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Energy transfer in reconnection and turbulence
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Reconnection and turbulence are two of the most commonly observed dynamical processes in plasmas, but
their relationship is still not fully understood. Using 2.5D kinetic particle-in-cell simulations of both strong
turbulence and reconnection, we compare the cross-scale transfer of energy in the two systems by analyzing
the generalization of the von Kármán Howarth equations for Hall magnetohydrodynamics, a formulation that
subsumes the third-order law for steady energy transfer rates. Even though the large scale features are quite
different, the finding is that the decomposition of the energy transfer is structurally very similar in the two
cases. In the reconnection case, the time evolution of the energy transfer also exhibits a correlation with the
reconnection rate. These results provide explicit evidence that reconnection dynamics fundamentally involves
turbulence-like energy transfer.
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I. INTRODUCTION

Many naturally occurring and manmade plasmas are ob-
served to be in a turbulent state [1–6] driven at large
scales, either externally or by an energy reservoir. Nonlin-
ear couplings subsequently transfer energy from large scales
to smaller kinetic scales. Magnetic reconnection [7,8], fre-
quently observed in these systems, is itself a nonlinear
process, though largely studied independently of turbulence.
In many cases, turbulence is either a consequence or driver
of the reconnection process [7,9–11]. In recent literature,
one finds numerous studies of the properties of reconnec-
tion that emerge in a turbulent environment in both three
dimensions [12,13] and two dimensions [14]. Such studies
often focus on spectra, dimensionality, and reconnection rates
[15,16] or on more subtle issues such as violations of flux
freezing [17,18] in turbulence with implications for recon-
nection. Similar characterizations apply to studies of turbu-
lence properties, typically spectral and correlation properties
[19,20] that emerge in standard reconnection. Reconnection
is also studied as a process subsidiary to turbulence, either
by diagnosing reconnection occurring in turbulence [7,11,21–
23] or studying how reconnection modifies small scale en-
ergy transfer [24–31]. Turbulence also emerges in association
with reconnection-related instabilities [20,24,32–35]. To our
knowledge previous works have not directly examined energy
transfer in a standard reconnection problem, nor have they
compared such transfer to that of homogeneous turbulence.

*subash@udel.edu

Recent kinetic particle-in-cell (PIC) simulations show
that laminar reconnection in two and three dimensions (2D
and 3D) exhibits a Kolmogorov −5/3 magnetic spectrum
[19,20,33,36], raising intriguing questions: “How do the
properties of energy transfer in reconnection and turbulence
compare? Does the similarity of their spectra indicate a
similarity of spectral transfer in the two cases?” Here we
examine the properties of energy transfer in reconnection and
turbulence by a parallel analysis of energy transfer budgets
employing the von Kármán Howarth equations generalized to
Hall-magnetohydrodynamics (MHD) [37,38] and written in
terms of structure functions. This formulation encompasses
the famous MHD cascade law [37], including the Hall effect
[38–40]. The analysis employs 2.5D kinetic PIC simulations
of both strong turbulence and laminar reconnection, each ini-
tialized in a regime expected to be close to incompressibility.
Details of energy transfer in both simulations are found to be
structurally very similar, with the majority of the energy trans-
fer occurring through incompressive channels. This provides
evidence that reconnection dynamics involves energy transfer
akin to standard turbulence. Consistent with this, we find that
the time evolution of the energy transfer correlates with the
reconnection rate. Since cross-scale coupling is arguably the
defining characteristic of turbulence [41], we find an even
greater similarity of reconnection and turbulence than has
been previously reported.

II. SIMULATIONS

To study the energy transfer in reconnection, we use
two fully kinetic 2.5D PIC simulations—a strong turbulence
case (simulation A) and a laminar reconnection case (sim-
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TABLE I. Simulation details: size of the simulation (Lbox ), grid spacing (�x), guide field (Bg), temperature (T ), mass (m), ions/electrons
(i/e), the root mean square value (rms) δbrms =

√
〈|b − 〈b〉r |2〉r , and the fluctuation (turbulence) amplitude δZ =

√
(δbrms)2 + (δurms)2.

