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Influence of the ionization process on characteristics of spatial relaxation
of the average electron energy in inert gases in a uniform electric field
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Theoretical studies of the characteristics of the spatial relaxation of the average energy of electrons in inert
gases (He, Ne, Ar, Kr, Xe) in a uniform electric field had been carried out. Conditions were considered when
spatial relaxation has the character of damped oscillations. The calculations were performed using the Monte
Carlo technique both without and taking into account the secondary electrons that appeared due to the ionization
of atoms by electron impact. It was shown that the inclusion of secondary electrons leads to a noticeable decrease
in the spatial relaxation length even in the case when the contribution of the ionization process to the electron
energy balance is relatively small. For these gases, the upper boundary of the the electric field strength was
determined, where the spatial relaxation of the average energy has the character of damped oscillations.
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I. INTRODUCTION

In the absence of an electric field, electrons in a gas are
in thermal equilibrium with atoms and molecules, i.e., the
electron temperature is equal to the gas temperature, and
the energy distribution function of electrons is Maxwellian.
If the gas is acted upon a uniform electric field, then the
electrons, drifting in the gas under the action of the field,
get energy from the field, and lose it in elastic and inelastic
collisions with atoms and molecules. As a result, the energy
distribution function is established, which is different from
the Maxwell function, and the average energy of the electrons
becomes greater than the average energy of the gas particles.
The form of the distribution function under such conditions
is described by the Boltzmann equation [1–3]. If the electric
field is not very strong, then the distribution function is weakly
anisotropic, and the Boltzmann equation is solved in the so-
called two-term approximation for the distribution function.
In this case, the spherically symmetric part of the electron en-
ergy distribution function (EEDF) f0(u) is calculated, which
is normalized by the condition 2π (2/m)3/2

∫ ∞
0 f0(u)

√
udu =

ne, where u is the electron energy, m is the electron mass,
and ne is the electron concentration. Knowing the distribution
function and the cross sections for the electron scattering by
atoms and molecules, one can calculate various transport and
kinetic characteristics of electrons. In the general case, the
form of the distribution function depends on many param-
eters: the strength of the electric field, the type of gas, the
temperature and pressure of the gas, the population of the
electronic levels of atoms, and the concentration of electrons.
If the degree of excitation of the gas is low and the concen-
tration of electrons is small, then in the Boltzmann equation,
superelastic collisions of electrons with excited atoms and
electron-electron collisions can be neglected. In this case, for a
given gas, the steady-state EEDF will depend only on the local

value of the reduced electric field E/N, where E is the electric
field strength and N is the number of atoms per unit volume. In
the present work, it is just such a situation that is considered.

If in some place in the gas a “perturbed” distribution func-
tion is created, which differs from the steady state distribution
function for a given E/N value, then spatial/temporal relax-
ation of the perturbed EEDF to its steady state form will occur.
For example, if in some place there is a stationary source of
electrons with a certain energy spectrum, then the EEDF near
the source will differ from steady-state distribution function
in a given electric field. Accordingly, there will be a transition
region within which the spatial relaxation of the EEDF occurs
from its initial shape to the established one. In experiments,
the source can be an electrode emitting electrons. Such a
situation is realized, for example, in the well-known experi-
ments by Franck and Hertz [4] (see also Refs. [5–8]), in which
evidence was obtained for the existence of quantized energy
levels in atoms, and in the experiments of Holst and Ooster-
huis [9] and Druyvesteyn [10] (see also Ref. [11]), in which
glowing layers were observed in a low-current discharge in
inert gases.

