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Nonequilibrium molecular dynamics method based on coarse-graining formalism:
Application to a nonuniform temperature field system
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A nonequilibrium molecular dynamics method is proposed to produce nonequilibrium states flexibly. In this
method, virtual points are set in a simulation box, and coarse-grained physical quantities at these points are
constrained using Gauss’s principle of least constraint. The coarse-grained physical quantities are evaluated by
averaging microscopic quantities with an appropriate weight. To obtain the weight to evaluate the coarse-grained
physical quantities, a shape function matrix is initially constructed from the particle configuration. This matrix
expresses an interpolation of the physical quantities at particle positions from the coarse-grained quantities at
the virtual points. Then, a matrix form of the weight is calculated as the Moore-Penrose pseudoinverse matrix
for the shape function matrix. This method is applied to constrain the coarse-grained kinetic energy and produce
a nonuniform temperature field in the system. The temperature profile at a nonequilibrium steady state depends
on the method for constructing the shape function matrix. In particular, a local temperature coincides with the
coarse-grained temperature when the shape function matrix is constructed based on a higher-order interpolation.
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I. INTRODUCTION

Atomistic-scale simulations such as molecular dynamics
(MD) [1,2] and Monte Carlo simulations [1,3] are effective
tools for understanding physical, chemical, and biological
phenomena at the microscopic level. In the MD simulation,
dynamical properties can be analyzed by numerically inte-
grating equations of motion of particles in a system. If there
is no external field, then a simple application of this method
conserves the system’s total energy, i.e., physical quantities
are obtained as statistical averages under a microcanonical
ensemble. In general, a large system is required to identify the
microcanonical ensemble with other realistic situations such
as constant temperature and/or constant pressure. Extensive
methods, such as thermostats [4–6] and barostats [7–9], are
developed to perform MD simulations in realistic situations
with limited computational resources.

Investing in the development of MD methods is not limited
to the equilibrium case. MD simulations have a wide range of
applications in nonequilibrium situations [10,11]. Equilibrium
MD simulations can be applied to evaluate linear transport
coefficients using the Green-Kubo relation [12,13]. In addi-
tion, various methods to directly treat nonequilibrium states
in the simulation are also developed to study properties far
from equilibrium. In fluid flow analyses, homogeneous shear
flow can be produced by applying boundary-driven methods,
e.g., an external force is exerted on particles in fluid like
wall regions [14]. For a system with a periodic boundary
condition, the Lees-Edwards method is applicable [15]. So-
phisticated methods such as the DOLLS tensor [16] and the
SLLOD algorithm [17] are formulated to combine the re-
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sponse theory, which is not established in the boundary-driven
methods. Moreover, methods for producing inhomogeneous
flow are also developed. For example, the shear viscosity is
evaluated by applying sinusoidal shear flow to the system
[18].

Another important application of nonequilibrium MD sim-
ulations is the analysis of properties related to thermal
transport [19]. A simple method to produce a temperature
gradient is by inserting the system between two thermostats
with different temperatures [20]. This method can easily be
applied to inhomogeneous systems, e.g., grain boundaries
[21,22] and interfaces between different materials [23]. In
addition, a method for producing the temperature gradient of
systems with periodic boundary conditions is also developed
[24]. Another strategy to study thermal transport is to add a
fictitious field to the system to produce heat flux without the
temperature gradient [25,26]. This method enables efficient
calculation of thermal conductivity based on the linear re-
sponse theory [13] and is applicable to systems with periodic
boundary conditions since this method produces a homoge-
neous state.

Nonequilibrium MD simulations are often combined with
constraint methods. Gauss’s principle of least constraint [27]
provides the steps for calculating constraint forces in simula-
tions with constraints. Evans et al. [28] developed a method
to realize a thermostat in MD simulations based on this prin-
ciple where the heat generated under a nonequilibrium state
can be removed using this thermostat. The constraint method
utilizing Gauss’s principle of least constraint possesses the
advantage that different physical quantities can be treated
similarly. Isokinetic nonequilibrium methods with additional
constraints, e.g., pressure [29], stress [30], and particle cur-
rent [28], are also formulated using Gauss’s principle of least
constraint.
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The existing methods for the nonequilibrium MD simula-
tions mentioned above contribute to a thorough understanding
of nonequilibrium phenomena. For instance, these meth-
ods lead to the discovery of nontrivial relations satisfied in
nonequilibrium states [31,32]. However, in a realistic situa-
tion, various nonequilibrium states can be generated. More
effort should be devoted to developing a method that enables
the flexible production of nonequilibrium states in the MD
simulations to mimic realistic nonequilibrium situations.

One of the strategies for flexibly producing nonequilibrium
states is to control local physical quantities in the simulation
by adopting the constraint method. Galea et al. [33] derived
non-Hamiltonian equations of motion for general constraints
based on the geometric principle of least constraint, which
includes Gauss’s principle of least constraint in a certain limit.
In their work, isokinetic shear flow is generated by applying it
to the total momenta constraints in two regions. In addition,
Smith et al. [34] recently proposed a method for control-
ling a fluid’s local momentum based on the control volume
formulation [35]. In the existing methods for constraining
local physical quantities, physical quantities averaged over a
local region are usually adopted as the local values of them.
Since the physical quantity varies in the local region, there is
ambiguity in the sense that the place where the local physical
quantity coincides with the designated value cannot be deter-
mined in advance. This ambiguity may cause production of
an undesirable nonequilibrium state, e.g., a range of variation
in the physical quantity in the system differs from what is
expected. This feature, which is pronounced for cases with
few constraints, is inconvenient for controlling nonequilib-
rium states. To avoid this inconvenience, it is preferable to
develop the method for designating the local physical quanti-
ties at points in the system.

In this paper, we propose a method for controlling the local
physical quantities at points in the system to produce nonequi-
librium states flexibly. This method involves the placement
of virtual points in the system, and coarse-grained physical
quantities at each virtual point are calculated as the average of
microscopic physical quantities, which are defined for each
particle in the system, with an appropriate weight. Then,
the coarse-grained physical quantities at the virtual points
are constrained by applying constraint forces derived from
Gauss’s principle of least constraint. In theory, it is desir-
able to incorporate physical quantity fluctuations, which are
neglected in the constraint method. However, it is not easy
to determine appropriate fluctuations of the coarse-grained
physical quantities under the nonequilibrium states. On the
other hand, the formulation based on the constraint method
can systematically be conducted because Gauss’s principle of
least constraint enables the treatment of various quantities in
the same manner as stated above. Therefore, we adopt the
constraint method with Gauss’s principle of least constraint as
a first step for constructing the method. The present method
is applied to a two-dimensional system that interacts via the
Weeks-Chandler-Andersen (WCA) potential [36] in a nonuni-
form temperature field.

This paper is organized as follows. Section II describes the
details of our method. First, we discuss the weight construc-
tion for averaging the microscopic physical quantity. Next,
the constraint force calculation and its application to the

kinetic energy constraint are explained. We also discuss the
computational implementation of the present method. Sec-
tion III describes the results obtained by applying the present
method to a two-dimensional system that interacts via the
WCA potential. Then, we show that if the weight is appropri-
ately constructed, local temperatures at the virtual points are
approximately equal to the corresponding coarse-grained tem-
peratures in the case of one-dimensional and two-dimensional
temperature nonuniformity. Finally, our conclusions are given
in Sec. IV.

