
PHYSICAL REVIEW E 104, 065203 (2021)

Absolute stimulated Brillouin side scattering in an inhomogeneous flowing plasma

C. Z. Xiao,1,2,3,* Y. G. Chen,1 J. F. Myatt,2 Q. Wang,2 Y. Chen ,1 Z. J. Liu,4,5 C. Y. Zheng,4,5,3 and X. T. He4,5,3

1School of Physics and Electronics, Hunan University, Changsha 410082, China
2Department of Electrical and Computer Engineering, 9211 116 St. NW, University of Alberta, Alberta T6G 1H9, Canada

3Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
4Institute of Applied Physics and Computational Mathematics, Beijing 100084, China

5HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China

(Received 5 March 2021; revised 20 May 2021; accepted 1 December 2021; published 14 December 2021)

Theory of absolute stimulated Brillouin side scattering in an inhomogeneous flowing plasma is presented and
verified numerically. The linearized coupling equations are transformed into a Schrödinger equation in k space
and solved as an eigenvalue problem. Analytic threshold, growth rate, and scattering geometry are obtained
for the pump laser with arbitrary incidence angle. Numerical solutions of the coupling equations show good
agreements between the theoretical and numerical absolute thresholds when ion-acoustic wave damping is not
too large, and thus an old but famous threshold in [Phys. Fluids 17, 1211 (1974)] is corrected. It also indicates
that the theoretical analysis is not accurate for strong dampings, since it will overestimate the absolute threshold.
Possibility of finding such instability in the current experiments is also discussed.
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I. INTRODUCTION

Stimulated Brillouin scattering (SBS) and stimulated
Raman scattering (SRS) are considered to be significant in-
stabilities in inertial confinement fusion (ICF) for the incident
lasers would be scattered by plasma waves. However, after a
half century of research, these instabilities are still hard to pre-
dict. In addition to the backward scattering, other scattering
geometries are becoming more and more significant. Many
recent experiments have demonstrated that side scattering
cannot be neglected in the context of ICF [1–8]. These side
scatterings often result from the laser or plasma asymmetry,
such as density inhomogeneity [1,3,9], or multiple overlap-
ping laser beams [6,7,10,11]. Most of these observations are
Raman side scatterings, but experimental evidences of Bril-
louin side scattering have rarely been seen, expect for a few
multibeam experiments accomplished decades ago [12–14].

In this paper, we focus on the onset of stimulated Brillouin
side scattering caused by the plasma inhomogeneity. It was
first realized in the early 1970s that density inhomogeneity
can trigger absolute Raman side scattering and flow inho-
mogeneity can cause absolute Brillouin side scattering. The
scattering geometry of absolute Raman side scattering that the
wave vector of sidescattered light is nearly perpendicular to
the density gradient along which the side scattered light does
not feel any density inhomogeneity is well understood. The
linear theory of Raman side scattering was first established
by Liu, Rosenbluth, and White [15,16], and then Mostrom
and Kaufman [17] by solving the Schrödinger equation as an
eigenvalue problem in the x space. However, the procedures
to obtain absolute threshold are a little bit complicated and
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require additional assumptions. Another approach to seek ab-
solute instability was first proposed by White et al. [18]. They
transformed the coupling equations to a Schrödinger equation
in k space and solved it by the perturbation method. Compared
to resolving the problem in the x space, the latter approach is
much easier to apply to multidimensional problems. So, the
k-space method is successfully used in obtaining the threshold
of absolute two-plasmon decay instability [19,20], as well as
absolute stimulated Raman side scattering [21,22].

Compared with flourishing studies on Raman side scatter-
ing, there are very few works on the absolute Brillouin side
scattering. The first work dated back to the well-known paper
of Liu, Rosenbluth, and White [16]. They used two x-space
models to solve the coupling equations; one is an envelope
model and the other is a full wave model. However, in deriving
the threshold of absolute Brillouin side scattering the expres-
sion of κ ′′ (κ is the wave-number mismatch [23]) is incorrect,
leading to an incorrect threshold, and the derivation from full
wave equations is somewhat ambiguous. Besides, no definite
threshold has been concluded and verified. Later Berger [24]
retrospected this problem in detail via the envelope model.
The absolute threshold they obtained was not explicit and was
applied to a situation of local density minimum or maximum,
which is not of great interest in the context of ICF. Note that
damping of ion acoustic wave under ICF-related parameters is
not negligible, the effect of damping on the absolute Brillouin
side scattering should be clarified unambiguously.