A large number of works [12–41] are devoted to the the-
oretical study of the nature of the spatial relaxation of the
EEDF and the associated transport and kinetic characteristics
of electrons in a uniform electric field. It was found that in
atomic gases, under certain conditions, spatial relaxation of
transport and kinetic characteristics takes the form of damped
oscillations. In Refs. [12–14], this effect was investigated
analytically in the “black-wall” approximation. A detailed
description of the spatial relaxation of the EEDF and the
transport characteristics of electrons in real gases was carried
out either by simulating the motion of electrons with the use
of the Monte Carlo technique [15–26] or by solving the nonlo-
cal Boltzmann equation for electrons [18–20,27–40]. Several
works [16,19,22,24,38–39] analyzed the situation correspond-
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ing to the experimental conditions of Franck and Hertz, Holst
and Oosterhuis. In Refs [27–28,32–34,37]. the spatial relax-
ation of plasma parameters was analyzed in connection with
the study of striations in the discharge positive column. In
Ref. [38], using a model atomic gas as an example, it was
shown that spatial relaxation of plasma parameters in the form
of damped oscillations takes place in a certain range of values
of E/N; there are lower and upper limits on the E/N values for
this effect. A similar prediction was also made in Ref. [41]
within the framework of the developed hydrodynamic model.

In inert gases, studies were carried out for He
[15,16,20,23,27–31,35], Ne [16,19,23,32,35–37], Ar
[15–17,21,23–26], Kr [16,23,30,31] and Xe [16,23]. For
definiteness, we will talk about the average electron energy
um(z), where z is the coordinate in the direction opposite to
the direction of the electric field. It was shown that spatial
relaxation has the form of damped oscillations when energy
losses in inelastic processes (excitation of electronic levels)
prevail in the electron energy balance. In this case, the period
of spatial oscillations is approximately equal to � ≈ ε∗/eE ,
where ε∗ is the energy of the lowest electronic level of the
atom, and e is the absolute value of the electron charge. The
characteristic length of spatial relaxation L can be determined
from the exponent exp(−z/L), which describes the decrease
in the oscillation amplitude. For generality, we will talk about
the reduced relaxation length LN, which for a given gas
depends only on the value of the reduced electric field E/N.
It was shown (see, for example, Ref. [23]) that for all inert
gases the dependences of LN on E/N have a maximum at
some values of (E/N )∗. At E/N < (E/N )∗, the decrease in
LN is due to an increase in the fraction of energy losses in
elastic collisions in the energy balance of electrons. At low
E/N, the spatial relaxation of the plasma parameters becomes
aperiodic. At E/N > (E/N )∗, higher electronic levels are
efficiently excited, which leads to suppression of the periodic
structure (which is formed due to the predominant excitation
of the lowest level) and, accordingly, to a decrease in LN.

In our previous work [23], for all the above inert gases,
the dependences um(z) were calculated in a wide range of
E/N values, and the corresponding LN values were deter-
mined. There, the maximum values of E/N, up to which the
calculation was carried out, were chosen so that the fraction
of the ionization process in the energy balance of electrons
was relatively small (<10%), since the calculations did not
take into account the secondary electrons generated in the
ionization process. In Ref. [23], in particular, the values
(E/N )∗ at which the relaxation length is maximum, and the
lower boundaries of the ranges of E/N values, where the
spatial relaxation of the average electron energy has the form
of damped oscillations, were determined. As for the upper
boundaries of these intervals, this issue has practically not
been studied. It was indicated in Ref. [19] that the upper bound
for neon is (E/N )up = 300 Td, but the corresponding depen-
dences um(z) were not presented. For a correct calculation
of the spatial relaxation of plasma parameters at high E/N,
it is necessary to take into account the secondary electrons
which appeared in the ionization process. Note that in most
of the works in which the calculations were carried out by
solving the Boltzmann equation, secondary electrons were not
taken into account, and the ionization process was considered