II. METHOD

A. Weight function for coarse-graining a physical quantity

We consider a region � in D-dimensional space and as-
sume that the physical quantity A, such as momentum and
temperature, is well defined in �. These values are given at
NVP virtual points within �: AI represents the value of A at
the Ith virtual point. Then, a simple estimate of A at any point
ω ∈ � is provided by a linear combination of the physical
quantity at the virtual points:

A(ω) =
NVP∑
I=1

sI (ω)AI ,

NVP∑
I=1

sI (ω) = 1, (1)

where sI (ω), regarded as the weight for the Ith virtual point,
is not limited to positive values. For example, using Delaunay
triangulation [37], � is divided into simplices whose vertices
correspond to the virtual points. A point’s coordinate inside
the simplex is given by a linear combination of the simplex
vertices, where the sum of the coefficients equals 1. When the
same coefficient is applied to the physical quantity A, A(ω) for
any point ω ∈ � can be expressed in the form of Eq. (1).

Here, we consider the case where particles obeying New-
tonian mechanics are contained in � where the number N of
particles is sufficiently greater than the number NVP of virtual
points. The ith particle’s position, velocity, and acceleration
are denoted by ri, ṙi, and r̈i, respectively. We assume that
a microscopic physical quantity associated with A can be
defined for all particles and that the value of the ith parti-
cle’s microscopic physical quantity is given by ai. When the
physical quantity in � is expressed as Eq. (1), the microscopic
physical quantity is written as

a = SA, (2)

where a = (a1, · · · , aN )T and A = (A1, · · · , ANVP )T , in which
superscript T signifies the matrix transpose, and S is an N ×
NVP matrix. Hereafter, we refer to S and its entry as a shape
function matrix and a shape function, respectively, as used in
the finite element method [38]. Since Eq. (2) is derived from
Eq. (1), S satisfies the relation

∑NVP
J=1 SiJ = 1 for all i, where

SiJ is the (i, J ) entry of S .
Then, our goal is to evaluate the coarse-grained physical

quantity values at NVP virtual points when the microscopic
physical quantities for N particles are given. We assume that
A is written as a linear function of a:

A = Wa, (3)

where W , which is an NVP × N matrix, and its entry are called
a weight function matrix and a weight function, respectively.
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By substituting Eq. (2) into Eq. (3), we obtain

A = WSA. (4)

This relation holds irrespective of A when WS equals the
NVP × NVP unit matrix. If WS is the unit matrix, then∑N

k=1 WIkSkJ = δIJ , where δIJ represents the Kronecker’s δ,
i.e., δIJ equals 1 if I = J , and 0 otherwise. Since

∑NVP
J=1 SkJ=1,∑NVP

J=1

∑N
k=1 WIkSkJ = ∑N

k=1 WIk (
∑NVP

J=1 SkJ ) = ∑N
k=1 WIk .

Moreover,
∑NVP

J=1 δIJ = 1. From these relations, we obtain

N∑
k=1

WIk = 1. (5)

A natural choice of W to satisfy Eq. (4) is as follows:

W = (STS )−1ST . (6)

This matrix, also known as the Moore-Penrose pseudoinverse
matrix [39], plays an essential role in coarse-grained particle
MD simulations [40,41]. A different approach to derivation of
Eq. (6) is to obtain W which minimizes (SWa − a)T (SWa −
a) [40]. Appendix A contains details of the derivation via this
minimization. It should be noted that SW is generally not a
unit matrix. We also notice that W depends on the particle’s
configuration, meaning that, even if a particle is fixed, the
weight associated with it varies as other particles move. To
evaluate the coarse-grained physical quantities at the virtual
points in �, we use W defined by Eq. (6).

B. Gauss’s principle of least constraint

We consider a system containing N particles with Nc

constraints. The Ith constraint condition is assumed to be
BI ({r}, {ṙ}, t ) = 0, where {r} and {ṙ} signify a set of particle
positions and velocities, respectively. If only one coarse-
grained physical quantity A is constrained at NVP virtual
points, then Nc = NVP and BI ({r}, {ṙ}, t ) is written from the
result in Sec. II A as

BI ({r}, {ṙ}, t ) ≡
N∑

j=1

WI j ({r})a j ({r}, {ṙ}) − AI (t ) = 0, (7)

where AI (t ) is the value of A at the Ith virtual point at time
t and we explicitly state the {r} and {ṙ} dependence of W
and a.

The constraint is nonholonomic when BI depends on the
particle velocities. In this case, by taking the first derivative of
BI with respect to time, the equation that the particle acceler-
ation {r̈} should satisfy is obtained as

N∑
i=1

r̈i · bI,i({r}, {ṙ}, t ) + cI ({r}, {ṙ}, t ) = 0, (8)

where bI,i({r}, {ṙ}, t ) = ∂BI/∂ ṙi and cI ({r}, {ṙ}, t ) = ∑N
i=1 ṙi ·

∂BI/∂ri + ∂BI/∂t . The constraint becomes holonomic when
BI is independent of the velocities. For the holonomic con-
straint, an equation that has the same form as Eq. (8) can
be obtained by taking the second derivative of BI with re-
spect to time, although, the expressions of bI,i({r}, {ṙ}, t ) and
cI ({r}, {ṙ}, t ) differ from the case of the nonholonomic con-
straint.

The equation of motion for the ith particle is given by

r̈i = F i + Gi

mi
, (9)

where F i denotes force acting on the ith particle when no
constraint exists, Gi is constraint force for the ith particle, i.e.,
the additional force required to meet the constraint conditions,
and mi is the mass of the ith particle. The equation to calculate
Gi is obtained by substituting Eq. (9) into Eq. (8), which is
given as

N∑
i=1

(
F i + Gi

mi

)
· bI,i({r}, {ṙ}, t ) + cI ({r}, {ṙ}, t ) = 0, (10)

However, another condition must be met to determine the
unique Gi. Gauss’s principle of least constraint [27] is a
well-known requirement for determining the unique Gi. Un-
der the constraints, this principle requires the minimization
of

∑N
i=1 Gi · Gi/2mi. Taking the constraints into account, an

objective function that should be minimized is written by

N∑
i=1

Gi · Gi

2mi
+

Nc∑
I=1

ζI

{
N∑

i=1

bI,i({r}, {ṙ}, t )

·
(

F i + Gi

mi

)
+ cI ({r}, {ṙ}, t )

}
, (11)

where ζI denotes a Lagrange multiplier associated with the Ith
constraint condition. When Eq. (11) is minimized, its deriva-
tive with respect to Gi becomes 0. Hence, Gi is computed as

Gi = −
Nc∑

I=1

ζI bI,i({r}, {ṙ}, t ). (12)

By substituting Eq. (12) into Eq. (10), the equation for ζI can
be written as

Bζ = w, (13)

where ζ = (ζ1, · · · , ζNc )T , B is the Nc × Nc matrix whose
(α, β ) entry is given by

Bαβ =
N∑

i=1

bα,i({r}, {ṙ}, t ) · bβ,i({r}, {ṙ}, t )

mi
, (14)

and w is the Nc-dimensional vector whose αth component wα

is given by

wα = cα ({r}, {ṙ}, t ) +
N∑

i=1

F i · bα,i({r}, {ṙ}, t )

mi
. (15)

The constraint force can be calculated by solving Eq. (13)
to obtain the Lagrange multipliers and substituting them into
Eq. (12). Notably, this formulation is easily extended to cases
where multiple physical quantities are constrained and/or ad-
ditional constraints are applied.