Therefore, we reconstruct the theory of absolute SBS by
transforming the coupling equations into a Schrödinger equa-
tion in k space, and solve its eigenvalue equation by the
perturbation method. Though verified in many other situ-
ations, this approach is first used in describing SBS. The
threshold, growth rate, and scattering geometry are obtained
for the pump laser with arbitrary incidence angle. In order
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to verify the thresholds, we numerically solve the coupling
equations in k space and obtain the convective gain and ab-
solute threshold. The numerical threshold is well consistent
with the theoretical threshold when damping is not very large.
The previous thresholds derived by Liu et al., which have
a different scaling law, have been corrected. We also find
that as the damping is getting stronger, the absolute thresh-
old increases, and our analytic threshold with damping terms
predicting a higher threshold than the numerical solutions, is
not accurate. In addition, this general theory can be readily
applied to absolute SRS and gets the same threshold with pre-
vious works, validating this powerful method. The renewed
understanding of this absolute Brillouin side scattering and
analysis of the plasma conditions in current ICF experiments
indicate a possibility of finding such instability in the future
experiments.

The paper is organized as follows. In Sec. II, we derive
the Schrödinger equation in k space describing SBS in an
inhomogeneous flowing plasma with oblique incidence. Then,
we solve the eigenvalue equation through a standard perturba-
tion method in Sec. III. Two types of scattering geometries
of absolute SBS are shown in Sec. IV. In Sec. V, we mainly
focus on discussing the theoretical thresholds with and with-
out damping. Then we present a robust numerical method
to solve the coupling equations in k space and compare the
theoretical and numerical thresholds in Sec. VI. At last, we
summarize our results and discuss the possibility of finding
such instability in ICF experiment in Sec. VII.

II. DERIVATION OF SCHRÖDINGER EQUATION
IN k SPACE

Stimulated Brillouin scattering strongly relies on flow in-
homogeneity, which is often coexistent with plasma density
inhomogeneity. But the relationship between these two inho-
mogeneities is intricate in ICF. For simplicity, linear profiles
of plasma density and velocity are assumed here: ne(x) =
n0(1 + x/Ln) and V(x) = −V0(1 − x/LV )x̂, where Ln, LV are
the density and velocity scale length, respectively, and n0,V0

are quantities at resonance, and the pump laser can propagate
along an arbitrary direction. The linearized fluid equations of
SBS are given by(

∂2

∂t2
+ 2νs

∂

∂t
− c2∇2 + ω2

p

)
as = −ω2

papa0, (1)[(
∂

∂t
+ V · ∇

)2

+ 2νp

(
∂

∂t
+ V · ∇

)
− c2

s ∇2

]
ap

= Zmec2

mi
∇2(a0 · as), (2)

where a0 = eA0/mec2 = 1
2 a0ê0ei(k0·x−ω0t ) + c.c. and as =

eAs/mec2 are the normalized vector potential of pump and
scattered light, respectively, and ap = δni/n0 is the normal-
ized density fluctuation of the ion acoustic wave (IAW).
ω2

p = ω2
p0(1 + x/Ln) is the local plasma frequency and ωp0 =√

4πn0e2/me is the plasma frequency at the resonant point,
x = 0. We also introduce phenomenological damping rates

of the scattered light and the ion acoustic wave: νs = ω2
p

2ω2
0
νei

and νp = νLD + νei, where νei is the electron-ion collisional

damping rate and νLD is the Landau damping rate of the ion
acoustic wave. Other constants are electron mass (me), ion
mass (mi), ion charge state (Z), light velocity (c), and ion
sound velocity (cs = √

(ZTe + Ti )/mi).
By using Fourier transform in space and time,

âs,p(k, ω) =
∫

as,p(x, t )e−i(k·x−ωt )dxdt, (3)

Eq. (1) reduces to a coupled equation for the scattered light,

i
ω2

p0

Ln

∂ âs

∂kx
+ Dl âs = −1

2
ω2

p0a0(âp+ + âp−), (4)

where Dl = −ω2 + ω2
p0 + k2c2 − 2iωνs is the light wave dis-

persion function. And Eq. (2) is simplified as

k2
xV 2

0

L2
V

∂2âp

∂k2
x

+
[

3kx
V 2

0

L2
V

+ 2i
kxV0

LV
(ω + kxV0 + iνp)

]
∂ âp

∂kx

+
[

Dp + V 2
0

L2
V

+ i
V0

LV
(2ω + 3kxV0 + 2iνp)

]
âp

= −Zmec2a0k2

2mi
(âs− + âs+), (5)

where Dp = −(ω + kxV0)2 + k2c2
s − 2i(ω + kxV0)νp is the

IAW dispersion function. The subscript “+” and “−” repre-
sent (k + k0, ω + ω0) and (k − k0, ω − ω0), respectively.

