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Particle-in-cell techniques for the study of space charge effects in an electrostatic ion beam trap
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We developed a simulation technique to study the effect of space charge interaction between trapped ions in
the electrostatic ion beam trap (EIBT). The importance of space charge is demonstrated in both the dispersive and
the self-bunching regime of the ion trap. The simulation results provide an estimate for the space charge effect
on the trapping efficiency. They also allow for a better understanding of the enhanced diffusion and the self-
bunching effect and provide a better characterization of the EIBT as a mass spectrometer, where peak coalescence
is important. The numerical results reproduce all experimental data, demonstrating the critical importance of
including space charge effects, even at low ion density, to understand the ion trap dynamics.
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I. INTRODUCTION

The electrostatic ion beam trap (EIBT), ever since its
invention by Zajfman and co-workers [1,2], has been an
important development in the field of ion beam trapping,
allowing for various applications in the field of atomic, molec-
ular, and cluster physics [3]. The basic principle behind the
EIBT is quite similar to that of the optical resonator [4].
Instead of optical mirrors, the EIBT electrostatic mirrors and
lenses are used for trapping oscillating ions (see Fig. 1). In
a typical EIBT setup, a bunch of ions is introduced into the
trap with a kinetic energy of a few keV. Once trapped, the
ions oscillate between the two mirrors with a frequency in
the range of hundreds of kHz. Trapping life time is mostly
limited by the rate of collisions between the trapped ions and
the residual gas, and for high number of trapped ions, also by
ion-ion collisions induced by space charge.

The behavior of ions trapped in the EIBT is known to
be strongly influenced by the values of the potentials on the
mirror electrodes, as well as by space charge. The electrostatic
potential on the mirrors can be tuned mainly in two modes: the
dispersive or the self-bunching (synchronized) mode [5]. The
critical parameter characterizing these two modes is the slip
factor defined as

2 dfe
fosc dEk '

where fos is the oscillation frequency of a trapped ion with
initial kinetic energy E;. When the slip factor is tuned to be
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negative, the mode is called dispersive mode. In this mode,
the initial ion bunch spreads out rapidly. If the ion-ion inter-
action is strong (i.e., for a high density initial bunch), then the
diffusion process is even more enhanced for the same initial
conditions [6]. When the slip factor is positive (meaning that
slower ions oscillate with higher frequency), and the charge
density is high enough, the overall dynamics result in the
self-bunching of the ions, canceling the dispersion. In this
mode, the repulsive Coulomb interactions between the ions
is the leading cause for the self-bunching phenomena [7]. A
minimum ion density is required for creating long-lived stable
bunches [8] in this mode. This unique feature has lead to
some initial applications in the field of high-resolution Fourier
transform mass spectrometry [9]. The two modes describing
the dynamics of diffusion and self-bunching have been inves-
tigated numerically and theoretically, using a one-dimensional
(1D) model system [5,9] based on a mean-field approximation
and N-body simulation. In the mean-field approximation, the
ion dynamics is modelled by the motion of a single charged
test ion and a sphere of radius R uniformly filled with N
identical ions moving in a model potential. Using this simple
model, it was shown that in the self-bunching mode, as the
number of ions in the sphere is increased, the motion of the
test ion and the sphere are highly correlated, and the max-
imum distance between the sphere and the ion is bounded.
However, in the dispersive mode, the bunch width was shown
to increases much faster [5]. This simple model provided an
insight about the minimum density of particles required for
the self-bunching to occur [5,8]. However, one-dimensional
models are a crude approximation to the actual experimental
conditions.

In this paper, we report about a two-dimensional particle-
in-a-cell simulation (2DCylPIC) allowing for a detailed study
of the ion dynamics in the cylindrical symmetric EIBT. Such

©2021 American Physical Society
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FIG. 1. Schematic view of the EIBT setup.

simulation can mimic the experimental conditions and repro-
duce the experimental data over a long storage time both in
the dispersive and in the self-bunching modes. The simulation
is used to investigate and reconcile various previous [5-8] and
new experimental observations.