C. Application to the constraint of kinetic temperature at
virtual points

In this study, the kinetic energy is adopted as the physical
quantity controlled in simulations to produce a nonuniform
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temperature field. The kinetic energy constraint condition at
the Ith virtual point is written as

BI ({r}, {ṙ}, t ) =
N∑

j=1

WI j ({r})mj ṙ j · ṙ j − DkBTI (t ) = 0, (16)

where kB is Boltzmann’s constant and TI signifies the coarse-
grained kinetic temperature at the Ith virtual point. In this
work, instantaneous velocity values are used to evaluate the
coarse-grained kinetic energy. This is plausible when only
the coarse-graining in space is considered. If the coarse-
graining in time is also adopted, then the analysis using
MD simulations and the lattice Boltzmann method indicates
that the average velocity may be appropriate for obtaining
coarse-grained physical quantities [42]. We refer to the ki-
netic temperature as the temperature hereafter, though there
are multiple expressions for temperature [43], which often
provide different values at a nonequilibrium state [44,45]. For
the constraint written by Eq. (16), bI,i({r}, {ṙ}) is calculated as

bI,i({r}, {ṙ}) = 2WIi({r})mi ṙi. (17)

That is, bI,i is proportional to the ith particle velocity.
Consider the simplest case, in which the temperature is

given at only one virtual point in the system. Si1 = 1 for
all i in this case. According to Eq. (6), the weight functions
for all the particles are the same, i.e., W1i = 1/N for all i.
When W is substituted into Eq. (16), the constraint condi-
tion is

∑N
j=1 mj ṙ j · ṙ j − NDkBT1(t ) = 0. This equation is the

condition used in the Gaussian thermostat [28]. Therefore, the
Gaussian thermostat is the simplest case in our method.

When the kinetic energy is controlled at the multiple virtual
points in the system, W depends on the particle configuration.
For this case, cI ({r}, {ṙ}, t ) in Eq. (11) is given by

cI ({r}, {ṙ}, t ) =
N∑

i=1

(
N∑

j=1

∂WI j ({r})

∂ri
m j ṙ j · ṙ j

)
· ṙi

− DkB
∂TI (t )

∂t
. (18)

Since Eq. (6) gives W , the differentiation of WI j is written as

∂WI j

∂ri,α
=

NVP∑
K=1

∂[(STS )−1]IK

∂ri,α
(ST )K j

+
NVP∑
K=1

[(STS )−1]IK
∂ (ST )K j

∂ri,α
, (19)

where ri,α represents the αth component of ri. In Eq. (19), the
first term on the right-hand side is calculated using the relation
∂M−1/∂x = −M−1(∂M/∂x)M−1 for a regular matrix M
which is a function of x. After some algebra, we obtain

∂WI j

∂ri,α
=

NVP∑
K=1

[(STS )−1]IK

×
{
∂S jK

∂ri,α
−

NVP∑
P=1

N∑
q=1

(
∂SqK

∂ri,α
SqP +SqK

∂SqP

∂ri,α

)
WP j

}
.

(20)

FIG. 1. The flowchart of constraint force calculation.

cI ({r}, {ṙ}, t ) is obtained by substituting Eq. (20) into Eq. (18).
The constraint force can be evaluated using Eqs. (13)–(15)
with bI,i({r}, {ṙ}) and cI ({r}, {ṙ}, t ) obtained here.

D. Computational details

This subsection explains a tangible way to apply the
present method in an MD simulation code. Before starting
the simulation, we define the positions of the virtual points,
where the coarse-grained physical quantities are constrained.
Then, we must define a rule for interpolating the physical
quantities at any point in a simulation box from those at
the virtual points, i.e., the calculation method for the weight
in Eq. (1). The rule choice affects the nonequilibrium state
that is produced, as shown in Sec. III. The calculation of
the constraint force is conducted according to the flowchart
in Fig. 1. First, we construct the shape function matrix from
the particle configuration according to the interpolation rule
defined in advance. Then, the weight function matrix can be
calculated from the shape function matrix by Eq. (6) and
bI,i({r}, {ṙ}) is obtained by substituting the weight function
into Eq. (17). Moreover, the shape and the weight function
matrices and their derivatives are used to construct the linear
equations for the Lagrange multipliers given in Eq. (13). The
Lagrange multipliers obtained by solving the linear equations
are substituted into Eq. (12) to obtain the constraint force
acting on the particles.

In the MD simulations, the equations of motion are numer-
ically integrated to allow the system to evolve. The velocity
Verlet method [46] is frequently used for the numerical inte-
gration of the equations of motion. If the present method is
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applied with the velocity Verlet method, then the position and
the velocity of the ith particle are updated as

ri(t + δt ) = ri(t ) + δt ṙi(t ) + (δt )2

2mi
[F i(t ) + Gi(t )], (21)

ṙi(t + δt ) = ṙi(t ) + δt

2mi
[F i(t ) + Gi(t )

+ F i(t + δt ) + Gi(t + δt )], (22)

where δt is the time step used for integrating the equations
of motion. Since Gi(t + δt ) depends on the particle velocities
at t + δt as mentioned above, Eq. (22) possesses a self-
consistent form. Then, an iteration method must be applied to
solve the self-consistent equation for the velocities. However,
it is not necessary to apply the iteration method to update
the positions, indicating that the shape and weight function
matrices, as well as the interaction force, should be calculated
only once every MD step.

In nonequilibrium MD simulations, higher-order integra-
tion schemes without symplecticity are often adopted instead
of the velocity Verlet method. This is because the importance
of the symplecticity decreases for nonequilibrium situations,
and it is necessary to evaluate the positions and the velocities
with high accuracy. One of these schemes is the fourth-order
Runge-Kutta method. If the differential equation is given by
dz(t )/dt = f (z, t ), then z(t ) is updated in the fourth-order
Runge-Kutta method as

z(t + δt ) = z(t ) + δt
4∑

α=1

ξα fα

fα = f

(
z(t ) + δt

4∑
β=1

γαβ fβ, t + χαδt

)
, (23)

where ξα , χα , and γαβ are coefficients determined to attain
fourth-order accuracy. Note that these coefficients are not
uniquely determined because the conditions to attain fourth-
order accuracy are less than the number of the coefficients.
The most famous set of coefficients is given by

(ξ1, ξ2, ξ3, ξ4) = (
1
6 , 1

3 , 1
3 , 1

6

)
(χ1, χ2, χ3, χ4) = (0, 0.5, 0.5, 1)⎛

⎜⎝
γ11 γ12 γ13 γ14

γ21 γ22 γ23 γ24

γ31 γ32 γ33 γ34

γ41 γ42 γ43 γ44

⎞
⎟⎠ =

⎛
⎜⎝

0 0 0 0
0.5 0 0 0
0 0.5 0 0
0 0 1 0

⎞
⎟⎠. (24)

The following is the example of other sets of coefficients:

(ξ1, ξ2, ξ3, ξ4) = (
1
8 , 3

8 , 3
8 , 1

8

)
,

(χ1, χ2, χ3, χ4) = (
0, 1

3 , 2
3 , 1

)
,⎛

⎜⎝
γ11 γ12 γ13 γ14

γ21 γ22 γ23 γ24

γ31 γ32 γ33 γ34

γ41 γ42 γ43 γ44

⎞
⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0
1
3 0 0 0

− 1
3 1 0 0

1 −1 1 0

⎞
⎟⎟⎠. (25)

This set is often called the 3/8-rule. Since the fourth-order
Runge-Kutta method with the coefficients given in Eq. (24)
or Eq. (25) is an explicit scheme, any iteration scheme for
updating the particle positions and velocities is not required.