The partial differential, (∂/∂kx )n, stems from the Fourier
transform of xn. The inhomogeneous term ω2

p = ω2
p0(1 +

x/Ln) contributes to ∂/∂kx in Eq. (4), while an x2-
inhomogeneity from (∂/∂t + V · ∇ )2 leads to ∂2/∂k2

x in
Eq. (5). To proceed, we neglect the second-order derivation
since kLV � 1 and keep only the lowest order of 1/kLV in
each term; then Eq. (4) and Eq. (5) can be simplified as

iLs
∂ âs

∂kx
+ Dl âs = −1

2
ω2

p0a0(âp+ + âp−), (6)

iLp
∂ âp

∂kx
+ Dpâp = −Zmec2a0k2

2mi
(âs− + âs+), (7)

where Ls = ω2
p0/Ln and Lp = 2kxV0(ω + kxV0)/LV . Com-

bining these two equations and eliminating âp, we have a
second-order ordinary differential equation (ODE),

∂2âs−
∂k2

x

− i

(
Dl−
Ls

+ Dp

Lp

)
∂ âs−
∂kx

+
(

�2 − DpDl−
LsLp

− i
1

Ls

∂Dl−
∂kx

)
âs− = 0, (8)

where �2 = k2a2
0c2ω2

pi/4. Equation (8) can reduce to the stan-
dard form of Schrödinger equation just by introducing

âs−(kx, ω) = W (kx, ω)e
i
2

∫
(

Dl−
Ls

+ Dp
Lp

)dkx , (9)

and thus the Schrödinger equation in k space is

∂2W

∂k2
x

+ F (kx, ω)W = 0. (10)
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We sort the potential in descending powers of Ln and LV : F =
F0 + F1, and

F0 = 1

4

(
Dl−
Ls

− Dp

Lp

)2

+ �2

LsLp
, (11)

F1 = i

2

∂

∂kx

(
Dl−
Ls

− Dp

Lp

)
. (12)

LV and Ln are often in the same order.
Equations (10)–(12) form a second-order ODE in k space

describing SBS in a plasma of linear inhomogeneity. These
equations have the same forms with those derived in Ref. [21]
for absolute Raman side scattering, but the formulas are
much more complicated due to the flow inhomogeneity. The
potential F (kx, ω) is a complicated function of kx. We can
solve the Schrödinger equation by the WKB method when
F (kx, ω) �= 0, and the approximated solution is given by
W± ≈ W0F−1/4 exp (±i

∫ √
Fdkx ) [25]. The phase integral

gives us a finite gain, which is definitely the Rosenbluth
gain, G = πγ 2

0 /κ ′VsxVpx [23], when damping is negligible.
However, the WKB method is no longer valid as F (kx, ω)
approaches zero. Then Eq. (10) must be solved through
the eigenvalue problem, and the imaginary part of eigenval-
ues implies an absolute instability may exist. Here, absolute
Brillouin scatterings may occur when F (kx, ω) ≈ 0, which
indicates that the scattering geometry should satisfy,

∂

∂kx

(
Dl−
Ls

− Dp

Lp

)
= 0. (13)

In Sec. IV, we will discuss the condition in detail, but before
that we solve the eigenvalue equation of this Schrödinger
equation to obtain the growth rate and threshold via a standard
procedure verified by many authors [19–22].

III. EIGENVALUE SOLUTION
OF SCHRÖDINGER EQUATION

To solve the Schödinger equation when F (kx, ω) = 0, the
joining condition, also known as the Bohr-Sommerfeld quan-
tization condition, should be satisfied,∫ k2

k1

√
F (kx, ω)dkx =

(
n + 1

2

)
π, (14)

where k1 and k2 are the turning points of the potential well,
satisfying F (kx, ω) = 0. Since the potential is much more
complicated, we use the perturbation method to find the eigen-
value. As is well known, the density and velocity scale lengths
in ICF conditions is approximately hundreds of microns, or
even millimeters, so we have kLn � 1 and kLV � 1. Abso-
lute instability can exist in such condition when the WKB
approximation violates. To find the eigenmodes, first we apply
Eq. (14) to the homogeneous case, i.e., (Ln, LV ) → ∞, so
F0 dominates the potential, and k1 and k2 must merge to
have a finite integral. This gives us the equations to find the
homogeneous growth rate,