as the excitation of an electronic level. We know only the
work [35], in which, within the framework of the Boltzmann
equation, the calculations for helium were carried out both
without and taking into account secondary electrons. It was
shown that the inclusion of secondary electrons leads to a
noticeable decrease in the spatial relaxation length even in
the case when the fraction of the ionization process in the
electron energy balance is relatively small. In several works in
which the Monte Carlo method was used, secondary electrons
were taken into account in the calculations (see, for example,
Refs. [16,19,24]), but a detailed analysis of their effect on
the characteristics of spatial relaxation of plasma parameters
was not carried out. We also mention Ref. [42], in which the
variation of the EEDF in inert gases in a spatially modulated
electric field E (z) = E0 + δEexp(ikz) was analyzed in the
limit δE/E0 � 1, k = 2π/λ, where λ is the wavelength of the
electric field disturbance. As a result, the dependence of the
amplitude and phase of the electron concentration disturbance
on the wavelength value was calculated. At that, the influence
of various processes (in particular, ionization processes) on
the calculated dependencies was studied.

In the present work, the spatial relaxation of the average
electron energy in inert gases (He, Ne, Ar, Kr, Xe) in a
uniform electric field was investigated. The calculations were
carried out by the Monte Carlo method in two versions. In
the first case, the secondary electrons appearing in the ion-
ization processes were taken into account. Hereafter, the term
“strict ionization” is used to denote this option. In the second
case, secondary electrons were not taken into account, and
the ionization process was considered as the excitation of an
electronic level. The term “excitation approximation” is used
further to refer to this option. The study pursues two goals:
(a) to determine at what E/N values the inclusion of secondary
electrons noticeably affects the spatial relaxation length of the
plasma parameters; (b) to determine the upper limit of the
range of E/N values, where spatial relaxation has the character
of damped oscillations.

II. CALCULATION METHOD

The calculations were carried out by the Monte Carlo
method, which is similar to that used in our previous work
[23]. The difference is that in the present work, the calcula-
tions took into account the secondary electrons that appear
in the process of ionization of atoms by electron impact. The
initial electrons were launched at a point with the coordinate
z = 0 and moved in a uniform electric field directed along the
negative direction of the Z axis. Accordingly, the electrons
drifted in the positive direction. The motion of electrons in
gas was simulated in three-dimensional space, and all charac-
teristics were calculated depending on the z coordinate, i.e.,
it was assumed that the distribution of electrons is uniform
in the plane perpendicular to the Z axis. In a uniform electric
field, the trajectory of an electron and the change in its energy
along the trajectory were determined by integrating the cor-
responding equation of motion. The mean free path along the
trajectory between two successive collisions with atoms was
determined randomly from the solution of the equation∫ s1

s0

NQtot (u(s))ds = − ln(1 − ξ ), (1)

065204-2



INFLUENCE OF THE IONIZATION PROCESS ON … PHYSICAL REVIEW E 104, 065204 (2021)

where s is the coordinate along the electron trajectory, and
s0 and s1 are the coordinates of the previous and subsequent
collisions, respectively. Qtot (u) is the sum of the cross sections
of all processes taken into account in the calculation, ξ is a
random number uniformly distributed over the interval (0,1).

The type of collision process was determined randomly.
In this case, the probability of each process was assumed
to be proportional to the value of the corresponding cross
section at the energy u = ub, where ub is the electron energy
at the moment of collision. It was assumed that spherically
symmetric scattering occurs for all types of collisions. In the
case of elastic scattering, the electron energy ua after the
collision was calculated as a function of the scattering angle.
If the process of excitation of an electronic level was chosen,
then the electron energy after the collision was determined as
ua = ub − �e, where �e is the excitation energy.

During ionization, the remainder of the energy ub − �i

(where �i is the ionization energy) was distributed between
the primary and secondary electrons. Opal et al. [43] measured
the energy distribution of secondary electrons for various
gases, and it was shown that the shape of the measured dis-
tributions is fairly well described by the empirical formula

σ (upr, usec) ∼ 1

1 + (usec/E )
2.1 , (2)

where upr and usec are the energies of the primary and
secondary electrons. Upon that, the secondary electron was
considered the one of two (ionized and appeared in the pro-
cess of ionization), which has less energy. The parameter E
depends only on the type of gas, and for He, Ne, Ar, Kr,
and Xe is 15.8, 24.2, 10.0, 9.6, and 8.7 eV, respectively. In
our calculations, the energy of the secondary electron was
determined randomly following distribution (2). The angu-
lar distribution of secondary electrons was assumed to be
isotropic. The tragectory of each secondary electron was sim-
ulated in the same way as it was done for the initial electrons.
For comparison, calculations were also carried out in which
the ionization process was considered as the excitation of the
electronic level, and the generation of secondary electrons was
not taken into account.