Instead, both the interatomic and constraint forces must be
calculated four times every MD step.

The difficulty in using Gauss’s principle of least constraint
is that a systematic drift of the constrained value is often
induced. In this principle, the constraint is executed using
the condition that only the time derivative of the constraint
condition equals 0. In MD simulations, its value usually de-
viates from 0 because the time step for integration is not
infinitesimal. If the deviation is completely random, then the
constraint value may fluctuate around the designated value.
However, the deviation often possesses a certain tendency.
Then, the drift of the constraint value occurs as a result of
the accumulation of this deviation. The drifts of the constraint
values are common in numerical simulations, and various
methods have been developed to eliminate them [47–49]. In
this work, to satisfy the constraint conditions of Eq. (16),
∂TI (t )/∂t in Eq. (18) is adaptively determined by

∂TI (t )

∂t
= 1

δt

[
TI (t + δt )

− 1

DkB

N∑
i=1

WIi({r(t )})mi ṙi(t ) · ṙi(t )

]
, (26)

where the first and the second terms in the square bracket
signify the target value of the temperature at t + δt and the
calculated coarse-grained temperature at t , respectively.

Deviations of the constraint values due to drift strongly
depend on the method of numerical integration of the equa-
tions of motion, as shown in Appendix B. The results in
Appendix B demonstrate that the fourth-order Runge-Kutta
method with the coefficients given by Eq. (25) is suitable
when the time step is sufficiently small. Therefore, we adopt
this scheme for numerical integration of the equations of mo-
tion performed in Sec. III. Although we apply the adaptive
corrections of the constraint values given by Eq. (26), the re-
sults in Appendix B imply that the influence of this correction
may be negligible for the small time step.

III. RESULTS

In this section, we test the present method for the
two-dimensional system. Particles are contained in a two-
dimensional box whose dimensions are Lx and Ly in the x and
the y directions, respectively. The periodic boundary condition
is applied in both directions. The number N of particles is
chosen so that an average number density is 0.75. Moreover,
the mass m of all the particles is the same. The particles
interact via the WCA potential VWCA, which is given by [36]

VWCA(ri j )

=
{

4ε[(σ/ri j )12 − (σ/ri j )6] + ε ri j ∈ [0, 21/6σ )
0 ri j ∈ [21/6σ,+∞)

,

(27)

where ri j is the distance between the ith and jth particles, and
the parameters ε and σ have dimensions of energy and length,
respectively. The WCA potential enables rapid computations
of particle interactions due to the short cutoff distance of this
potential. The WCA potential is not realistic in the sense
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FIG. 2. (a) Schematic of the virtual point configuration and the temperature field for NVP = 2. (b) Time evolution of T1 (thin lines) and T2

(thick lines). (c–e) The x coordinate dependence of (c) the shape functions, (d) the average weight functions, and (e) the temperature profile
(circles) at the nonequilibrium steady state produced using the shape function defined by Eq. (28). (f–h) The x coordinate dependence of (f) the
shape functions, (g) the average weight functions, and (h) the temperature profile (circles) at the nonequilibrium steady state produced using
the shape function defined by Eq. (29). Circles and squares plotted in panels (c), (d), (f), and (g) signify the values associated with I = 1 and
2, respectively. Diamonds plotted in panels (e) and (h) indicate the coarse-grained temperatures.

that this potential is purely repulsive. However, we describe
results obtained by adopting this potential here because our
main objective in this paper is to verify the validity of the
present method. Note that the present method can be applied
to systems interacting via other potentials. Some of the results
obtained by applying the present method to the system using
the Lennard-Jones potential are described in Appendix C.

When the length, mass, and the energy units are defined by
σ , m, and ε, respectively, the unit of time is given by σ

√
m/ε.

Subsequently, σ , m, and ε are set to 1. Furthermore, kB is set
to 1. The equations of motion are numerically solved by the
fourth-order Runge-Kutta method with the coefficients given
by Eq. (25), and the time step is set to 0.001.

In general, when the velocities are evolved using the
present method, the system’s total momentum is not con-
served. In the present simulations, we impose the additional
constraints to ensure that each component of the velocity of
the center of masses remains 0. As shown in Appendix D,
these constraints can also be treated using Gauss’s principle
of least constraint.

A. One-dimensional temperature nonuniformity

Here, we present the case where NVP virtual points for
constraining the coarse-grained temperature are set on the
line y = 0, and the shape function is independent of the
y coordinates of the particle positions. Then, the produced
nonequilibrium state is homogeneous in the y-direction, and
we study the dependence of physical quantities on the x coor-
dinate. We set (Lx, Ly) = (120, 60) and N = 5400.

First, we consider the case where NVP = 2 and the x co-
ordinates XI of the virtual points are 30 and 90 for I = 1

and 2, respectively. A schematic picture of the virtual point
configuration is exhibited in Fig. 2(a). The coarse-grained
temperature TI is controlled as shown in Fig. 2(b), and data for
evaluating quantities under a nonequilibrium steady state are
collected at t between 4000 and 5000. Furthermore, the error
bars displayed in the figures are variances computed from 200
different initial ensembles, and they are omitted if the errors
are less than the point size.

In this case, the simplest shape function for the ith particle
can be introduced using the piecewise linear function as

SiI =
⎧⎨
⎩

(xi − XI−1)/(XI − XI−1) xi ∈ [XI−1, XI )
(XI+1 − xi )/(XI+1 − XI ) xi ∈ [XI , XI+1)

0 otherwise
, (28)

where we assume XI±NVP = XI ± Lx. This shape function is
plotted in Fig. 2(c), and the average weight function at a
nonequilibrium steady state is plotted in Fig. 2(d). The weight
function is also piecewise linear, and it takes a negative value
at the region distant from the corresponding virtual point.
The temperature profile at the nonequilibrium steady state
produced using this shape function is shown in Fig. 2(e),
where the temperature smoothly varies with the x coordinate
even though Eq. (28) gives the linear interpolation of the
temperature. The smooth variation of the temperature implies
that the constraint using the shape function is not strong.
Although qualitative behavior of the temperature is reasonably
good, the local temperatures at X1 and X2 somewhat deviate
from T1 and T2, respectively. From the temperature control
perspective, it is desirable that the local temperature at XI

equals TI . Therefore, it is necessary to consider the method
for improvement.
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FIG. 3. (a) Schematic of the virtual point configuration and the temperature field for NVP = 4. (b) Time evolution of T1 (dotted lines),
T2 (thin lines), T3 (dashed lines), and T4 (thick lines). (c–e) The x coordinate dependence of (c) the shape functions, (d) the average weight
functions, and (e) the temperature profile (circles) at the nonequilibrium steady state produced using the shape function defined by Eq. (28).
(f–h) The x coordinate dependence of (f) the shape functions, (g) the average weight functions, and (h) the temperature profile (circles) at the
nonequilibrium steady state produced using the shape function defined by Eq. (29). Crosses, circles, triangles, and squares plotted in panels
(c), (d), (f), and (g) signify the values associated with I = 1, 2, 3, and 4, respectively. Damonds plotted in panels (e) and (h) represent the
coarse-grained temperatures.