F0(kx, ω) = ∂F0(kx, ω)

∂kx
= 0. (15)

In deriving the homogeneous growth rate, we assume
ω = ωr + iγ , and ωr satisfies the dispersion relation of

the ion acoustic wave: ωr = kcs − kxV0. In the weak cou-
pling limit (γ 
 ωr), the dispersion functions is reduced as
Dp ≈ −2ikcs(γ + νp) and Dl− ≈ 2iω0(γ + νs). Substituting
Eq. (11) into Eq. (15), we can readily obtain the homogeneous
growth rate,

γh = γ0 − ν̄, (16)

where

γ0 =
√

�2

4ω0kcs
×

√
4(ω0/Ls)(kcs/Lp)

ω0/Ls + kcs/Lp
, (17)

ν̄ = ω0/Ls

ω0/Ls + kcs/Lp
νs + kcs/Lp

ω0/Ls + kcs/Lp
νp. (18)

γB ≡
√

�2

4ω0kcs
= kv0ωpi/4

√
kcsω0 is the SBS growth rate in

homogenous plasma.
Next we deal with the weak inhomogeneous plasma. Po-

tential F is a finite function and also dominated by F0, since
kLn, kLV � 1. Then we can expand F (kx, γ ) in a Taylor series
near the homogeneous state (kh, γh),

F ≈ F0

∣∣
kh,γh

+ ∂F0

∂kx

∣∣∣∣
kh,γh

(kx − kh) + 1

2

∂2F0

∂k2
x

∣∣∣∣
kh,γh

(k − kh)2

+ ∂F0

∂γ

∣∣∣∣
kh,γh

(γ − γh) + F1

∣∣
kh,γh

. (19)

The first two terms vanish, and to keep the lowest order, we
neglect the last term. Thus, by substituting Eq. (19) into the
eigenvalue equation [Eq. (14)], we have the growth rate in the
inhomogeneous plasma,

γ = γh +
(

n + 1

2

) (−2∂2F0/∂k2
x )1/2

∣∣
kh,γh

∂F0/∂γ
∣∣
kh,γh

. (20)

The quantities ∂2F0/∂k2
x and ∂F0/∂γ are easily obtained from

Eq. (11) and Eq. (15),

∂2F0

∂k2
x

≈ 1

2

(
Dl−
Ls

− Dp

Lp

)
∂2

∂k2
x

(
Dl−
Ls

− Dp

Lp

)
, (21)

∂F0

∂γ
= i

(
Dl−
Ls

− Dp

Lp

)(
ω0

Ls
+ kcs

Lp

)
. (22)

One should note that ∂2

∂k2
x
( Dl−

Ls
) = 2c2/Ls � ∂2

∂k2
x
( Dp

Lp
), so we

neglect the corresponding term in Eq. (21). Substituting the
two formulas into Eq. (20) and using Eqs. (15) and (17), we
finally obtain the eigenvalues,

γ = γ0

[
1 + (i − 1)

(n + 1
2 )

√
c2/Ls√

2( �2

LsLp
)3/4

]
− ν̄. (23)

The real part of γ is the inhomogeneous growth rate,

Re[γ ] = γ0

[
1 − (n + 1

2 )
√

c2/Ls√
2( �2

LsLp
)3/4

]
− ν̄. (24)

The effect of plasma inhomogeneity demonstrated by the
second term in the bracket implies both density and veloc-
ity inhomogeneity play roles as effective dampings on the
growth rate, and the real damping terms obviously decrease
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the growth rate. If damping is negligible, the threshold to the
lowest order (n = 0) is

4�2

LsLp
>

(
c2

Ls

)2/3

. (25)

Substituting �2,Ls, and Lp mentioned above, we obtain the
threshold for absolute Brillouin scattering,

(v0

ve

)2(ω0

c
LV

)4/3
> 2Ma

(
ω0

ωp0

)4/3(LV

Ln

)1/3(kx

k

)
, (26)

where Ma = V0/cs is the Mach number at the resonant point,
v0 = a0c is the quiver velocity, and ve = √

Te/me is the elec-
tron thermal velocity.