II. EXPERIMENTAL SETUP

The EIBT (see Fig. 1) consists of two coaxial electrostatic
mirrors, each composed of a stack of cylindrical electrodes.
Depending on the configuration of the trap which is charac-
terized by the potentials on six of these electrodes: V), Vi, V2,
Vi, Vy, and V,, the EIBT can be operated in the diffusion or
self-bunching mode of the trap. The schematic setup for the
ion injection (SFZ in the present study) in the EIBT is depicted
in Fig. 1.

The ions are produced in a pulsed (20 us pulse duration)
Even-Lavie supersonic expansion source [10]. The injected
gas into the valve consist of SFg (~1%) mixed with Argon
as a carrier gas (~99%) at a total pressure of 180 PSI. The
mixture is supersonically expanded through the pulsed nozzle
and is ionized by a electron pulse accelerated to an energy
of about 200 eV, impacting the expanding gas ~1 mm after
the nozzle. The source is mounted on a high-voltage platform,
which accelerates the ions to E; = 4.2 keV, which then pass
through a skimmer, an Einzel lens and a pair of orthogonal
deflectors to be finally injected and trapped in the EIBT.

We use two different settings for the EIBT electrode po-
tentials: In the diffusion mode these were V, = 5750 V,
Vi=6500V,V, =4875V, V3 =3250V, V4, = 1625 V,and V,
= 3400 V and for the self-bunching mode the values were

=4050 V, V; = 4700 V, V, = 4875 V, V3 = 3250 V,
V4 = 1625 V, and V, = 4050 V. All other electrodes were
grounded. The ions were injected into the trap by lowering
the left entrance electrode voltage V, to ~1600 V in the
diffusion mode and to ~2600 V in the self-bunching mode.
The pressure in the trap was ~3 x 107!° Torr and the average
lifetime was on the order of 1000 ms [11]. Mass selection
(in the present case for SF;) was performed by adjusting
the time delay between the voltage pulse operating the ion
source nozzle and the entrance mirror. After each injection,
the ions were trapped for about 800 ms. The time-dependent
dynamics of the trapped ion bunch was recorded using the
pickup electrode [11] (see Fig. 1). The pickup electrode is
slightly shifted from the center of the trap towards the exit
mirror. The pickup is connected to the gate of a junction field
transistor whose drain is fed to a charge sensitive amplifier.

The amplified signal is recorded as a function of time with a
16 bit digital oscilloscope at a sampling rate of 10-50 MHz
and, for each injection, subsequently stored in a computer and
analyzed in real time. The time traces and the average time
trace are analyzed directly and converted to the frequency
domain via Fourier transform (FT). Depending on the exact
electrode voltages, the half oscillation time (i.e., the time
between each passing through the pickup electrode) was about
5.35 us and 5.65 us in the dispersive and self-bunching mode
of the trap, respectively.