One reason for this deviation is that the shape function is not smooth at XI as shown in Fig. 2(c). To overcome this drawback,
the following shape function is introduced:

SiI =

⎧⎪⎨
⎪⎩

0.5{1 + cos[(XI − xi )π/(XI − XI−1)]} xi ∈ [XI−1, XI )

0.5{1 − cos[(XI+1 − xi )π/(XI+1 − XI )]} xi ∈ [XI , XI+1)

0 otherwise

. (29)

This shape function is smooth at X1 and X2 as shown in
Fig. 2(f). In Fig. 2(g), we plot the average weight function
at a nonequilibrium steady state produced using the shape
function given by Eq. (29). The weight function is also smooth
at X1 and X2, and the amplitude of the weight function is
suppressed compared to that obtained from the piecewise
linear shape function. Moreover, the temperature profile at the
nonequilibrium steady state is plotted in Fig. 2(h). Figure 2(h)
clearly shows that the deviation of the temperatures at X1 and
X2 is successfully suppressed.

Second, we consider the case where NVP = 4 and X1, X2,
X3, and X4 are set to 0, 30, 60, and 90, respectively. A
schematic picture of the virtual point configuration is shown
in Fig. 3(a), and the coarse-grained temperatures at X1, X2, X3,
and X4 are controlled as shown in Fig. 3(b). The shape func-
tion, average weight function, and the temperature profile at
a nonequilibrium steady state produced by this condition with
the shape function given by Eq. (28) are shown in Figs. 3(c),
3(d), and 3(e), respectively. The temperatures at X1 and X3

are approximately equal to T1 and T3, respectively. However,
there are temperature deviations at X2 and X4, similar to the
case for NVP = 2. Figures 3(f), 3(g), and 3(h) exhibit the shape
function, average weight function, and the temperature profile

at a nonequilibrium steady state produced using the shape
function given by Eq. (29), respectively. Though the tempera-
ture deviations at X2 and X4 from the coarse-grained values
are reduced to some degree, there is still scope for further
improvement by introducing an appropriate shape function.

To construct the shape function, we assume that the
temperature profile is expressed using a piecewise cubic
function as

T (x) = TI +
3∑

ν=1

hI,ν (x − XI )ν x ∈ [XI , XI+1), (30)

where hI,ν is the coefficient determined from conditions im-
posed at each XI . Here we set C2-continuity at every XI . Then,
the coefficients in Eq. (30) are obtained by solving linear
equations, which can be written as

P
(
X1, · · · , XNVP

)
h = q, (31)

where h = (h1,1, h1,2, h1,3 · · · , hNVP,1, hNVP,2, hNVP,3)T , q =
(T2 − T1, T3 − T2, · · · , TNVP − TNVP−1, T1 − TNVP , 0, · · · , 0)T ,
and P (X1, · · · , XNVP ) is a 3NVP × 3NVP matrix whose entries
are functions of X1, · · · , XNVP . By solving Eq. (31), hI,ν is
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FIG. 4. The x coordinate dependence of (a) the shape functions, (b) the average weight functions, and (c) the temperature profile (circles)
at the nonequilibrium steady state produced using the shape function derived from the cubic interpolation. Crosses, circles, triangles, and
squares plotted in panels (a) and (b) signify the values associated with I = 1, 2, 3, and 4, respectively. Diamonds plotted in panel (c) indicate
the coarse-grained temperatures.

obtained as

hI,ν =
NVP∑
J=1

P−1
(3I+ν,J )(TJ+1 − TJ ), (32)

where TJ+NVP = TJ from the periodic boundary condition and
P−1

(α,β ) denotes the (α, β ) entry of P−1. Substituting Eq. (32)
into Eq. (30), it is easily shown that T (x) is written in the form

T (x) =
NVP∑
I=1

sI (x)TI ,

NVP∑
I=1

sI (x) = 1. (33)

As a result, the temperature profile defined by Eq. (30) can
be expressed in the form given by Eq. (1). We can use sI (x)
as the shape function if we assume the interpolation given by
Eq. (30).

When the shape function derived from Eq. (30) is applied
to the case shown in Fig. 3, the shape function can be plotted
as shown in Fig. 4(a). The shape function does not vanish even
in regions far from the virtual points. In addition, the shape
function can have a negative value. These properties do not
appear for the shape functions defined by Eqs. (28) and (29).
Figure 4(b) depicts the average weight function at a nonequi-
librium steady state produced by the shape function derived
from Eq. (30). The feature of the weight function is similar
to that obtained from the shape function given by Eq. (29).
The temperature profile at this nonequilibrium steady state
is shown in Fig. 4(c). The temperature deviation from the
coarse-grained value is sufficiently small for every XI . As a
result, we can conclude that the shape function defined here
outperforms those obtained by Eqs. (28) and (29).

Furthermore, we investigate the properties of the nonequi-
librium steady state produced by the shape function derived
from Eq. (30). First, we consider the distribution of the veloc-
ity ṙ = (vx, vy). The heat maps in Figs. 5(a) and 5(b) show
the dependence of vx and vy probability densities on the x
coordinate, respectively. There is no discernible difference
between the vx and vy distributions: In the colder region,
the peak at v = 0 is high and narrow, while in the hotter
region, it becomes low and broad. The distributions of vx at
X1 and X2 are plotted in Fig. 5(c) and those at X3 and X4 in
Fig. 5(d). The curves in Figs. 5(c) and 5(d) are obtained by

fitting Maxwell’s distribution function to the simulation data.
The optimal temperatures of Maxwell’s distribution function
at X1, X2, X3, and X4 obtained through this fitting procedure are
1.25126, 1.49556, 1.35115, and 1.00699, respectively. Fig-
ures 5(c) and 5(d) exhibit that Maxwell’s distribution function
can successfully represent the velocity distributions with tem-
peratures very close to the coarse-grained values. This result
implies that the produced nonequilibrium steady state may be
regarded as a local equilibrium state.

In Fig. 6(a), the density profile is shown, where density
decreases in the hotter region, while it increases in the colder
region. This result is intuitively plausible because the pressure

FIG. 5. The velocity distributions when the shape function de-
rived from the cubic interpolation is adopted. (a) The x coordinate
dependence of the distribution of vx . (b) The x coordinate depen-
dence of the distribution of vy. (c) The distribution of vx at X1

(crosses) and X2 (circles). (d) The distribution of vx at X3 (triangles)
and X4 (squares). In panels (c) and (d), the curves are Maxwell’s
distribution function with the temperature obtained via the fitting
procedure.
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FIG. 6. (a) The density profile and (b) the pressure in the x
direction at the nonequilibrium steady state produced using the shape
function derived from the cubic interpolation.

gradient in the x direction induced by the temperature nonuni-
formity is suppressed by the pressure gradient due to density.
As shown in Fig. 6(b), the local pressure is nearly constant
throughout the entire region. The system maintains the fluid
state over the entire region since the density is sufficiently less
than that necessary for freezing, even for the colder region
[50].