The average electron energy um was calculated at various
distances z = zi from the source similarly to [15,23,44]:

um(zi ) =
(

M∑
j=1

u j�t j

)/(
M∑

j=1

�t j

)
, (3)

where uj is the energy of the jth electron crossing a narrow
interval (zi − �z/2, zi + �z/2), �tj is the time of its stay in
this interval, M is the total number of electron crossings the
interval (it was taken into account that the same electron can
cross a given interval several times). The quantity

n(zi ) =
M∑

j=1

�t j (4)

describes the change in the concentration of electrons with
distance in relative units.

In Ref. [23], comparative calculations were carried out
using isotropic stationary sources of electrons with different
energy spectra: with an energy of 1 eV; with an energy of

4 eV; with energy uniformly distributed in the range 0–4 eV. It
was shown that in the case when the spatial relaxation of the
average electron energy has the form of damped oscillations,
the characteristic damping length and the period of spatial os-
cillations do not depend on the type of the energy spectrum of
the electron source. All the main calculations were performed
using a monochromatic source with an energy of 4 eV. The
source with the same energy spectrum was used in the present
work.

The calculations were carried out using a personal com-
puter. (Core i7 CPU 2.8 GHz, 16 GB RAM, Windows 10).
For a given gas pressure and temperature, the calculation time
depends on the number of launched electrons, on the electric
field strength, and on the distance along the Z axis to which
the trajectory of each electron is simulated. For the conditions
under study the number of launched electrons was varied
within 5 × 104 − 105, and the computation time ranged from
1 to 5 h.

III. SETS OF CROSS SECTIONS USED
IN THE CALCULATIONS

In the calculations, the same sets of cross sections for the
scattering of electrons by He, Ne, Ar, Kr, and Xe atoms as
in Ref. [23] were used. A brief description of these sets is
presented in Table I. All the cross sections used are specified
in the energy range up to 1000 eV.

IV. RESULTS AND DISCUSSION

The calculations were performed for a gas pressure of P =
1 Torr and a temperature of T = 273 K. Let us first consider
the results obtained for helium. The studies were carried out
for values of E > 3 V/cm, at which the spatial relaxation of
the average electron energy has the form of damped oscilla-
tions [23]. According to calculations, at E � 6 V/cm (E/N �
17 Td), the “strict ionization” and “excitation approximation”
models give exactly the same results, i.e., the appearance of
secondary electrons does not affect the shape of the um(z)
dependence. With an increase in E/N and, accordingly, with an
increase in the rate constant of ionization of atoms by electron
impact, the situation changes. Figure 1 shows the dependences
um(z) calculated in the range of values E = 8 − 100 V/cm
(E/N = 22.6 Td − 282.6 Td) both with and without sec-
ondary electrons consideration. As shown earlier in Ref. [35],
the inclusion of secondary electrons leads to a decrease in the
characteristic relaxation length of the average energy.

The influence of secondary electrons on the characteristics
of spatial relaxation can be qualitatively commented in terms
of electron trajectories in the phase space (w, z), where w is
the total electron energy (kinetic + potential). This approach
is often used for a qualitative analysis of the motion of elec-
trons in constant and spatially periodic electric fields (see, for
example, Ref. [14]). Actually, when the elastic collisions of
electrons with atoms and the processes of excitation of several
electronic levels are taken into account, the trajectories of
electrons will have a rather complex form. But for qualita-
tive reasoning, we can use a simplified model. If we neglect
the energy losses of electron in elastic collisions, then in a
constant electric field the trajectory of an electron between
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TABLE I. Processes taken into account in the calculations and comments on the choice of the corresponding sets of cross sections for
scattering of electrons by atoms.

