards the actual experimen-
tal value obtained in both Newtonian and Brownian dynamics

simulations. Additionally, a careful study of the calculated
nonergodicity parameters and intermediate scattering func-
tions suggests that no strong qualitative changes occur upon
increasing the closure level, while quantitative improvements
are observed. These results support the role of GMCT as a
promising, systematically improvable, first-principles theory
to study the dynamics of glass-forming materials.

Finally, we want to mention the recent heightened interest
in active glassy materials where, besides exhibiting passive
motion, the constituent particles are also able to autonomously
move through the consumption of energy [2]. For such ma-
terials several active MCT theories have recently been put
forward [59–66]. Since most model active systems are usually
considered in the overdamped limit, e.g., active Brownian par-
ticles, our colloidal GMCT framework might also serve as a
stepping stone for the development of active GMCT theories.
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