Run Type Lbox[di] Grids �x[di] Bg Ti/Te mi/me nb δbrms δurms δZ

A Turbulence 149.6 40962 0.036 1 0.3/0.3 25 1 1/
√

10 1/
√

10 1/
√

5
B Reconnection 91.59 40962 0.022 0 0.05/0.01 25 1 1/

√
5 0 1/

√
5

ulation B); see Table I. Time is normalized to the inverse
ion cyclotron frequency [wci = (eB0/mic)], where B0 is the
normalizing magnetic field. Length is normalized to the ion
inertial length di =

√
c2mi/(4πn0e2), where n0 is the nor-

malizing number density. Speed is normalized to the ion
Alfvén speed (vA = di ωci) and temperature to T0 = miv

2
A.

Following standard turbulence notation [2,42,43], the mag-
netic field (b ≡ B/

√
4πmin0) and current (j ≡ J/ne) are

normalized to vA.
The undriven turbulence simulation is initialized with

Fourier modes k ∈ [2, 4] × 2π
149.6 with average wave number

kav ≈ 3 2π
149.6 = 0.126; see Ref. [44]. The reconnection simu-

lation is initialized with a double Harris current sheet (with
kav ≈ 2π/91.59 = 0.068). Reconnection is triggered by a
small magnetic perturbation; see Ref. [36]. To facilitate com-
parison, simulation B normalization values are modified from
[36] as B0 → 1√

5
B0 and n0 → 5 n0. With this modification

simulations A and B have the same background density nb

and the same initial fluctuation amplitude δZ , as defined in
Table I.

Figure 1 provides an overview. In the turbulence simulation
A, an initial Alfvénic exchange of energy occurs between the
ion flow and magnetic field. The fluctuation energy (Ei f + EB)
decreases monotonically as electrons and ions are heated [44].
For simulation B, EB decreases, as reconnection transfers most
of the energy to thermal energy and a small fraction to Ei f .
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FIG. 1. Left panel: Evolution of the mean square current (solid),
change in magnetic (δEB) (dashed), and ion-flow (δEi f ) energy per
unit mass (dash-dot) for simulations A (top) and B (bottom); the
vertical line denotes (sim A) maximum rms J at tωci = 163 or
(sim B) late quasisteady reconnection at tωci = 1045.6. Right panel:
Jz of simulation A (top) and B (bottom).

The mean square current peaks during the quasisteady phase
of reconnection and falls as δEB decreases. The energy decay
rate becomes significant after reconnection onset and peaks
during the late quasisteady phase (twci = 1045.6). The ener-
getics and the currents have a very different evolution in the
two cases. On this basis one might expect that reconnection
and turbulence would both exhibit dissimilar inertial ranges
when energy transfer is quantified.

III. ENERGY TRANSFER RATE

To quantify the energy transfer rates in the simulation, we
employ a form of the Hall-MHD von Kármán Howarth equa-
tion, which for steady-state high Reynolds numbers reduces
to the third-order cascade law [37]. Formally appropriate
for incompressible MHD, this representation is expected to
be a good approximation in weakly compressive MHD [45]
and kinetic plasma [46] turbulence, understanding that at
subproton scales, non-MHD effects dominate. In isotropic
hydrodynamic turbulence, the third-order law gives an ex-
act relationship between energy decay rate and a third-order
structure function [47]. Hellinger et al. [38] examined the
decomposition of the MHD von Kármán Howarth equations
[37] for Hall-MHD, which will be referred as the Hellinger
formulation.

Following standard theory [48], the von Kármán Howarth
equations may be rewritten in terms of increments δu(r, l ) ≡
u(r+ l ) − u(r) and δb(r, l ) ≡ b(r+ l ) − b(r), where r is a
vector in real space and l is the spatial lag, corresponding
roughly to the inverse spectral wave number k/k2. Second-
order structure functions are mean square values of these
increments, e.g., Su(l ) = 〈|δu(r, l )|2〉r , where 〈. . . 〉r is a spa-
tial average over r. Typically, structure functions are averaged
over lag directions, giving Su(l ) ≡ 〈 〈|δu(r, l )|2〉r 〉�l , where
〈. . . 〉�l denotes averaging over solid angle [49]. Physically,
1
4 S(l ) = 1

4 S(l ) = 1
4 (Su(l ) + Sb(l )) is the energy (flow +

magnetic) inside a lag space sphere of radius l = |l |.
To study the energy transfer we employ the Hellinger for-

mulation, hereafter called simply the “third-order law” for
convenience [38,50,51]:

1

4

∂S(l )

∂t
+ 1

4
∇l · Y(l ) + 1

8
∇l · H(l ) = 1

2
D(l ) − ε, (1)

where ∇l is the lag space gradient. The MHD transfer
term [37] Y(l ) = 〈δu|δu|2 + δu|δb|2 − 2δb(δu · δb)〉r and
the Hall transfer term [38] H(l ) = 〈2δb(δb · δj) − δj|δb|2〉r

are mixed third-order structure functions generalizing the
hydrodynamic Yaglom flux [52]. Similarly, ε is the total dis-
sipation rate and D(l ) is a lag-dependent dissipation term
that vanishes (by definition) outside the dissipation range.
These are both normalized to ωciv