Gas Processes Refs. and comments

He Еlastic scattering, excitation of the four
lower electronic levels, excitation of the
effective electronic level (uniting the upper
levels), ionization.

The set of cross sections was created using
the data from Ref. [45]. Earlier this set was
used in Ref. [20].

Ne Elastic scattering, excitation of the nine
electronic states, ionization.

The set of cross sections was taken from
Ref. [46]. A more detailed description of
this set is given in Ref. [47].

Ar Еlastic scattering, excitation of the four
lower electronic states, excitation of the
two effective levels, ionization.

The set of cross sections was taken from
Ref. [48] and extended to 1000 eV using
the data from Ref. [49].

Kr Еlastic scattering, excitation of the four
electronic states, ionization.

The set of cross sections was taken from
Ref. [46]. A more detailed description of
this set is given in Ref. [50].

Xe Еlastic scattering, excitation of the four
electronic states, ionization.

The set of cross sections was taken from
Ref. [46]. A more detailed description of
this set is given in Ref. [50].

two successive inelastic collisions will have the form of a
straight line w = constant. If the only inelastic process is the
excitation of an electronic level, then the electron trajectory
will have a repetition pattern in the form of straight line
segments, the distance between which along the w axis is
equal to ε*. Taking into account the appearance of a secondary
electron in the ionization process and energy sharing between
two electrons leads to a disturbance of the repetition pattern of
trajectories and, accordingly, to a change in the characteristics
of spatial relaxation.

Before proceeding to consider the influence of secondary
electrons on the characteristic relaxation length of the average
electron energy, it is important to note some other effects. As
can be seen from Fig. 1, the inclusion of secondary electrons
leads to a decrease in the steady-state value of the average
electron energy. The difference increases with increasing the
E/N value. This can be qualitatively explained as follows. If
in a certain region of space �z an electron with energy ub

has ionized an atom, and the appearance of a secondary elec-
tron is not taken into account, then one electron with energy
ub − �i will remain in the region under consideration. If the
generation of the secondary electron is taken into account,
then in the considered region there will be two electrons with
the total energy ub − �i, and the average energy per electron
will be two times less. Accordingly, the calculated average
energy um will also be smaller. The higher the electric field
strength, the more often the ionization processes occur, and
the greater the difference between the steady-state values of
um, calculated in the framework of the “strict ionization” and
“excitation approximation" approaches.

The formulation of the problem considered by us cor-
responds to the conditions of steady-state Townsend exper-
iments. In these experiments, at some distance from the
cathode, an exponential increase in the electron concentration
was formed with a distance ne(z) ∼ exp(αiz), where αi is the
first Townsend coefficient. Figure 2 shows the dependence
ne(z) calculated for E = 20 V/cm (E/N ≈ 56.5 Td) within
the “strict ionization” approach.

As can be seen from Fig. 2, starting from z ≈ 6 cm, the
ne(z) dependence becomes exponential. From the presented
data, it is possible to calculate the corresponding value of
the first Townsend coefficient for E/N ≈ 56.5 Td: ai/N ≈
4 × 10–18 cm2. The obtained value is in good agreement with
the experimental data presented in Ref. [51].