III. TWO-DIMENSIONAL SIMULATIONS
WITH ION-ION INTERACTION

The particle-in-cell (PIC) technique [12] has been widely
used for many years for studying plasmas, gravitational
systems, geodynamics, etc. In the present case, Poisson’s
equation is solved numerically on a computational grid, and
the electric field at each grid point is obtained. The positions
and velocities of simulation particles representing ions are
then updated based on their location on the grid. Next, the new
particle locations are used to update the charge density on the
grid, at which point the electric field is recalculated. The simu-
lation continues in this fashion until complete. The 3DCyIPIC
code [13] is a particle-in-cell code originally written to sim-
ulate ion trap and ion transport devices best modeled using
a three-dimensional (3D) cylindrical coordinate system. It has
since been updated to support other two-dimensional (2D) and
3D coordinate systems and is a natural choice in studying the
ion dynamics in the EIBT. An overview of the code used here
has been presented in Ref. [13], with additional applications
demonstrated in Ref. [14], so only a summary and relevant
new information will be provided here. First, the grid upon
which the electric field is calculated is defined. This includes
choosing the geometry, e.g., 2D cylindrical with azimuthal
symmetry, 3D cartesian, etc., defining the physical size of the
model space covered by the grid, and setting the resolution of
the grid points. The particle storage objects are also initialized
and provide a structure to store information such as position,
velocity, mass, charge, etc., for each particle in the simula-
tion. Next, any optional classes are initialized. These typically
include routines to handle interactions with buffer gas or to
handle boundary conditions inside the model space using the
capacity matrix method [15]. Next, the boundary conditions
are set to their initial values, usually associated with potentials
applied to electrodes. At this point, the code enters a loop that
is repeated in time steps of A¢, which is determined by the
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time scale of the physics involved (e.g., radio frequency (RF)
period, particle velocities, mean free path, etc.). The general
practice is to choose the largest value of Az that does not sig-
nificantly change the simulation results. In all the simulations
described here a Ar = 5 ns was used. The first step in the
loop is distributing the charge associated with the particles in
the simulation using the cloud-in-cell technique [16]. Particles
can be created or lost at every time step, so the total amount
of charge distributed on the grid can vary as the simulation
progresses in time. Next, the electric potential is calculated on
the grid. The simulations presented here use spectral methods,
such as the one described in Ref. [16], as they are swift
and accurate. Their major drawback is that one must use the
capacity matrix method [13] to include boundary conditions
inside the model space, and not just on the boundaries. After
the potential has been calculated, the electric field at each
grid point is determined by numerical differentiation. After
the electric field has been calculated, the particle positions
and velocities are updated using the leap-frog method [16].
In the final step, the time is incremented, boundary conditions
are updated if necessary, and the loop repeats. This continues
until an end condition is satisfied or the simulation is manually
terminated.

The physical model space for these PIC simulations is a
2D axisymmetric (r-z) cylinder with a radius of r, = 8§ mm
and length z, = 380 mm with uniform grid spacings of
dr = 0.05 mm and dz = 0.1 mm, respectively. z, = 380 mm
is the trap length. The radius of the model space was chosen
to be equal to that of the minimum inner radius of the EIBT
electrodes to avoid the need to use the capacity matrix method
described above, which would increase the execution time
of the simulation. The SIMION software package [17] was
used to calculate the contribution to the total potential of
each individual electrode on the boundary of the PIC model
space, and was used to define the boundary conditions when
calculating the total potential within the model space.

Since the pickup electrode is the primary experimental
diagnostic tool of the ion dynamics in the EIBT, it is highly
desirable to include it in the simulation. This is accomplished
by designating some portion of the radial boundary of the
model space as the pickup detector. Using a method similar
to the one described in Appendix 6 of Ref. [18], applying
Gauss’ Law to the area specified as the pickup detector, the
radial electric field is given by E, = o /e,, where o is the
surface charge density and ¢, is the permittivity of free space.
Each boundary point defined as part of the pickup detector
defines an annular element with an area of 27t r,dz, so the total
surface charge on a grid point, denoted by i, that comprises the
pickup detector is g; = 2nr,dzE, j€,. By summing over all g;
of the pickup detector, the total induced charge is calculated
which exhibits periodic peaks as the ion bunch passes through
the pickup detector. A typical time trace of the pickup signal
as it passes through the pickup detector is shown from the
experiment (top) and simulation (bottom) in Fig. 2.