2
A. In collisionless plasma

simulations [46], the exact functional of these terms is not
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FIG. 2. Third-order law analysis for (left) turbulence simulation when rms current is peaked (tωci = 163 ), (middle) reconnection simula-
tion during early quasisteady phase (tωci = 824.3 ), and (right) reconnection simulation during mid quasisteady phase (tωci = 1045.6 ). Top:
Terms from the left hand side of Eq. (2) and their sum, normalized to ε∗. Bottom: Total second-order structure function S(l ) with a dashed line
of slope 2/3 drawn for reference. Approximate regions of the energy-containing range, inertial range, and kinetic/Hall range are separated by
light gray vertical rectangles. When a given term is negative, the magnitude of the term is shown as a dotted curve with the same color.

known. In a system with kinematic viscosity ν and resistivity
η, dissipation is explicitly ε = ν〈(∇u : ∇u)〉r + η〈∇b : ∇b〉r

and D(l ) = ν∇2
l Su(l ) + η∇2

l Sb(l ).
Physically, the second and third terms in Eq. (1) are the

energy transfer rates through the surface of a lag sphere of
radius l due to the MHD and Hall nonlinearities, respectively;
positive (negative) is out of (into) the spherical surface.

In adopting Eq. (1) as the basis for our comparison
of turbulence and reconnection, we choose to focus on
incompressive energy transfer, which underlies the most basic
Sweet Parker reconnection analysis while providing the base-
line theory of turbulence as applied to systems such as the
solar wind. With these approximations, Eq. (1) is a complete
description of energy transfer and does not involve the issue
of locality or nonlocality (e.g., [53]). We note that recent
progress has developed Yaglom-like relations for compress-
ible (Hall) MHD [39,40,54,55]. However, we opt to work
with the incompressible form represented by Eq. (1), a choice
partially justified when we find below that incompressive
channels account for the majority of energy transfer. Further
study, including the compressive transfer channels, is deferred
to a later study.

To study the energy transfer, we compare the left-hand-
side terms in Eq. (1) calculated from the simulations. For
each time, the second- and third-order structure functions are
calculated as a function of lag vector (lx, ly) at each spatial
grid point [49]. The divergence is computed in lag space,
and one-dimensional (1D) forms are obtained using the angle-
averaging technique [56], yielding omnidirectional estimates
S(l ), ∇l · Y(l ), and ∇l · H(l ). Therefore the 1D form of the
Hellinger formulation can be written as

1

4

∂S(l )

∂t
+ 1

4
∇l · Y(l ) + 1

8
∇l · H(l ) = 1

2
D(l ) − ε. (2)

We emphasize that each term in Eq. (2) is averaged over direc-
tion in lag space and is therefore exact even for nonisotropic

systems [56]. Furthermore, because of the periodicity of the
simulations, each term in Eq. (2) is independent of position,
i.e., the simulations are effectively homogeneous.

For both simulations, the terms of Eq. (2) are time-
averaged over an interval (�tωci) centered on the vertical red
lines in Fig. 1 (sim A: �tωci ≈ 20; sim B: �tωci = 22.4). The
average rate of change of S(l ) over this interval is ∂S(l )/∂t .
The average rate of change of EB + Ei f from Fig. 1 gives an
estimate ε∗ = ∂ (EB + Ei f )/∂t for the decay rate. ∇l · Y(l ),
and ∇l · H(l ) are averaged over 5 (sim A) and 3 (sim B) evenly
spaced times in this interval.

The results are shown in Fig. 2. For the turbulence run (left
panels), the energy-containing range and the inertial range
are dominated by ∂S(l )/∂t and ∇l · Y(l ), respectively. In the
“kinetic/Hall” range the Hall term ∇l · H(l ) is � the other
terms. Notably, at large length scales (l � di), the sum of
the terms are constant and approximately equal to ε∗. Con-
stancy of the energy transfer rate suggests the existence of
quasisteady energy cascade [57]. S(l ) in Fig. 2 exhibits an
approximate slope of 2/3 for the range of lags where the sum
of the terms is constant. The results are consistent with similar
analysis in hybrid simulations [38]. At late times when the
mean square current decreases (tωci � 250 ), all the contribu-
tions diminish (not shown). However, the region of dominance
of each term persists, resulting in a roughly constant MHD
scale transfer. Similar to the abbreviated “inertial range” seen
in Fig. 2, it is not unusual for simulations evaluating the
Yaglom law to find a very limited range of applicability, due
to limited scale separation; see, e.g, Refs. [51,56]).