Moreover, the heat flux along the x-direction is depicted in
Fig. 7(a). The heat flux exhibits natural behavior, as shown in
Figs. 4(c) and 7(a), with heat flowing from the hotter region to
the colder region. The heat flux jQ is written as jQ = −λQ∇T ,
if the heat is conducted in the system according to Fourier’s
law, where λQ is the thermal conductivity. The relation be-
tween the temperature gradient and the heat flux is plotted
in Fig. 7(b). This figure clearly demonstrates that the heat
flux is strongly correlated with the temperature gradient. In
addition, this relationship can be well expressed by a linear
function, meaning that the thermal conductivity is nearly con-
stant across the entire region.

In the present method, all particles in the system are
subjected to the force to satisfy the constraint conditions.
The work done by this constraint force corresponds to the
heat received by the system from an external environment.
Figure 8(a) shows the x coordinate dependence on the heat
received from the external environment per unit time. The
system receives heat in the hotter region and releases it in the
colder region. However, the behavior of received heat differs
from that of the temperature profile. The received heat is large
at x ∈ [45, 60] though temperature drops in this region. A

FIG. 7. (a) The x coordinate dependence of the heat flux at
the nonequilibrium steady state produced using the shape function
derived from the cubic interpolation. (b) Relationship between the
temperature gradient and the heat flux.

FIG. 8. (a) The x coordinate dependence of the heat per unit time
received from the external environment as the work done by the
constraint force. (b) The x coordinate dependence of the local heat
loss due to the heat flux in the system (circles). The curve displays
the result plotted in panel (a).

constraint to maintain the coarse-grained temperature at x =
60 to 1.35 is applied in this simulation. If this constraint is not
present, then the temperature at x = 60 is roughly estimated
to be 1.25, i.e., the mean value of the coarse-grained temper-
atures at X2 and X4. As a result of the additional constraint,
the region at x ∈ [45, 60] becomes hotter than in the natural
state. Then, excess heat is delivered from the environment to
maintain this unnatural state, which is why the received heat
becomes so large at x ∈ [45, 60].

The heat delivered from the environment at a local region
is conducted to the neighbor region via the heat flux, and the
local heat loss due to the heat flux in the system per unit time
is shown in Fig. 8(b). We found that this quantity is equal to
the heat received from the environment. That is, the balanced
condition for heat is well satisfied locally, suggesting that the
system has reached a stationary state and that the data have
been collected for a sufficient time.

B. Two-dimensional temperature nonuniformity

Here, we look at the case where four virtual points in
the two-dimensional space are used to constrain the coarse-
grained temperature. The coordinate of the Ith virtual point is
denoted by RI = (XI ,YI ). Below, we set (Lx, Ly ) = (120, 120)
and (XI ,YI ) = (60, 0), (60, 60), (0, 60), and (0, 0) for I =
1, 2, 3, and 4, respectively. The system contains 10800 par-
ticles to satisfy the condition that the average number density
equals 0.75. The coarse-grained temperature control is con-
ducted according to the same procedure shown in Fig. 3(b),
and the data collection approach is the same as in the previous
case.

First, the region is divided into triangles, vertices of which
correspond to virtual points. The shape function is defined by
the coefficients used to express a point’s coordinate inside the
triangle as a linear combination of the triangle’s vertices. The
approach for dividing the region into triangles is not unique.
For example, the region can be decomposed, as illustrated
in Figs. 9(a) and 9(b). For the cases of Figs. 9(a) and 9(b),
the shape functions associated with I = 2 are presented in
Figs. 10(a) and 10(b), respectively. The average weight func-
tions associated with I = 2 at a nonequilibrium steady state
for the cases illustrated in Figs. 9(a) and 9(b) are shown
in Figs. 10(c) and 10(d), respectively. The decomposition
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FIG. 9. Examples of decomposition of the simulation cell into
triangles. Black, red, magenta, and blue solid circles represent R1,
R2, R3, and R4, respectively. Open circles symbolize periodic copies
of the virtual points.

method choice has a significant impact on the shape and
weight functions.

When decomposition is performed as illustrated in
Figs. 9(a) and 9(b), the temperature profiles at the nonequilib-
rium steady states are given in Figs. 11(a) and 11(b), respec-
tively. Decomposition method dependence is exhibited by the
temperature profiles as well as the shape and weight functions.
The temperature profile should be symmetric with respect to
lines x = 60 and y = 60, considering the virtual point config-
uration and periodic boundary condition. However, Fig. 11(a)
confirms that the temperature profile is not symmetric with
respect to line x = 60, whereas Fig. 11(b) shows that it is
symmetric. In particular, the maximum temperature deviates

from R2 for Fig. 11(a). For the cases shown in Figs. 11(a) and
11(b), the temperature behavior along the lines from R1 to R2,
R2 to R3, R3 to R4, and R4 to R1 is plotted in Figs. 11(c) and
11(d), respectively. Temperature deviations from the coarse-
grained values exist at R2 and R4 in both cases. Therefore,
it is inappropriate to use linear interpolation with triangle
decomposition to produce a nonequilibrium state.

Second, the region is divided into rectangles, the vertices of
which correspond to the virtual points. It is assumed that the
temperature inside a rectangle is expressed using interpolation
as follows:

T (r) =
κ∑

μ=0

κ∑
ν=0

hI,μν (x − XI )μ(y − YI )ν r ∈ �I , (34)

where �I represents a rectangular region defined by
[60, 120) × [0, 60), [60, 120) × [60, 120), [0, 60) ×
[60, 120), and [0, 60) × [0, 60) for I = 1, 2, 3 and 4,
respectively, and r = (x, y) denotes a coordinate of the
point inside �I . Note that TI = T (RI ) = hI,00. Now, consider
the cases where κ in Eq. (34) equals 1 and 3, i.e., bilinear and
bicubic interpolations. When using the bicubic interpolation,
the values of ∂T/∂x, ∂T/∂y, and ∂2T/∂x∂y at each vertex are
required to obtain the coefficients in Eq. (34). We set these
values to 0 in this case. The virtual point symmetry supports
this choice. The temperature in the entire region can be
written in the form given by Eq. (1) using this interpolation.
This is proven in the same way that the one-dimensional
cubic interpolation was demonstrated above.

FIG. 10. (a, b) The shape functions associated with I = 2 for cases depicted in (a) Fig. 9(a) and (b) Fig. 9(b). (c, d) The average weight
functions associated with I = 2 for cases depicted in (c) Fig. 9(a) and (d) Fig. 9(b).
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FIG. 11. (a, b) The temperature profile in the xy plane at the nonequilibrium steady state for cases depicted in (a) Fig. 9(a) and (b) Fig. 9(b).
(c, d) The temperature along the lines from R1 to R2, R2 to R3, R3 to R4, and R4 to R1, for cases depicted in (c) Fig. 9(a) and (d) Fig. 9(b).