Simulation operation and initial ion distribution

The present simulations were carried out both in the disper-
sive and the self-bunching modes in a setting that represents
as closely as possible the experimental setup. However, the
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FIG. 2. Example of the time trace of the pickup signal as
recorded in the experiment (top), where the pickup electrode is
located slightly shifted towards the exit electrodes and simulation
(bottom), where the pickup electrode is located exactly at the center
of the trap from 0.3 to 0.35 ms. Time zero in the simulation and
experiment are not equal. Since in the experiment the injection is
included while in the simulation it is from the center of the trap.

injection process itself was not simulated, and the ion bunch
was initially located at the center of the trap with an initial
bunch width of 30 mm (corresponding to a bunch width
(FWHM) of 0.9 us), a radius of about 4 mm in the disper-
sive mode and 2 mm in the self-bunching mode of the trap,
a kinetic energy of 4.2 keV and an initial spread of 3 eV,
that closely matches the experimental conditions. For some
specific cases, to match the initial experimental conditions,
the initial width has been varied accordingly. No attempt was
made to study the effect of beam emittance in this work, as it
very much depends on the experimental conditions upstream
of the trap, and is not an intrinsic property of the trap. To
analyze the pickup and simulation data, a windowed thresh-
olding method was created and used to extract the FWHM of
each peak. The details of the data analysis method are given
in Appendix.

IV. RESULTS AND DISCUSSION

A. Dispersive mode

While the trap has been proven to be stable under the
conditions defined in Ref. [19], which are similar to an optical
resonator, these conditions do not include the effects of space
charge. To provide an estimate for the loss of particles in the
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FIG. 3. Simulated trapping efficiency ¢ as a function of the num-
ber of injected ions in the diffusion mode of the trap with space
charge for experimental (red dots) and optimized potentials (black
dots). The slip factors for the experimental and optimized potentials
are —0.645 £ 0.006 and —0.639 =+ 0.003, respectively. The lines are
drawn to guide the eyes.

trap due to space charge, a simulation was carried out with an
increasing number of particles (having 0.9 us as initial bunch
width) for a trapping time of 10 ms. The simulation was first
performed using a set of electrode potentials identical to the
experimental ones. These potentials were then varied to find
whether the trapping efficiency could be improved. In Fig. 3,
we plot the trapping efficiency (¢), which we define as the
percentage of ions with stable trajectory after a storage time
of 10 ms, as a function of the initial number of ions N, injected
in the trap for both the experimental set of electrode potentials
(red) as well as for the optimized one (black: We found V| =
5680 V and V, = 3100 V, all other potentials being identical
to the experimental ones). Using the potential as in the exper-
iment, for a very small amount of particles ¢ is about 79%.
Increasing the number of ions in the trap results, as expected,
in a decrease of the trapping efficiency, in the range of 65% for
about half a million ions. However with the optimized mirror
potentials, the efficiency of trapping could be increased by
more than 15% to e=98% for a small number of particles to
about 90% for half a million ions. Such optimized potentials
are important for experiment requiring long trapping time.
Overall, these results show that while space charge has, as
expected, an effect on the trapping efficiency in the dispersive
mode, it is not a major one. No attempt was made to simulate
the initial emittance of the ion beam, which is most likely the
reason for the initial offset for the trapping efficiency.

A very important question about the dynamics of ion
bunches in the trap is the time evolution of a bunch. Under-
standing such evolution is critical, for example, while trying
to use the EIBT as a long time of flight mass spectrometer.
While a simple model can be used to understand such dy-
namics without space charge (but including kinetic energy
spread), including this effect requires a more detailed calcu-
lation. For this purpose, we simulated and measured (under
identical conditions) the time-dependent FWHM of a stored

FIG. 4. Time-dependent FWHM for a stored ion bunch with
175000 ions in the dispersive mode. The black dots are the results
of the experiments while the red and green lines are the simulation
results with and without space charge, respectively.

bunch width injected in the trap with various initial number
of ions. Figure 4 illustrates the measured FWHM (black dots)
for a 4.2 keV SF." ions injected with an initial FWHM of
about 1.24 us (42 mm). The data shows the rapid growth
of the bunch size, filling up the trap in about 1.6 ms of
storage time. The simulation (red line) is able to reproduce
the experimental data assuming that the initial bunch includes
about 175000 ions. To visualize the importance of the space
charge contribution to the bunch width broadening, a similar
simulation was carried out without space charge (green line),
showing, as expected, a much slower widening of the bunch,
mostly due to the initial energy distribution and the slightly
different length of trajectories allowed in the trap. In the case
of no-space charge, for each time step the field is calculated
using the charges of the ions just to get the induced signal on
the detector. Then again, the field is calculated without using
the ions charge, which is used to move the ions. This enables
to get the induced signal on the pickup detector for no space
charge case and the FWHM for comparing with the space
charge case for consistency. Simulations performed with the
optimized potential yield similar results.