The reconnection simulation (Fig. 2, middle and right)
exhibits results similar to the turbulence simulation. In the
energy-containing range ∂S(l )/∂t dominates and is roughly
constant, while the MHD energy transfer term ∇l · Y(l ) dom-
inates and flattens in the inertial range; ∇l · H(l ) becomes
significant approaching the kinetic range. Reconnection dis-
plays a wide inertial range during the early quasisteady phase
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FIG. 3. Simulation B (reconnection): Time evolution of (top)
∇l · Y(l ) and (middle) ∂S(l )/∂t term, normalized to εav, the aver-
age rate of change of EB plus Ei f during the quasisteady period of
reconnection, denoted by red triangles. (Bottom) Time variation of
reconnection rate (dashed) and −1

4εav
(∇l · Y(l ) + ∂S(l )/∂t ) at l ≈ 9 di

(solid), with the energy density EB(k) at k di ∼ 1 (dash-dot). EB(k)
is plotted with respect to the axis on the left and normalized to
(EB(k))max. The black star denotes d�/dt at tωci = 1045.6.

tωci = 824.3 (middle panel in Fig. 2), where the Yaglom
flux term [∇l · Y(l )] dominates most of the energy transfer.
However, as the system reaches the mid-quasi-steady phase
tωci = 1045.6 (right panel in Fig. 2), the inertial range nar-
rows and ∂S(l )/∂t takes over. A feature different from the
turbulence case is that the sum of terms exhibits two plateaus,
with the energy-containing range sum larger than the inertial
range value. Also, the structure function S(l ) does not show a
clear 2/3 slope, although it does exhibit a Kolmogorov-like
−5/3 slope in the magnetic spectrum [36]. Note that it
was previously shown [33,36] that the diffusion-exhaust-
separatrix region (DES) and the island region make compa-
rable contributions to S(l ).

To strengthen the characterization of a constant energy
transfer rate in reconnection, in Fig. 3 we trace the time evolu-
tion of ∇l · Y(l ) and ∂S(l )/∂t . As reconnection initiates, the
MHD transfer term develops a full inertial range for l > di.

The growth of ∂S(l )/∂t lags behind the MHD transfer term
and becomes significant only after the inertial range is fully
populated; the time delay between the onset of these two terms
is comparable to the delay (Fig. 3, bottom) between the onset
of reconnection rate d�/dt (red), where � is the magnetic
flux, and the increase in spectral energy density EB(k) at
kdi ∼ 1 (dash-dot). The MHD transfer term continues to dom-

TABLE II. Dissipation and energy transfer rate comparisons of
simulations. Left to right: correlation scale λ; average dissipation rate
ε∗ during �tωci examined in Fig. 2; von Kármán energy dissipation
rate using initial δZ; von Kármán constant Cvk [defined through
d (δZ2)/dt = −Cvk δZ3/λ ≈ 2 ε∗].

Run λ = 1
kav

[di] ε∗[
v3

A
di

] δZ3

λ
[

v3
A

di
] Cvk = 2 ε∗

δZ3
λ

A 8 1.7 × 10−4 0.011 0.031
B 14.7 6.4 × 10−5 0.006 0.021

inate the quasisteady phase until about tωci ≈ 950, when it
changes sign.

In Fig. 3 (top) for large lags, the MHD transfer term
oscillates in sign for a substantial period after reconnection
onset. However, these reversals are offset by an anticorrelated
oscillation of the ∂S(l )/∂t term (middle panel). These oscil-
lations are certainly related to the well-known sign-indefinite
character of insufficiently averaged third-order correlators, as
they can be removed by additional time averaging (as in [56]).
But there is also a tendency for 2.5D systems to inherit the
large scale inverse transfer that occurs in a pure 2D MHD state
[9,58–60]. Large scale Alfvénic exchange between flow and
magnetic energy, a familiar feature of MHD turbulence sim-
ulation, corresponds to the observed oscillation period, which
is roughly 90 tωci, about three times the global nonlinear time
of the system τnl = Lbox/(2π δZ ) ≈ 33 ω−1

ci .
Following the quasisteady reconnection period (t ωci �

1170) in Fig. 3, the MHD scale energy transfer rate decreases
as suggested by the reduction in both ∇l · Y(l ) and ∂S/∂t , as
well as the decline of their sum for l ≈ 9 di. The correlation of
MHD energy transfer (solid) and reconnection rate (dashed),
evidenced by their near simultaneous decrease, indicates a
strong connection between the two processes.