The existence of such absolute instability requires that
the Bohr-Sommerfeld quantization condition be valid, which
means the interaction length in the k space must be larger
than 
k = Re(k1 − k2). Therefore, the localized region of
absolute instability has a width (for the lowest order n = 0),


k ≈ 2.4M1/8
a

(ve

v0

)1/4(ωp0

ω0

)1/2
(

kxLn

kLV

)1/8(
ω0

Lnc

)1/2

. (27)

The damping-free threshold is checked by numerical so-
lutions of coupling equations in k space in Sec. VI. When
compared to previous results [(v2

0/v
2
e )(k0LV )4/3 > βLV /Ln in

Ref. [16] where β is some constant], the scaling law is differ-
ent. This difference is due to incorrect κ ′′ = −2k/L2

V (where
κ is the wave-number mismatch) used in their paper, while
if a correct κ ′′ is derived, we can obtain the same scalings
with Eq. (26). In addition, our results can also be verified by
absolute Raman scattering. If we replace �2 = k2a2

0c2ω2
pe/4

and Ls = Lp = ω2
p0/Ln, which are readily obtained from

coupling equations of Raman scattering, one can recover the
damping-free threshold of absolute Raman scattering [21] by
evaluating Eq. (25).

IV. GEOMETRY OF ABSOLUTE
BRILLOUIN SCATTERINGS

Absolute Brillouin scattering occurs when Eq. (13) is sat-
isfied. We assume in a local plasma the incidence angle to
the x axis is θ , so it is readily obtained that ∂Dl−/∂kx =
2c2(kx − k0 cos θ ) and ∂

∂kx
( Dp

2kxV0(ω+kxV0 ) ) ≈ 1
Ma|k| − 1

kx
. Equa-

tion (13) reduces to

2Lnc2(kx − k0 cos θ )

ω2
p0

= LV

(
1

Ma|k| − 1

kx

)
. (28)

The equation is solved according to a specific resonant con-
dition. For oblique incidence, different polarizations have
different resonant conditions, since the polarization direction
of scattered light shall be parallel to that of the pump laser to
keep a maximum ponderomotive force.

Therefore, we discuss two types of polarizations in this
paper: The incident laser is s polarized where its electric field
is perpendicular to the plane of x̂ and k0, and p polarized
where the electric field is in that plane. The general resonant
conditions of s- and p-polarized SBS are shown in Figs. 1(a)
and 1(b), respectively, and we assume the scattering angle to
the x axis is ϕ. First for an s-polarized laser, we readily obtain

FIG. 1. General Brillouin scattering geometries of (a) an s-
polarized laser and (b) a p-polarized laser. The x axis is the direction
of the density and velocity gradients, and the propagation direction
of pump and scattered lights are θ and φ to the x axis, respectively.

the wave vectors of each decay wave from the three-wave
matching condition,

|ks| ≈ |k0|, |k| ≈ 2|k0| sin

(
ϕ − θ

2

)
,

kx ≈ |k0|(cos θ − cos ϕ). (29)

Substituting Eq. (29) into Eq. (28), we have

(cos θ − cos ϕ) cos ϕ

1 − sin( θ+ϕ

2 )/Ma

= ω2
p0

2k2
0c2

LV

Ln
. (30)

Solving for ϕ, we obtain the scattering geometry of absolute
Brillouin scattering with an s-polarized laser. While for a p-
polarized laser, the corresponding wave vectors in Fig. 1(b)
are

|ks| ≈ |k0|, |k| ≈ |k0|
√

2 − 2
cos ϕ

cos θ
, kx ≈ |k0|(cos θ − cos ϕ).

(31)

Also substituting into Eq. (28), we have the scattering geom-
etry of a p-polarized pump laser,

(cos θ − cos ϕ) cos ϕ

1 − 1
Ma

√
1
2 (cos θ − cos ϕ) cos θ

= ω2
p0

2k2
0c2

LV

Ln
. (32)

The solutions of Eqs. (30) and (32) are shown in Fig. 2 for
Ma = 1.5 and different α ≡ (ω2

p0/2k2
0c2)(LV /Ln). There exist

two types of absolute Brillouin scattering geometries: ksx or
kx approaches to zero. If α 
 1, ϕ approaches 90◦ or 270◦,
which makes ksx ≈ 0, i.e., the scattered light is perpendicular
to the velocity gradient. The other solution is ϕ approaches
θ or 360◦ − θ , which makes kx vanish. ϕ ≈ θ means the
scattering is fully forward and ϕ ≈ 360◦ − θ also indicates a
forward scattering. These situations are depicted by black and
blue curves in Fig. 2. As α increases, the region of absolute
instability shrinks. For Ma � 1, no absolute SBS could occur
when α > cos2 θ/4, which implies that the absolute SBS is
prohibited at high densities. As Ma decreases, one would
expect a larger region of absolute instability. We also find that
there is no big difference between the scattering geometries of
an s-polarized pump and a p-polarized pump.
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FIG. 2. Solutions of (a) Eq. (30) and (b) Eq. (32) with Ma = 1.5
and α ≡ (ω2

p0/2k2
0 c2)(LV /Ln) = 0, 0.02, 0.1 and 0.3.