As an additional illustration of the bunch behavior, Fig. 5
shows the simulated evolution of the axial distribution of the
ions with time in the dispersive mode of the trap with space
charge effect. The axial distributions of ions are recorded
every time the mean axial position of all the ions crosses the
center of the trap. The initial axial standard deviation is set to
be identical to the experimental values used in the simulation
(bunch width =42 mm or 1.24 us). Figure 5(a) shows the ini-
tial distribution at the beginning of the simulation, Figs. 5(b)
and 5(c) show a snapshot after 0.64 and 1.03 ms of storage
time, respectively. Figure 5(d) shows the steady state distribu-
tion (here after about 1.86 ms), once the bunch is fully spread
in the trap. The high density of ions at the edges is due to the
much slower velocity of the ions within the mirror areas.

Given the importance of the space charge effect on the
bunch width, we simulated the bunch time development as a
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FIG. 5. Axial distribution of the ions with time in the dispersive mode of the trap with space charge for 175 000 ions.

function of the number of ions. Figure 6 shows the evolution
of the FWHM (initial width = 0.9 us) of the bunch for varying
number of ions from 5000 to 250000 ions. For comparison,
the FWHM for no-space charge case is also included (black
line) for 100000 ions. The results, shown in Fig. 6, demon-
strate the strong space charge effect on the time-dependent
FWHM of the bunch in the dispersive mode of the trap. The
data is shown for the maximal trapping time for which a fit
still faithfully represents the ion distribution within the bunch.
Such results are quantitatively important when using the trap

100 k ions_noSC
5 k ions_withSC
10 k 1ons_withSC
20 k ions_withSC
50 k 1ons_withSC
100 k ions_withSC

FWHM (us)

0.5 =175 k 1ons_withSC
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0 1 2 3 4 5 6
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FIG. 6. Simulated time-dependent FWHM of the stored bunch
width (initial width = 0.9 us) as a function of the number of injected
ions in the dispersive mode. For comparison, the black curve is
calculated without space charge case with a total of 100 000 ions.

in the dispersive mode, as a very long time-of-flight mass
spectrometer [20]. Indeed, one could think of the EIBT as an
extremely long time-of-flight mass-spectrometer (TOFMS),
but the results shown here demonstrated the importance of the
space charge effect on the bunch widening. This effect is much
stronger in the EIBT than in a field-free TOFMS, due to the
relatively high density of ions at the turning points in the mir-
rors. However, since in a typical TOFMS, the time-of-flight is
only of the order of few to tens of microseconds, the EIBT can
be used to increase this time-of-flight by at least an order of
magnitude, especially with low ion density, without increasing
the bunch size, before extracting the trapped ion and measure
their time of arrival on a typical micro-channel plate, similar
to a standard TOFMS. Example of such methods, for a very
low ion density, have already been demonstrated in Ref. [21].

B. Self-bunching mode

Similar to the dispersive mode Sec. IV A, the trap effi-
ciency ¢ was investigated in the self-bunching mode. Figure 7
presents the results as a function of the number of injected
ions Ny for 100 ms in the self-bunching mode of the trap
with space charge interaction for an initial bunch of 0.9 us.
It is evident from these results that the efficiency decreases
quicker than for the dispersive mode, as the number of ions is
increased from 5000 to 250 000 ions. The trapping efficiency
for 1000 and 250 000 ions after 100 ms of trapping are ~85%
and ~9%, respectively. This rapid decrease in efficiency for
large number of ions is the direct result of the self-bunching
phenomena which increases the space charge effect by keep-
ing the ions bunched for very long trapping time, hence the
need to compute the efficiency over a longer storage time (100
ms) than for the dispersive mode (10 ms), as shown in Fig. 3.
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mode of the trap with space charge for 100 ms. The line is drawn
to guide the eye.