IV. CONCLUSIONS

Using kinetic PIC simulations, we have cross-compared
the behavior of the third-order law in strong turbulence and
laminar reconnection, which allows a direct measure of the
energy transfer rate. We find a significant level of structural
similarities in the lag dependence of the various terms of
Eq. (2). Notably, both simulations exhibit an inertial range
signified by a relatively constant and dominant MHD energy
transfer term, a signature of a turbulent system. Both systems
have an energy-containing range wherein ∂S(l )/∂t dominates
and a kinetic range where the Hall term becomes important.
These similarities provide evidence that the dynamics of re-
connection proceeds through energy transfer similar to that
seen in turbulence. Supporting this idea is the correlation
between the reconnection rate, the sum of the MHD terms in
Eq. (2), and the spectral energy density at kdi ∼ 1 observed in
Fig. 3 (bottom).

A complimentary analysis of the reconnection and turbu-
lence simulations is an estimate of the dissipation rate using
the energy δZ2 at the correlation scale λ; this estimate is
based on the similarity decay theory of von Kármán and
Howarth [61]. Table II gives the results of this analysis for
the simulations and compares them to the dissipation rate
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ε∗ and the MHD energy transfer rate ε. The von Kármán
constant Cvk is the ratio of the actual energy dissipation to
the estimated rate. While the turbulence simulation exhibits a
Cvk similar to previous PIC turbulence simulations [62], the
reconnection Cvk is about 2/3 of the turbulence value. This
reduction is likely associated with the reconnection initial
condition, having an energy-containing scale that is nearly at
the maximum size permitted by the periodic box. This locks
a fraction of the mean square magnetic potential in the largest
scales, reducing the energy available to drive a direct transfer.
This is the effect responsible for selective decay in 2D MHD
[58] and is analogous to Taylor relaxation in 3D MHD [63].
This weakens the transfer of energy in reconnection, but only
fractionally.

We should also mention in passing that the energy transfer
terms that we do include sum rather accurately to the total
energy decay, scale by scale, supporting findings that MHD
transfer is mainly local [53,64], and with the majority of the
transfer through incompressible channels (see Fig. 2). We did
find some suggestion of transient back-transfer (not shown
here) to long wavelengths, which is a basic property of 2D
MHD [58,65], but we see no evidence for nonlocal pumping
of small scales by large scales, as suggested by [23].

On balance, the detailed study of reconnection from the
perspective of energy transfer theory that we have presented
here leads to what is perhaps a remarkable conclusion—that
although one might not suspect that reconnection follows

many of the assumptions of energy transfer theories such as
the von Kármán Howarth equations for incompressible MHD,
it exhibits energy transfer similar to that of standard turbu-
lence. This does not diminish the importance of the special
features of reconnection and especially its ramifications for
kinetic physics. However, understanding that turbulence and
reconnection are very closely related can only lead to a better
understanding of each of these fundamental processes.

ACKNOWLEDGMENTS

We acknowledge the high-performance computing support
from Cheyenne [66] provided by NCAR’s Computational
and Information Systems Laboratory, sponsored by the
NSF. This research also used NERSC resources, a U.S.
DOE Office of Science User Facility operated under Con-
tract No. DE-AC02-05CH11231. S.A., M.A.S., and S.F.
acknowledge support from NASA Grants No. NNX17AI25G,
No. 80NSSC19K1470, No. 80NSSC20K0198, and NSF
Grant No. AGS-2024198. W.H.M. is supported in part by
a MMS Theory and Modeling team grant under NASA
Grant No. NNX14AC39, and by NASA Heliophysics SRT
Grants No. NNX17AB79G, No. NNX17AI25G, and No.
80NSSC18K1648. J.E.S. is supported by Royal Society Uni-
versity Research Fellowship No. URF\R1\201286. J.P.E. is
supported by UKRI/STFC Grant No. ST/S000364/1.

[1] P. J. Coleman Jr., Astrophys. J. 153, 371 (1968).
[2] W. H. Matthaeus and M. L. Goldstein, J. Geophys. Res.: Space

Phys. 87, 6011 (1982).
[3] R. Bruno and V. Carbone, Living Rev. Sol. Phys. 2, 4 (2005).
[4] N. Banerjee and P. Sharma, Mon. Not. R. Astron. Soc. 443, 687

(2014).
[5] L. Z. Hadid, F. Sahraoui, S. Galtier, and S. Y. Huang, Phys. Rev.