V. THRESHOLD FOR ABSOLUTE BRILLOUIN
SIDE SCATTERING

Among two absolute scattering geometries, we are inter-
ested in the absolute Brillouin side scattering where ϕ ≈ 90◦
or 270◦, since the absolute forward Brillouin scattering has
an infinitesimal growth rate, γ0 → 0 as kx → 0. Also, there
are three types of absolute Brillouin side scatterings: two
s-polarized lasers with ϕ ≈ 90◦ and ϕ ≈ 270◦, which are,
respectively, the forward and backward side scatterings, and
one p-polarized laser with ϕ ≈ 90◦ or ϕ ≈ 270◦ (these two
modes are the same).

Substituting the scattering geometries discussed in Sec. IV
into the threshold formulas, we can obtain the theoretical in-
tensity thresholds. In Fig. 3, we plot dependencies of intensity
thresholds on four quantities with three types of Brillouin side
scatterings. Collisional and Landau dampings are neglected
here, so the threshold is determined by Eq. (26). The black-
solid, red-dashed, and green-dash-dotted curves represent the
forward side scattering of the s-polarized pump, backward
side scattering of the s-polarized pump, and side scattering
of the p-polarized pump, respectively. Unless the variable is
discussed, the parameters are λ0 = 351 μm, LV /Ln = 1, Te =
1 keV, LV = 200 μm, Ma = 1.5, ne = 0.1nc, and θ = 30◦.

As shown, backward side scattering has the lowest thresh-
old, and then comes the p-polarized and forward side
scatterings subsequently, in accordance with the descending
IAW wave number. Figure 3(a) shows the velocity scale length
dependence of the intensity threshold, which is relatively low
when damping is neglected. It has a scaling law of Ithreshold ∝

FIG. 3. (a)–(d) The dependencies of velocity scale length, Mach
number, electron density, and incidence angle on the intensity thresh-
olds, respectively. Thresholds of three types of absolute Brillouin
side scatterings are compared. Unless the variable is discussed,
the parameters are λ0 = 351 μm, LV /Ln = 1, Te = 1 keV, LV =
200 μm, Ma = 1.5, ne = 0.1nc, and θ = 30◦.

L−4/3
V . In Fig. 3(b), as the Mach number increases, the thresh-

old increases almost linearly, so Ithreshold ∝ Ma.
The plasma density not only acts as a scaling term on

the right-hand side of Eq. (26), but also strongly affects
the scattering geometry. Figure 4(a) shows the scattering

FIG. 4. The corresponding scattering angles of (a) Fig. 3(c), and
(b) Fig. 3(d).
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FIG. 5. Intensity threshold with the effect of Landau damping,
obtained by solving Re[γ ] = 0. Three different electron-to-ion tem-
peratures with Z = 1 are discussed, and other parameters are the
same with Fig. 3(a).

angle of side-scattered lights as a function of plasma den-
sity. When plasma density increases, the side-scattered light
slowly changes its propagation direction from the perpendic-
ular direction towards the x axis. However, the backward,
p-polarized, and forward side scatterings are quenched at ne =
0.32, 0.35, and 0.425nc, respectively. Below those densities,
the intensity threshold decreases as the density increases and
satisfies a scaling law of Ithreshold ∝ n−2/3

e as long as it is not
too close to the quenching point as shown in Fig. 3(c).

The θ dependence of the intensity threshold is a little com-
plicated. It is involved in the threshold condition through the
geometry term, kx/k. As shown in Fig. 4(b), the scattering an-
gles are slowly changed until they reach the quenching points,
which are 64◦, 65◦, and 74◦ for the corresponding scattering
geometry. The intensity threshold shows different behaviors
for different side scatterings. For forward side scattering, the
intensity threshold increases with the incidence angle, while it
has an opposite trend for the other two side scatterings. But we
observe that these variations are not remarkable, which means
the threshold is weakly dependent on the incidence angle.