These results demonstrate that while the EIBT can be used in
both modes of operation, the contribution of the space charge
to the trapping efficiency (and hence the lifetime) is more
critical in the self-bunching mode than in the dispersive mode.
However, it shows (and will be discussed in more details
below) that even a small amount of ions is enough to produce
self-bunching.

To demonstrate the self-bunching effect, the FWHM of
a simulated ion bunch time evolution is shown in Fig. 8 as
red (with space charge) and green (without space charges)
lines. The experimental results are shown as black dots. The
simulation is performed for 50 000 ions with an initial FWHM
of 1.8 us to match the experimental conditions, for a total
storage time of 100 ms. As can be seen in Fig. 8(a), in this
configuration, the FWHM of the ion bunch rapidly decreases
to about 0.75 ws. Additional changes in the FWHM can be
seen in the data at later storage time, most likely due to the
capture and release of ions which are not part of the bunch
due to their initial specific trajectories and/or energies. These
oscillations persist until around 20 ms, after which the FWHM
remains more or less constant as time evolves, as shown in
Fig. 8(b). The simulated data with space charge interactions
(red line) has a similar behavior, within the uncertainty of
the data. The simulation data for no space charge (green line)
initially shows a decrease in the FWHM, which is likely due to
the shallow potential gradient, before it starts to increase again
similar to the diffusion mode and eventually filling up the trap
after a storage time of about 20 ms. These simulation results
clearly demonstrate that the self-bunching effect is due to the
combined effect of the slip factor 1 [see Eq. (1)] being positive
and the space charge effect. These two effects acting together
create a situation where (1) the faster ions in the bunch have a
longer oscillation time than the slow ones because they spend
more times in the mirrors regions of the trap, hence these
ions are located at the trailing side of the bunch, while (2)
in this situation, the Coulomb repulsive forces among the ions
tend to slow down the fast ions and speed up the slow ions.
This peculiar effect has been shown to be useful for mass
measurement using Fourier transform of the pick up signal
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Simulation_withSC
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FWHM (ps)
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Time (ms)

=
=]
[
N

) = Simulation_noSC
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FIG. 8. Comparison between the time-dependent simulated
(lines) and the measured (black dots) FWHM for a trapped ion bunch
in the self-bunching mode (a) 20 ms and (b) 100 ms. The simulation
is performed for 50 000 ions. The red and green lines are the result
of the simulation with and without space charge, respectively.

over long storage time. The fact that it can be reproduced
using this simulation opens the door for further calculations
where the impact on mass resolution and mass separation due
to space charge can be studied in more detail (see Sec. [V C
below).

Similarly to Fig. 5, the time evolution of the axial distri-
bution of ions in the self-bunching mode with space charge is
shown in Fig. 9. Figure 9(a) shows the distribution width after
0.06 ms of storage, namely at the beginning of the simulation.
Then in Figa. 9(b), 9(c), and 9(d), the axial distribution is
presented for all trapped ions at 23.36, 53.44, and 99.56 ms,
respectively. The narrowing of the bunch width, as shown
in Fig. 8, is clearly seen. The self-bunching continues for
more than 100 ms of storage time, and is only limited by the
maximum simulation time and the requirement for minimum
ion density (see below). It is also clear from these results that
while an injected ion bunch can survive in the trap for quite a
long storage time, more and more ions are slowly lost from the
bunch (albeit not from the trap), filling up the trap and losing
synchronization with the initial bunch.