Lett. 120, 055102 (2018).
[6] X. Shi, D. Nagai, H. Aung, and A. Wetzel, Mon. Not. R. Astron.

Soc. 495, 784 (2020).
[7] S. Servidio, W. H. Matthaeus, M. A. Shay, P. A. Cassak, and P.

Dmitruk, Phys. Rev. Lett. 102, 115003 (2009).
[8] M. Yamada, R. Kulsrud, and H. Ji, Rev. Mod. Phys. 82, 603

(2010).
[9] W. Matthaeus and S. L. Lamkin, Phys. Fluids 29, 2513 (1986).

[10] H. Strauss, Astrophys. J. 326, 412 (1988).
[11] S. Jabbari, A. Brandenburg, D. Mitra, N. Kleeorin, and I.

Rogachevskii, Mon. Not. R. Astron. Soc. 459, 4046 (2016).
[12] A. Lazarian, G. L. Eyink, A. Jafari, G. Kowal, H. Li, S. Xu, and

E. T. Vishniac, Phys. Plasmas 27, 012305 (2020).
[13] M. Zhou, N. F. Loureiro, and D. A. Uzdensky, J. Plasma Phys.

86 (2020).
[14] N. Loureiro, D. Uzdensky, A. Schekochihin, S. Cowley, and T.

Yousef, Mon. Not. R. Astron. Soc. Lett. 399, L146 (2009).
[15] A. Beresnyak, Astrophys. J. 834, 47 (2016).
[16] A. Beresnyak, Living Rev. Comput. Astrophys. 5, 2 (2019).
[17] G. Eyink, E. Vishniac, C. Lalescu, H. Aluie, K. Kanov,

K. Bürger, R. Burns, C. Meneveau, and A. Szalay, Nature
(London) 497, 466 (2013).

[18] C. C. Lalescu, Y.-K. Shi, G. L. Eyink, T. D. Drivas, E. T.
Vishniac, and A. Lazarian, Phys. Rev. Lett. 115, 025001
(2015).

[19] F. Pucci, S. Servidio, L. Sorriso-Valvo, V. Olshevsky, W.
Matthaeus, F. Malara, M. Goldman, D. Newman, and G.
Lapenta, Astrophys. J. 841, 60 (2017).

[20] P. A. Muñoz and J. Büchner, Phys. Rev. E 98, 043205 (2018).
[21] M. Wan, S. Oughton, S. Servidio, and W. Matthaeus, Phys.

Plasmas 17, 082308 (2010).
[22] C. C. Haggerty, T. N. Parashar, W. H. Matthaeus, M. A. Shay,

Y. Yang, M. Wan, P. Wu, and S. Servidio, Phys. Plasmas 24,
102308 (2017).

[23] E. Papini, L. Franci, S. Landi, A. Verdini, L. Matteini, and P.
Hellinger, Astrophys. J. 870, 52 (2019).

[24] J. P. Eastwood, T. D. Phan, S. D. Bale, and A. Tjulin, Phys. Rev.
Lett. 102, 035001 (2009).

[25] N. F. Loureiro and S. Boldyrev, Phys. Rev. Lett. 118, 245101
(2017).

[26] S. Boldyrev and N. F. Loureiro, Astrophys. J. 844, 125
(2017).

[27] L. Franci, S. S. Cerri, F. Califano, S. Landi, E. Papini, A.
Verdini, L. Matteini, F. Jenko, and P. Hellinger, Astrophys. J.
850, L16 (2017).

[28] G. Kowal, D. A. Falceta-Gonçalves, A. Lazarian, and E. T.
Vishniac, Astrophys. J. 838, 91 (2017).

[29] A. Mallet, A. A. Schekochihin, and B. D. Chandran, J. Plasma
Phys. 83, 905830609 (2017).

[30] D. Vech, A. Mallet, K. G. Klein, and J. C. Kasper, Astrophys. J.
Lett. 855, L27 (2018).