At relatively low values of E (Fig. 1), the um(z) depen-
dence has the form of damped oscillations relative to the
mean value corresponding to the steady-state value of um.
For example, for the case of the “strict ionization” approach,
um(z) has such a form up to E ≈ 70 V/cm (E/N ≈ 200 Td),
the steady-state value of the average energy is approximately
equal to ums ≈ 16.5 eV. At higher values of E, the char-
acter of the um(z) dependence changes. At E ≈ 90 V/cm
(E/N ≈ 255 Td), oscillations of um(z) with a small amplitude
(with the first maximum excluded from consideration) occur
against the background of a monotonically increasing aver-
age value, which tends to ums ≈ 19.7 eV [Fig. 1(g)]. And at
E ≈ 100 V/cm (E/N ≈ 280 Td), the aperiodic form um(z) is
even more pronounced [Fig. 1(h)]. It can be concluded that the
upper boundary of the range of E (E/N) values, where the char-
acter of spatial relaxation of the average electron energy has
the form of damped oscillations relative to the average value,
for helium is E ≈ 70 − 100 V/cm (E/N ≈ 200–280 Td). For
definiteness, we will assume that the upper limit is the value
Eup ≈ 70 V/cm ((E/N )up ≈ 200 Td).

It is also worth noting that the periodic character of spatial
relaxation changes to aperiodic at such electric field values,
at which the steady-state value of um approaches the value
of the energy of the lowest electronic level ε* (in helium,
ε∗ ≈ 19.8 eV). The last fact seems to be quite logical. Spatial
oscillations um(z) occur due to the fact that low-energy elec-
trons, moving in an electric field, acquire energy sufficient to
excite electronic levels and then, having lost energy in acts
of excitation, again become low energy (see more detailed
explanations in Ref. [23]). At that, spatial fluctuations of
the average energy occur relative to the value of ums, which
is the steady-state value of the average energy in a given
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FIG. 1. Spatial relaxation of the average electron energy in helium in a uniform electric field. P = 1 Torr, T = 300 K. (a) E = 8 V/cm,
(b) E = 10 V/cm, (c) E = 20 V/cm, (d) E = 30 V/cm, (e) E = 50 V/cm, (f) E = 70 V/cm, (g) E = 90 V/cm, (h) E = 100 V/cm. Thick
lines show the results of calculations using the “strict ionization” model, thin lines show the results of calculations using the “excitation
approximation” model.

electric field. And the initial amplitude of the oscillations
is less than ε*. The higher the electric field strength, the
higher the value of ums. When the value of ums approaches
ε*, the oscillations become poorly pronounced, since most

of the electrons have an energy about ε*. Besides, at ums ∼
ε∗, the rate of ionization is rather high, and the appearance
of secondary electrons leads to additional suppression of
oscillations.
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FIG. 2. Dependence of the electron concentration on the dis-
tance, calculated for E = 20 V/cm (E/N ≈ 56.5 Td) within the
“strict ionization” approach. He, P = 1 Torr, T = 273 K.

It can be seen from Fig. 1 that the accounting of secondary
electrons leads to a decrease in the characteristic relaxation
length of the average electron energy, and this effect is en-
hanced with an increase in the electric field strength. For a
quantitative description of the characteristic relaxation length,
we applied the same method that was previously used in
Ref. [23]. The calculated dependences um(z) were approxi-
mated by the expression

um(z) = Ae− z
L sin

(
2π

�
z + ϕ

)
+ ums, (5)

and the parameters A, L, �, ϕ, and ums were found from the
condition of the minimum standard deviation of the values
um(z) obtained by formula (5) from the calculated results. The
parameter � describes the period of spatial oscillations, and
the value of L in the exponent exp(−z/L) is the characteristic
relaxation length. The values of L for helium obtained from
calculations within the framework of the “strict ionization”
approach are shown in Fig. 3(a) as a solid line. For com-
parison, the same figure shows the L values obtained within
the “excitation approximation” model. These data were taken
mostly from our previous work [23] (dashed line) and partially
(for large values of E) were calculated in the present work
(dotted line). As can be seen from Fig. 3(a), the accounting
of secondary electrons leads to a decrease in the relax-
ation length, starting from the value E ≈ 8 V/cm (E/N ≈
22.6 Td), and at E ≈ 50 V/cm (E/N ≈ 141 Td), the L values
calculated with and without secondary electrons differ by a
factor of 8. Fig. 3(a) also shows the value of L estimated by
us from the dependence u(z) taken from Ref. [35] where it
was calculated by solving the nonlocal Boltzmann equation
assuming that the remainder of electron energy after ioniza-
tion process is divided between the primary and secondary
electrons in a ratio of 1:9.