To better characterize this effect and find its dependence
on the ion density, the simulated, time-dependent FWHM for
various number of ions (from 5000 to 100000) in the self-
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FIG. 9. Axial distribution of the ions at different time stamp in the self-bunching mode of the trap with space charge effect for 50 000 ions.

bunching mode is shown both in Fig. 10(a) (for up to 5 ms
of storage time) and 10(b) (for up to 100 ms of storage time).
The case for no space charge for 100 000 ions is also included
in the figures for comparison (black line). As in Fig. §, a
fast decrease of the FWHM is observed at the beginning for
all cases, with faster narrowing being observed for higher
charge density. After 10 ms the FWHM seems to stabilize [see
Fig. 10(b)] to a constant value which depends on the number
of ions: The higher the number of ions, the larger the stable
bunch is. Here for 100 000 ions with space charge a complex
oscillating behavior is seen that may be due to the internal
bunch dynamics and interaction with residual ions. For the
no space charge case, the FWHM shows a slow increase and
fills the trap within 25 ms, as in Fig. 8. However, the initial
decrease of the bunch width as seen in Fig. 8 for the initial
bunch of 1.6 us is not seen when the simulation is performed
for the ion bunch starting with a smaller width of 0.9 us (see
Fig. 10). This is further investigated by varying the initial
width with no space charge in the self-bunching mode and
the results are shown in Fig. 11.

Figure 11 shows simulated data for varying initial FWHM
for 50000 and 100000 ions in the self-bunching mode of
the trap without space charge interactions for 10 ms. It is
been seen that for larger initial FWHM, there is a dip in the
FWHM initially for the simulation starting with the initial
bunch width of 1.63 and 2.08 us till about 5 ms, which
subsequently rises after that. The dip in the FWHM at the
start is more pronounced for larger initial width and it goes
down systematically with smaller initial bunch widths and we
no longer see a dip at the beginning for the cases of 0.9 and
0.34 us. Since there is no space charge interaction involved in
these calculations, the effect is purely of the shallow potential
gradient of the self-bunching mode, that affects the dynam-

ics of ion bunches as it evolves with time and the effect is
more dramatic for larger initial widths. The simulated data for
100000 ions is also included for two cases of 0.9 and 1.63
us initial bunch widths and the results are similar to that of
50000 ions cases as expected since there are no space charge
interaction involved in these calculations.

Given that the space charge is the main factor affecting
the self-bunching, we have studied the low density regime in
greater detail. Of course, the minimum density of ions needed
to achieve self-bunching will depend on additional parame-
ters, such as the specific beam energy, the initial bunch size, or
the exact configuration of the trap. However, one factor which
is clearly working against the self-bunching is the initial beam
energy spread. For this purpose, we have carried out a series of
simulation focused on low ion density for 1000, 2000, 3000,
and 4000 ions with a fixed initial width of 0.9 us and for an
initial energy spread of 3 and 5 eV. The results are shown in
Figs. 12(a) and 12(b) for an initial energy spread of 3 and 5 eV,
respectively. The self-bunching effect is observed in all cases,
for an initial energy spread of 3 eV [Fig. 12(a)]. However,
for an initial energy spread of 5 eV [Fig. 12(b)], the data
clearly shows that 1000 ions are not enough to stabilize the
bunch which rapidly grows in size (black line). As expected,
these results clearly show that a minimum number of ions
are needed to sustain the self-bunching effect, and that this
low limit depends on the energy distribution of the incoming
ion beam. However, this low limit is surprisingly small (of
the order of a 1000 ions in a 0.9 ws bunch) for a beam
energy width of about AE;/E; = 1073. While more studies
are needed to characterize this limit in a systematic way,
including the mass dependence, these numbers suggest that
such a system could be of use in practical mass spectrometry
system, where such energy resolution and number of ions are
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FIG. 10. FWHM calculated for varying numbers of ions used
in the simulation starting from 5000, 10000, 20000, 50 000, and
100000 ions with space charge effect for the initial width of 0.9 us;
a simulation data without space charge effect for 100 000 ions is also
included for comparison; panel (a) shows the simulation results for
the first 5 ms and panel (b) shows the results for the whole 100 ms.
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FIG. 11. FWHM calculated for 50 000 ions (self-bunching mode
of the trap with no space charge) for various initial width of 0.34,
0.90, 1.26, 1.63, and 2.08 us as well as for 100000 ions, for 0.90
and 1.63 us initial bunch as a function of trapping time.