065206-5

https://doi.org/10.1086/149674
https://doi.org/10.1029/JA087iA08p06011
https://doi.org/10.12942/lrsp-2005-4
https://doi.org/10.1093/mnras/stu1179
https://doi.org/10.1103/PhysRevLett.120.055102
https://doi.org/10.1093/mnras/staa1221
https://doi.org/10.1103/PhysRevLett.102.115003
https://doi.org/10.1103/RevModPhys.82.603
https://doi.org/10.1063/1.866004
https://doi.org/10.1086/166104
https://doi.org/10.1093/mnras/stw888
https://doi.org/10.1063/1.5110603
https://doi.org/10.1017/S0022377820000641
https://doi.org/10.1111/j.1745-3933.2009.00742.x
https://doi.org/10.3847/1538-4357/834/1/47
https://doi.org/10.1007/s41115-019-0005-8
https://doi.org/10.1038/nature12128
https://doi.org/10.1103/PhysRevLett.115.025001
https://doi.org/10.3847/1538-4357/aa704f
https://doi.org/10.1103/PhysRevE.98.043205
https://doi.org/10.1063/1.3474957
https://doi.org/10.1063/1.5001722
https://doi.org/10.3847/1538-4357/aaf003
https://doi.org/10.1103/PhysRevLett.102.035001
https://doi.org/10.1103/PhysRevLett.118.245101
https://doi.org/10.3847/1538-4357/aa7d02
https://doi.org/10.3847/2041-8213/aa93fb
https://doi.org/10.3847/1538-4357/aa6001
https://doi.org/10.1017/S0022377817000812
https://doi.org/10.3847/2041-8213/aab351


S. ADHIKARI et al. PHYSICAL REVIEW E 104, 065206 (2021)

[31] R. Ergun, K. Goodrich, F. Wilder, N. Ahmadi, J. Holmes, S.
Eriksson, J. Stawarz, R. Nakamura, K. Genestreti, M. Hesse
et al., Geophys. Res. Lett. 45, 3338 (2018).

[32] E. Leonardis, S. C. Chapman, W. Daughton, V. Roytershteyn,
and H. Karimabadi, Phys. Rev. Lett. 110, 205002 (2013).

[33] F. Pucci, W. H. Matthaeus, A. Chasapis, S. Servidio, L.
Sorriso-Valvo, V. Olshevsky, D. Newman, M. Goldman, and G.
Lapenta, Astrophys. J. 867, 10 (2018).

[34] G. Lapenta, F. Pucci, M. Goldman, and D. Newman, Astrophys.
J. 888, 104 (2020).

[35] G. Kowal, D. A. Falceta-Gonçalves, A. Lazarian, and E. T.
Vishniac, Astrophys. J. 892, 50 (2020).

[36] S. Adhikari, M. Shay, T. Parashar, P. S. Pyakurel, W. Matthaeus,
D. Godzieba, J. Stawarz, J. Eastwood, and J. Dahlin, Phys.
Plasmas 27, 042305 (2020).

[37] H. Politano and A. Pouquet, Phys. Rev. E 57, R21 (1998).
[38] P. Hellinger, A. Verdini, S. Landi, L. Franci, and L. Matteini,

Astrophys. J. Lett. 857, L19 (2018).
[39] N. Andrés, F. Sahraoui, S. Galtier, L. Z. Hadid, P. Dmitruk, and

P. D. Mininni, J. Plasma Phys. 84, 905840404 (2018).
[40] S. Banerjee and N. Andrés, Phys. Rev. E 101, 043212 (2020).
[41] V. Carbone, R. Marino, L. Sorriso-Valvo, A. Noullez, and R.

Bruno, Phys. Rev. Lett. 103, 061102 (2009).
[42] D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge

University Press, Cambridge, England, 2003).
[43] R. Bruno and V. Carbone, Living Rev. Sol. Phys. 10, 2

(2013).
[44] T. N. Parashar, W. H. Matthaeus, and M. A. Shay, Astrophys. J.

Lett. 864, L21 (2018).
[45] Y. Yang, W. H. Matthaeus, Y. Shi, M. Wan, and S. Chen, Phys.

Fluids 29, 035105 (2017).
[46] W. H. Matthaeus, Y. Yang, M. Wan, T. N. Parashar, R.

Bandyopadhyay, A. Chasapis, O. Pezzi, and F. Valentini,
Astrophys. J. 891, 101 (2020).

[47] A. N. Kolmogorov, C. R. Acad. Sci. U.R.S.S. 32, 16 (1941)
[Reprinted in Proc. R. Soc. London, Ser. A 434, 15 (1991)].

[48] U. Frisch, Turbulence: The Legacy of AN Kolmogorov
(Cambridge University Press, Cambridge, England, 1995).