The theoretical thresholds considering the effect of damp-
ing are also discussed. As is well known, the Landau damping
of the ion acoustic wave mostly depends on ZTe/Ti, and colli-
sional damping is negligible in the interested parameter space.
We numerically solve the threshold equation, Re[γ ] = 0, and
plot the velocity scale length dependence of the intensity
threshold in Fig. 5 under the same conditions as Fig. 3(a)
and H+ ions (Z = 1). As the ion temperature increases from
zero [Fig. 3(a)] to 0.5Te, the Landau dampings of IAW waves
are νp/kcs = 0.017, 0.15, and 0.45 for ZTe/Ti = 20, 10, and
2, respectively, which corresponds to ICF relevant situations
from weak to strong Landau damping. Under weak Landau
damping, the intensity threshold still remains at a low level.
Absolute Brillouin side scattering could occur there. As the
ion temperature increases to the level of electron temperature,
strong Landau damping lifts the absolute threshold dramati-
cally. However, this is not the whole picture, since with strong
damping the theoretical analysis is not accurate enough to give
a correct threshold, which will be shown in numerical results
in the next section. Even though one should also note that

the sort from the lowest threshold to the highest threshold is
reversed. The forward side scattering of the s-polarized pump
has the lowest intensity threshold because of its smallest IAW
wave number, leading to the smallest Landau damping. This
would make the forward side scattering easier to occur when
damping is included.

VI. NUMERICAL SOLUTIONS, CONVECTIVE GAIN, AND
COMPARISON WITH THEORETICAL THRESHOLDS

Numerical solutions of coupling equations in k space
are performed to verify the theoretical threshold of absolute
stimulated Brillouin side scattering. Instead of numerically
seeking for the eigenmodes of the complex Schrödinger
equation [Eq. (10)] through the WKB numerical method or
shooting method [20], here we employ a method integrating
the coupling equations to find the convective gain and abso-
lute threshold. This method has recently been used to study
stimulated Raman side scattering [3,22].

Before numerical integrating the coupling equa-
tions in the k space, we introduce a transform
âs(kx ) = As(kx ) exp[i

∫
(Dl/Ls)dkx] and âp−(kx ) =

Ap(kx ) exp[i
∫

(Dp−/Lp−)dkx], so Eqs. (6) and (7) are
simplified as

∂As

∂kx
= i

ω2
p0a0

2Ls
Ape

i
∫

(
Dp−
Lp− − Ds

Ls
)dkx

, (33)

∂Ap

∂kx
= i

Zmec2a0k2
−

2miLp−
Ase

−i
∫

(
Dp−
Lp− − Ds

Ls
)dkx

, (34)

where As and Ap are nonoscillated quantities, leading to a
better numerical stability.

The numerical integral starts from the vacuum kout =
−

√
(ωs/c)2 − k2

sy, via the resonant point kx = 0, and reflects

back to the vacuum kin =
√

(ωs/c)2 − k2
sy (i.e., an integral

length of 2Ln in real space), where ωs and ksy are the fre-
quency and transverse wave number of the sidescattered
light, respectively. The outgoing wave boundary conditions
are used: As(kout ) = 1 and Ap(kout ) = 0. Collisional damp-
ing is not considered here, so |As| only decreases near
the resonant point and gets a stable amplitude at kx = kin.
The gain of side-scattered light can be defined by G =
log(|âs(kout )|2/|âs(kin )|2), and it is sensitive to the scattered
wave number. Assuming a fixed frequency and change k near
the resonant point, we can obtain a maximum gain right at the
real part of the eigenvalue in the k space [26]. In addition, a lo-
cal maximum gain is expected when the imaginary part of the
eigenvalue vanishes, which is exactly the absolute threshold.

For example, Fig. 6 shows the gain as a function of incident
laser intensity in two different situations: (a) without damping,
and (b) with strong damping. When damping is negligible, an
obvious peak is observed. This peak corresponds to the state
of the vanishing imaginary part of the eigenvalue, therefore, it
is the absolute threshold. Below that intensity, only convective
instability occurs, characterized by the convective gain, while
above that intensity, absolute instability occurs and the gain
becomes meaningless. As damping increases, the absolute
threshold increases along with an increase of gain in the abso-
lute unstable region, making the observation of resonant peak
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FIG. 6. Gain evaluated from G = log(|âs(kout )|2/|âs(kin )|2) as
a function of incident laser intensity. (a) Case without damping,
Te = 1 keV, LV = Ln = 50 μm, Ma = 1.5, ne = 0.1nc, and θ = 0◦.
(b) Case with strong damping, ZTe/Ti = 2, LV = Ln = 100 μm, and
other parameters are the same with (a). Red dashed line denotes the
absolute threshold.

difficult. An extreme case is shown in Fig. 6(b) where strong
Landau damping at ZTe/Ti = 2 is set and no peak is found
here. The absolute threshold is a line separating the regular
and chaotic behavior, and beneath the absolute threshold we
see a linear increasing of the convective gain. Although the
absolute threshold is as high as 1015W/cm2, the convective
gain is also high enough making the convective side scattering
remarkable.