Calculations similar to those performed for helium were
carried out for other inert gases: Ne, Ar, Kr, and Xe. Based on
the results obtained within the “strict ionization” model, we
determined (approximately, see the comments above for the
case of helium) the upper boundary of the range of E (E/N),
where the spatial relaxation of the average electron energy

has the character of damped oscillations of the form (5) (see
Table II).

As follows from the obtained results, for all gases un-
der consideration, the character of spatial relaxation um(z)
becomes aperiodic at such values of E (E/N) when the
steady-state value of the average energy ums approaches the
energy of the lowest electronic level ε*. Note also that the
value (E/N )up ≈ 185 Td obtained for Ne is less than that
indicated in Ref. [19] (300 Td). Apparently, this is due to
the approximate criterion for choosing the value of (E/N )up

(see the above comments on the choice of (E/N )up for
helium).

The dependences L(E) calculated for Ne, Ar, Kr, and Xe
within the framework of both approaches used are shown
in Figs. 3(b)–3(e), respectively. Figure 3(b) also shows the
values of L obtained from the um(z) dependences for neon,
calculated in Ref. [19] by the Monte Carlo method with
allowance for secondary electrons. Unfortunately, the used
approximation for the energy sharing between two electrons
in the ionization process is not indicated in Ref. [19]. It can be
seen that obtained L values are in good agreement with those
calculated in the present work.

As can be seen from Fig. 3(a), in the case of helium,
the inclusion of secondary electrons in calculations leads to
a decrease in the maximum value of L, and the position of
the maximum shifts to the region of lower E values. In neon
and argon [Figs. 3(b) and 3(c)], the inclusion of secondary
electrons leads to a decrease in L, starting from the values of
E at which the spatial relaxation length of electrons is maxi-
mum. In krypton and xenon [Figs. 3(d) and 3(e)], the effect of
taking into account secondary electrons becomes noticeable
in the region of the decreasing part of the L(E) dependence.
The values of the electric field Es (and corresponding (E/N )s

values), at which the influence of secondary electrons on the
relaxation length begins are shown in Table II.

As noted in the Introduction, in Ref. [35], based on the
results of calculations for helium, it was qualitatively con-
cluded that the inclusion of secondary electrons leads to a
noticeable decrease in the spatial relaxation length even in
the case when the fraction of the ionization process in the
electron energy balance is relatively small. In this regard, it
is of interest to correlate our results with the contribution of
the ionization process to the electron energy balance. In the
transition region of space, where the um(z) dependence has
an oscillating character, the contribution of various processes
(elastic scattering, excitation of electronic levels, ionization)
to the electron energy balance also varies with z coordinate.
A detailed study of the structure of the energy balance as a
function of z is not the purpose of this work. Therefore, for
the estimates, the energy balance of electrons was calculated
by the local (established in space) EEDF, which for a par-
ticular gas depends only on the E/N value. The calculations
were performed by solving the local Boltzmann equation [52]
using the same sets of cross sections as in calculations by
the Monte Carlo method. Figure 4 shows the fractions of ion-
ization prosess in the energy balance of electrons, calculated
depending on the E/N value (lower axis) and/or on the E value
(upper axis) at a pressure of P = 1 Torr and a temperature
of T = 273 K. The symbols on the curves show the fraction
values at E = Es (E/N = (E/N )s).
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FIG. 3. Dependence L(E) in various inert gases: (a) He, (b) Ne, (c) Ar, (d) Kr, (e) Xe. Solid lines represent results of calculations using the
“strict ionization” approach, dashed and dotted lines represent results obtained within the “excitation approximation” model in [23] and in the
present work, respectively. P = 1 Torr, T = 273 K. Symbols in Fig. (a) is the estimate of L from the data of Ref. [35], and in (b) from the data
of Ref. [19].