FIG. 12. (a, b) The shape functions associated with I = 2 obtained using (a) bilinear and (b) bicubic interpolations. (c, d) The average
weight functions associated with I = 2 for (c) bilinear and (d) bicubic interpolations.
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FIG. 13. (a, b) The temperature profile in the xy plane at the nonequilibrium steady state for (a) bilinear and (b) bicubic interpolations. (c,
d) The temperature along lines from R1 to R2, R2 to R3, R3 to R4, and R4 to R1, for (c) bilinear and (d) bicubic interpolations.

Figures 12(a) and 12(b) display the shape functions asso-
ciated with I = 2 for the bilinear and bicubic interpolations,
respectively. In both cases, the shape function has a non-
negative value. Figures 12(c) and 12(d) show the average
weight functions associated with I = 2 at nonequilibrium
steady states produced by the bilinear and bicubic interpo-
lations, respectively. Both weight functions have a similar
shape, but the variation in the weight function for the bilinear
interpolation is greater than the bicubic interpolation. More-
over, Figs. 13(a) and 13(b) illustrate temperature profiles at
the nonequilibrium steady states produced using the bilinear
and bicubic interpolations, respectively. For the bilinear and
bicubic interpolations, the temperature profiles along the same
route used to obtain Fig. 11(c) are plotted in Figs. 13(c) and
13(d), respectively. There is still a temperature deviation from
the coarse-grained values at R2 and R4 in the case of the bi-
linear interpolation. These deviations are comparable to those
observed when using the linear interpolation with the triangle
decomposition. However, when the bicubic interpolation is
employed, these deviations are relatively small for all I . As
a result, it is concluded that the desired temperature profile
can be obtained using the shape function constructed by the
bicubic interpolation.

IV. CONCLUSION

In this paper, we proposed a method for producing a
nonequilibrium state by constraining coarse-grained physical

quantities at virtual points set in a system using Gauss’s prin-
ciple of least constraint. In this formulation, we define a rule
for interpolating the physical quantities at any point in the
system from those at the virtual points in advance. The shape
function matrix is constructed according to this rule when
computing the coarse-grained physical quantities. Then, the
weight function matrix, which enables the calculation of the
coarse-grained physical quantities at the virtual points from
the microscopic quantities, is obtained as a Moore-Penrose
pseudoinverse matrix of the shape function matrix. These
matrices are used to construct linear equations for the La-
grange multipliers of the constraints. The constraint forces are
calculated using the Lagrange multipliers, which are obtained
by solving these equations.

The proposed method was applied to constraints on the
coarse-grained kinetic energies at the virtual points. A nonuni-
form temperature field is produced by constraining them to
different values according to the virtual points. We discovered
that the temperature field at a nonequilibrium steady state is
dependent on the interpolation rule. When linear interpolation
is adopted for this rule, there is a nonnegligible difference be-
tween the coarse-grained and local temperatures. We showed
that this difference was considerably reduced by adopting
cubic interpolation to construct the shape function matrix.
The reduction in this difference facilitates obtaining desirable
nonequilibrium states.

In principle, the present method is applicable to other
physical quantities as well as the case where multiple
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physical quantities are controlled. As stated in the introduc-
tion, fluid flow is one essential application of nonequilibrium
MD. The present method is applicable by constraining the
coarse-grained momentum to produce particle flow. Further
applications of the present method will be reported in the
future. In addition, it is possible to simulate a more realistic
situation by incorporating an appropriate fluctuation in the
control of the coarse-grained physical quantities. Therefore, it
is worth addressing further improvement of the methodology,
including this issue.
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APPENDIX A: MOORE-PENROSE PSEUDOINVERSE
MATRIX FOR MINIMIZING THE MEAN SQUARED

ERROR OF ESTIMATED PHYSICAL QUANTITY

When the microscopic physical quantity a is given, the
coarse-grained physical quantity A is calculated by Eq. (3).
Then, the microscopic physical quantity can be expressed
using A through Eq. (2), and this is denoted by ã. Here, we
consider the mean squared error between a and ã, which is
given by

g(W ) = 1

N
(ã(W ) − a)T (ã(W ) − a)

= 1

N
(SWa − a)T (SWa − a). (A1)

The derivative of g(W ) with respect to Wαβ is calcu-
lated as

∂g(W )

∂Wαβ

= 1

N

[(
S ∂W

∂Wαβ

a
)T

(SWa − a)

+ (SWa − a)T

(
S ∂W

∂Wαβ

a
)]

= 1

N
[(aβSeα )T (SWa − a) + (SWa − a)T (aβSeα )]

= 1

N
aβ

{
eT
α (STSW − ST )a

+ [
eT
α (STSW − ST )a

]T }
= 2

N
aβeT

α (STSW − ST )a, (A2)

where aβ is the βth component of a, eα is the vector whose
ηth component is δαη. It is confirmed that Eq. (A2) is 0
irrespective of a when Eq. (6) is adopted as W .

Since g(W ) is a quadratic function of entries of W ,
Eq. (A1) can be written as

g(W ) = g(W∗) + 1

2

∑
α

∑
β

∑
μ

∑
ν

∂2g

∂Wαβ∂Wμν

× (Wαβ − W∗
αβ )(Wμν − W∗

μν ), (A3)

where W∗ represents the stationary point of g. The second
derivative of g(W ) is computed as

∂2g

∂Wαβ∂Wμν

= 2aβ

N
eT
αSTS

(
∂W

∂Wμν

)
a

= 2aβaν

N
(Seα )TSeμ. (A4)

Then, the second term on the right-hand side in Eq. (A3) is
calculated as

1

2

∑
α

∑
β

∑
μ

∑
ν

∂2g

∂Wαβ∂Wμν

(Wαβ − W∗
αβ )(Wμν − W∗

μν )

= 1

N

∑
α

∑
β

∑
μ

∑
ν

aβaν (Wαβ − W∗
αβ )(Wμν − W∗

μν )(Seα )TSeμ

= 1

N

[∑
α

∑
β

aβ (Wαβ − W∗
αβ )Seα

]T [∑
α

∑
β

aβ (Wαβ − W∗
αβ )Seα

]
. (A5)

Eq. (A5) shows that the second term on the right-hand side in
Eq. (A3) is not negative irrespective of a. Therefore, Eq. (6)
gives the minimum value of Eq. (A1).

APPENDIX B: SYSTEMATIC DRIFT OF TEMPERATURE

We consider the case where NVP = 2 and the shape func-
tion is given by Eq. (28). The initial configurations and

velocities are taken from the results at t = 4000 used to obtain
Figs. 2(c)–2(e). The simulation is conducted with maintain-
ing the coarse-grained temperature at its initial value, but
∂TI/∂t in Eq. (18) is set to 0 instead of using the adaptive
correction given by Eq. (26). Time evolutions of the coarse-
grained temperatures at X1 and X2 obtained by adopting the
velocity Verlet method are shown in Figs. 14(a) and 14(b),
respectively. Here, the fixed-point iteration method is applied
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FIG. 14. (a) Time evolution of the coarse-grained temperature at X1 by adopting the velocity Verlet method. δt = 0.001, 0.002, 0.004,
and 0.008 from the top. (b) Time evolution of the coarse-grained temperature at X2 by adopting the velocity Verlet method. δt = 0.001, 0.002,
0.004, and 0.008 from the bottom. (c) The coarse-grained temperatures of 200 samples at X1 for t = 1000. (d) The coarse-grained temperatures
of 200 samples at X2 for t = 1000. In panels (c) and (d), triangles, crosses, and circles are obtained by employing the velocity Verlet method,
the conventional fourth-order Runge-Kutta method, and the fourth-order Runge-Kutta method with the 3/8-rule, respectively.

to solve the self-consistent equation mentioned in Sec. II D
until the velocity variation of all particles is less than 10−12.
In this case, four iterations are typically required to satisfy
this condition. The coarse-grained temperatures at X1 and X2

deviate from their initial values, i.e., 1.5 at X1 and 1.0 at X2,
though it is sufficiently small for δt = 0.001. Additionally, the
deviation and fluctuation in the coarse-grained temperature
increase as δt increases.