With this method, we can find the absolute threshold nu-
merically and compare with our theoretical threshold. Here,
we compare the previous threshold [Eq. (65a) in Ref. [16]]
with our theoretical and numerical thresholds in Fig. 7. Since
Liu et al. only considered normal incidence and no dampings
are included, we assume normal incidence θ = 0◦ in Fig. 7.
Our theoretical and numerical thresholds without damping
(Ti = 0) are well consistent and it is far beyond the Liu’s
result. Their threshold has the same scaling of I0 and Ln as ours
[(v0/ve)2(k0Ln)4/3 ≈ 0.48], but its coefficient in the right-
hand side is too small and irrelevant with the Mach number
and density, which seems incorrect intuitively. As damping is
included, theoretical threshold and numerical thresholds begin
to separate when ZTe/Ti � 10. The numerical thresholds are
lower than the theoretical thresholds, which may give us the
possibility to observe absolute Brillouin side scattering at the
high ion-acoustic-wave damping regime.

Therefore, our damping-free threshold, Eqs. (26) or (25),
is verified by the numerical results, however, the theoretical
threshold with damping [Re[γ ] = 0, evaluated from Eq. (24)]
is accurate only when the damping is small. This discrepancy
may come from the perturbation method of finding eigen-

FIG. 7. Comparison of theoretical (solid lines), numerical thresh-
old (squares), and Liu’s result [(dashed line) Eq. (65a) in Ref. [16]].
Four different dampings of ZTe/Ti = 2, 10, 20, ∞ are plotted. All
cases are normal incidence θ = 0◦, and other parameters are the same
as Fig. 3(a).

modes, since we find the same problem when comparing
numerical and theoretical thresholds of absolute Raman side
scattering using Afeyan’s results [21].

VII. CONCLUSIONS AND DISCUSSIONS

The theory of absolute stimulated Brillouin scattering in an
inhomogeneous flowing plasma is presented. Different from
the previous studies of absolute SBS [16,24], here we trans-
form the coupling equations to a Schrödinger equation in the
k space, and solve the Schrödinger equation as an eigenvalue
problem by the perturbation method. This approach has been
successfully used to derive the threshold of absolute Raman
side scattering and two-plasmon decay, but is first used for
SBS. There are two types of absolute Brillouin scatterings:
the forward scattering and side scattering. Among them, side
scattering is of great importance since the growth rate of
forward scattering almost vanishes. The theoretical threshold
and growth rate that we obtained have corrected Liu’s result
of absolute Brillouin side scattering, and extended to the case
of the arbitrary incidence angle and with the effect of damping
considered. Numerical solutions of the coupling equations in
the k space show us good agreement between the theoretical
and numerical thresholds when damping is not significantly
large, however, the theory overestimates the threshold when
ZTe/Ti � 10 where strong Landau damping with νp � 0.1kcs

is seen.
In the context of ICF, Brillouin side scattering has not been

observed yet. There still are possibilities to find such instabil-
ity, since the velocity scale length is as long as several hundred
of microns, or even millimeters (in the indirect-drive scheme),
the Mach number is on the order of unity, and the threshold
is not very sensitive to the incidence angles. The absolute
threshold under such conditions and without damping is as
low as 1013W/cm2. The only concern is the Landau damping
of IAW, which strongly relies on ZTe/Ti. Usually, Te � Ti and
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Z is determined by the materials. A high Z environment is
often seen in the Au wall of the indirect-drive ICF, and the
middle Z environment is used in doped ablation material in
the direct-drive scheme [27]. Even so, in the environment of
low Z materials such as H, He, Be, C, etc., the Brillouin side
scattering may still have a chance to occur in the convec-
tive regime [as depicted in Fig. 7(b)], unexpected hot-spot
speckles [28], nonlinear regimes that eliminate the Landau
dampings [29–31], or new ignition schemes with higher laser
intensity [32–35]. What makes this side scattering an invisible
phenomenon is perhaps the shortage of measured equipment.
For example, the forward side scattering has a lower Landau
damping, thus a lower threshold, and it may occur more eas-
ily, but the trajectory of this scattering is not pointed to the

detectors, making the observation difficult. Therefore, stimu-
lated Brillouin side scattering is a possible instability in ICF,
but its existence is yet to be seen, experimentally.
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