[49] A. Verdini, R. Grappin, P. Hellinger, S. Landi, and W. C. Müller,
Astrophys. J. 804, 119 (2015).

[50] R. Ferrand, S. Galtier, F. Sahraoui, R. Meyrand, N. Andrés, and
S. Banerjee, Astrophys. J. 881, 50 (2019).

[51] R. Bandyopadhyay, L. Sorriso-Valvo, A. Chasapis, P. Hellinger,
W. H. Matthaeus, A. Verdini, S. Landi, L. Franci, L. Matteini,
B. L. Giles, D. J. Gershman, T. E. Moore, C. J. Pollock, C. T.
Russell, R. J. Strangeway, R. B. Torbert, and J. L. Burch, Phys.
Rev. Lett. 124, 225101 (2020).

[52] A. Monin and A. Yaglom, Statistical Fluid Mechanics:
Mechanics of Turbulence (Dover Publications, Inc., New York,
1975) Vol. II.

[53] H. Aluie and G. L. Eyink, Phys. Rev. Lett. 104, 081101 (2010).
[54] S. Banerjee and S. Galtier, Phys. Rev. E 87, 013019 (2013).
[55] P. Hellinger, E. Papini, A. Verdini, S. Landi, L. Franci, L.

Matteini, and V. Montagud-Camps, Astrophys. J. 917, 101
(2021).

[56] M. A. Taylor, S. Kurien, and G. L. Eyink, Phys. Rev. E 68,
026310 (2003).

[57] A. N. Kolmogorov, Proc. R. Soc. London, Ser. A 434, 9 (1991).
[58] W. Matthaeus and D. Montgomery, Ann. N.Y. Acad. Sci. 357,

203 (1980).
[59] A. Alexakis, Phys. Rev. E 84, 056330 (2011).
[60] J. T. Coburn, M. A. Forman, C. W. Smith, B. J. Vasquez,

and J. E. Stawarz, Philos. Trans. R. Soc. London, Ser. A 373,
20140150 (2015).

[61] T. De Karman and L. Howarth, Proc. R. Soc. London, Ser. A
164, 192 (1938).

[62] P. Wu, M. Wan, W. H. Matthaeus, M. A. Shay, and M. Swisdak,
Phys. Rev. Lett. 111, 121105 (2013).

[63] J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974).
[64] M. K. Verma, A. Ayyer, and A. V. Chandra, Phys. Plasmas 12,

082307 (2005).
[65] D. Fyfe, D. Montgomery, and G. Joyce, J. Plasma Phys. 17, 369

(1977).
[66] Computational and Information Systems Laboratory,

Cheyenne: HPE/SGI ICE XA System (University Community
Computing, 2017).

065206-6

https://doi.org/10.1002/2018GL076993
https://doi.org/10.1103/PhysRevLett.110.205002
https://doi.org/10.3847/1538-4357/aadd0a
https://doi.org/10.3847/1538-4357/ab5a86
https://doi.org/10.3847/1538-4357/ab7a13
https://doi.org/10.1063/1.5128376
https://doi.org/10.1103/PhysRevE.57.R21
https://doi.org/10.3847/2041-8213/aabc06
https://doi.org/10.1017/S0022377818000788
https://doi.org/10.1103/PhysRevE.101.043212
https://doi.org/10.1103/PhysRevLett.103.061102
https://doi.org/10.12942/lrsp-2013-2
https://doi.org/10.3847/2041-8213/aadb8b
https://doi.org/10.1063/1.4979068
https://doi.org/10.3847/1538-4357/ab6d6a
https://doi.org/10.1098/rspa.1991.0076
https://doi.org/10.1088/0004-637X/804/2/119
https://doi.org/10.3847/1538-4357/ab2be9
https://doi.org/10.1103/PhysRevLett.124.225101
https://doi.org/10.1103/PhysRevLett.104.081101
https://doi.org/10.1103/PhysRevE.87.013019
https://doi.org/10.3847/1538-4357/ac088f
https://doi.org/10.1103/PhysRevE.68.026310
https://doi.org/10.1098/rspa.1991.0075
https://doi.org/10.1111/j.1749-6632.1980.tb29687.x
https://doi.org/10.1103/PhysRevE.84.056330
https://doi.org/10.1098/rsta.2014.0150
https://doi.org/10.1098/rspa.1938.0013
https://doi.org/10.1103/PhysRevLett.111.121105
https://doi.org/10.1103/PhysRevLett.33.1139
https://doi.org/10.1063/1.1993067
https://doi.org/10.1017/S0022377800020687