TABLE II. The energy of the lowest electronic level ε*; ionization energy I; the upper limit of the electric field strength Eup (at P = 1 Torr,
T = 273 K); corresponding (E/N )up value; the steady-state value of the average electron energy ums at E = Eup(E/N = (E/N )up); the value
of the electric field Es at which the influence of secondary electrons on the relaxation length begins; corresponding (E/N )s value.

Gas ε* (eV) I (eV) Eup(V/cm) (E/N )up (Td) ums (eV) Es (V/cm) (E/N )s (Td)

He 19.8 24.5 70 200 16.5 6 17
Ne 16.6 21.6 65 185 15.6 3.5 10
Ar 11.5 15.8 150 425 9.1 9 25
Kr 9.9 14.0 150 425 8.1 15 42
Xe 8.3 12.1 250 700 7.1 19 54
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FIG. 4. The fraction of the power in the energy balance of elec-
trons spent on ionization processes in the gases under consideration.
The fraction was calculated depending on the magnitude of the
electric field by solving the local Boltzmann equation. The symbols
on the curves show the fraction values at E = Es(E/N = (E/N )s ).

As can be seen from Fig. 4, at E = Es, the fraction of
energy spent on ionization for all considered gases is ∼1%.
That is, the influence of secondary electrons on the relax-
ation length begins already at such values of the electric field
strength, at which the contribution of ionization process to
the energy balance of electrons is still very small. With an
increase in the fraction of energy spent on ionization (with an
increase in the electric field strength), this influence sharply
increases. For example, at E values, at which the mentioned
fraction is only 10% (11.5, 10, 23.5, 33, and 47.5 V/cm for
He, Ne, Ar, Kr, and Xe, respectively, see Fig. 4), taking into
account secondary electrons leads to a twofold decrease in the
relaxation length [Figs. 3(a)–3(e)].

As noted above, the expression for the energy distribution
of secondary electrons was obtained in Ref. [43] by approx-
imating the experimental data. To understand how sensitive
the calculation results are to the value of the exponent 2.1 in
formula (2), we carried out test calculations in which the value
of the exponent was equal to 1.9 and 2.3 (i.e., it was varied
within 10%). According to calculations, such a variation of
the exponent did not lead to noticeable changes in the spatial

variation of the mean electron energy, um(z), and, respectively,
in the relaxation length, L(E).

V. CONCLUSION

The Monte Carlo method was used to study the character-
istics of the spatial relaxation of the average electron energy in
He, Ne, Ar, Kr, and Xe in a uniform electric field. The studies
were carried out for a gas pressure of 1 Torr and a temperature
of 273 K in the range of values of the electric field strength,
where the spatial relaxation of the average electron energy
has the character of damped oscillations. The calculations
were carried out taking into account the secondary electrons
generated in the course of ionization. For comparison, cal-
culations were also performed, in which secondary electrons
were not taken into account, and the ionization process was
considered as the process of excitation of the electronic level
of an atom. It was shown that the inclusion of secondary
electrons in calculations leads to a noticeable decrease in the
spatial relaxation length even in the case when the fraction
of the ionization process in the electron energy balance is
relatively small. For example, when this fraction is 10%, the
inclusion of secondary electrons leads to a twofold decrease
in the relaxation length.

At relatively low electric fields, spatial fluctuations of the
average electron energy occur relative to the value of the
steady-state average energy ums in a given electric field, and
the amplitude of the oscillations is less than the energy of the
lowest electronic level of the atom ε*. The steady-state aver-
age electron energy increases with an increase in the electric
field. At high electric fields when the value of ums is close
to ε*, the oscillations become poorly pronounced, since most
of the electrons have energy about ε*. As a consequence, the
periodic nature of spatial relaxation changes to aperiodic. For
all the gases under study, the upper boundary of the range of
values of the electric field strength is determined, where the
spatial relaxation of the average energy has the character of
damped oscillations.
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