The coarse-grained temperatures at X1 and X2 for t =
1000 obtained from 200 samples with δt = 0.001 are plot-
ted in Figs. 14(c) and 14(d), respectively. We compare three
schemes for numerical integration of the equations of motion:
The velocity Verlet method, the conventional fourth-order

Runge-Kutta method [the coefficients given by Eq. (24)],
and the fourth-order Runge-Kutta method with the 3/8-rule
[the coefficients given by Eq. (25)]. Figure 14 clearly shows
that the coarse-grained temperature systematically deviates
from the designated value when the velocity Verlet method
is adopted. However, the coarse-grained temperature ob-
tained from the fourth-order Runge-Kutta method fluctuates
around the designated value. By comparing two fourth-order
Runge-Kutta methods, it is found that the magnitudes of the
deviations for the fourth-order Runge-Kutta method with the
3/8-rule are less than those for the conventional Runge-Kutta
method, i.e., the former method gives more stable results.
That is, we can say that the fourth-order Runge-Kutta method

TABLE I. Deviation of the coarse-grained temperature at X1.

δt Velocity Verlet Runge-Kutta Runge-Kutta 3/8-rule

0.0005 −5.40 × 10−5 ± 7.44 × 10−6 5.97 × 10−8 ± 3.60 × 10−6 1.59 × 10−8 ± 2.26 × 10−6

0.001 −2.16 × 10−4 ± 2.02 × 10−5 −6.35 × 10−6 ± 7.76 × 10−6 1.92 × 10−6 ± 4.35 × 10−6

0.002 −8.61 × 10−4 ± 6.31 × 10−5 −2.03 × 10−4 ± 1.58 × 10−5 6.03 × 10−5 ± 9.06 × 10−6

0.004 −3.42 × 10−3 ± 2.26 × 10−4 −6.60 × 10−3 ± 3.13 × 10−5 1.36 × 10−3 ± 2.29 × 10−5

0.008 −1.36 × 10−2 ± 8.15 × 10−4 −1.82 × 10−1 ± 2.75 × 10−4 −3.80 × 10−2 ± 1.93 × 10−4
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TABLE II. Deviation of the coarse-grained temperature at X2.

δt Velocity Verlet Runge-Kutta Runge-Kutta (3/8-rule)

0.0005 5.26 × 10−5 ± 7.49 × 10−6 −3.25 × 10−7 ± 3.64 × 10−6 −1.74 × 10−8 ± 2.28 × 10−6

0.001 2.11 × 10−4 ± 1.80 × 10−5 −2.61 × 10−6 ± 7.82 × 10−6 −7.83 × 10−7 ± 4.39 × 10−6

0.002 8.41 × 10−4 ± 5.43 × 10−5 −9.40 × 10−5 ± 1.61 × 10−5 −1.57 × 10−5 ± 9.19 × 10−6

0.004 3.33 × 10−3 ± 1.89 × 10−4 −3.11 × 10−3 ± 3.04 × 10−5 −5.70 × 10−4 ± 2.11 × 10−5

0.008 1.31 × 10−2 ± 6.75 × 10−4 −8.85 × 10−2 ± 1.93 × 10−4 −3.36 × 10−2 ± 1.38 × 10−4

with the 3/8-rule is suitable for numerical integration of the
equations of motion with δt = 0.001.

Tables I and II establish that the coarse-grained tempera-
ture’s deviation depends on the time step and the numerical
integration method. The fourth-order Runge-Kutta method
with the 3/8-rule is superior to the velocity Verlet method for
δt � 0.004. Although the deviation produced by the velocity
Verlet method is smaller than that by the fourth-order Runge-
Kutta method for δt = 0.008, it is not appropriate to apply
the present method without a correction for this time step.
The numerical integration scheme characteristics also appear
through the deviation tendencies when the time step increases.
For the velocity Verlet method, the coarse-grained tempera-
ture gradually approaches with the increase in the time step.

However, both coarse-grained temperatures decrease for the
conventional fourth-order Runge-Kutta method.

APPENDIX C: NONEQUILIBRIUM STEADY STATE OF
LENNARD-JONES SYSTEM

We consider the system whose particles interact via
the Lennard-Jones (LJ) potential VLJ(ri j ) = 4ε[(σ/ri j )12 −
(σ/ri j )6]. The cutoff distance of the potential is set to 3σ .
We apply the present method with conditions used to obtain
the results displayed in Fig. 4 to this system. Then, the x
coordinate dependence of physical quantities can be obtained
as shown in Fig. 15. The temperature profile for the LJ system

FIG. 15. The x coordinate dependence of the physical quantities for the Lennard-Jones system under the nonequilibrium steady state.
(a) Temperature, (b) density, (c) heat flux, and (d) heat received from the external environment. Curves plotted in figures are results for the
WCA system.
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shown in Fig. 15(a) is not distinguishable from that for the
WCA system. That is, the present method is successfully
applied to the LJ system. The difference between the LJ and
WCA systems can noticeably be seen in the density pro-
file, as shown in Fig. 15(b). The density variation becomes
large for the LJ system, and the pressure of the LJ system is
about 3.57, which is lower than the WCA system due to the
attractive interaction. The properties related to the heat are ex-
hibited in Figs. 15(c) and 15(d). Figure 15(c) presents the heat
flux in the system, while Fig. 15(d) shows the heat received
from the external environment. Evidently, the difference be-
tween the LJ and WCA systems is sufficiently small for both
quantities because the heat is mainly conducted via particle
collisions in high-density fluid. Thus, the repulsive component
of the potential plays a crucial role in thermal conductivity.
Notably, Ishii et al. demonstrated that the thermal conduc-
tivity obtained by the LJ potential for the three-dimensional
system is approximately equal to the WCA potential when
the conditions are the same, except the cutoff distance
[51].

APPENDIX D: APPLICATION OF GAUSS’S PRINCIPLE OF
LEAST CONSTRAINT TO THE VELOCITY OF

THE CENTER OF MASSES

The constraint condition for the velocity of the center of
masses of the entire system is written as

Bα =
N∑

i=1

miṙi,α − Vα (t ) = 0, (D1)

where Vα (t ) is the value of the αth component of the velocity
of the center of masses at time t . By differentiating Eq. (D1)
with respect to time, we obtain

N∑
i=1

mir̈i,α − dVα

dt
= 0. (D2)

Since Eq. (D2) has the same form as Eq. (8), i.e., bα,i = mieα

and cα = −dVα/dt , the constraint of the velocity of the center
of masses of the entire system can be combined with other
constraints.
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