Time (ms)

FIG. 12. FWHM calculated for varying numbers of ions (1000,
2000, 3000, and 4000 ions) for the same initial width of 0.9 us and
different energy spread AE; of (a) 3 eV and (b) 5 eV in self-bunching
mode.

typical. We investigate this aspect in the next section, using
the simulation.

C. Mass spectrometry applications

One of the earliest type of mass spectrometers is the
time-of-flight mass spectrometer (TOFMS) [22,23], whose
resolution depends largely on the length of the flight tube and
the dispersion due to velocity spread. TOFMS mass resolu-
tion and detection sensitivity decreases with increasing mass,
and they can reach mass resolving power of 103-10* with
relatively good efficiency. Another type of mass spectrometer
with excellent mass resolving power and high efficiencies,
even for larger mass, is the Fourier-transform ion cyclotron
resonance mass spectrometer (FTICR-MS) [24,25]. FTICR-
MS can reach the mass resolving power of up to 103 with
high efficiency, but requires superconducting magnets with
fields higher than 10 T for mass spectrometry studies of larger
biomolecules and nanoparticles. The current generation of
multireflection time-of-flight mass spectrometer (MR-TOF-
MS) can achieve mass resolutions of 10° and relative mass
precision up to 1078 [26], which is adequate to provide precise
information on nuclear binding energies and unambiguous
species identification. MR-TOF-MSs are fast, efficient, high-
precision instruments that have been steadily improving in
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performance and have proven to be versatile beam diagnosis
and optimization tools [27]. Other devices, such as the Orbi-
trap, can also be used for similar purposes [28].

One of the questions often asked about the EIBT is its pos-
sible application as a mass spectrometer. In other words, could
the EIBT in the self-bunching mode separate ions of various
masses (with identical kinetic energy)? As the trap is purely
electrostatic, the oscillation time of the ions depends on the
mass-to-charge ratio given as T = 1/f o \/(m/q), where T
is the oscillation time, f is the frequency of oscillation, m and
q are the mass and charge of ion, respectively. The EIBT has
already been shown to act a mass spectrometer [20,29] with
high resolving power of the order of (10°-10°) experimentally.
However, coalescence of bunches of ions of similar mass has
been observed experimentally in the self-bunching mode [30].
It was also shown that the coalescence effect appears when
the number of ions in the close-mass peaks exceeds a certain
threshold using a 1D model and the Coulomb interaction
between ions of similar mass has a resonant nature [31]. How-
ever, no systematic (simulation) study has been performed to
understand the possible effect of bunch coalescence in the
case where two (or more) different type of ions, with different
masses, are being trapped and self bunched.

An initial simulation test was performed by trapping two
singly charged isotopes of Xe, namely, '*! Xe™ and ¥ Xe™
for 50 ms in the self-bunching mode with an initial FWHM
of 1 us and an energy spread of 3 eV. Figures 13(a) and
13(b) show the Fourier transform (second harmonic) of the
pickup signal obtained from the trapping of two Xe isotopes,
for 4000 and 40000 ions, respectively. In both cases, the
two peaks are clearly separated. The FWHM of the peaks
shown in Fig. 13(a) are about 20 + 0.50 Hz, which corre-
sponds to §m/m = 28f/f ~ 2.3 x 107, while in Fig. 13(b)
the FWHM of the peaks are broadened a bit due to space
charge interactions and is about 27 £ 2 Hz, corresponding
to dm/m =28f/f ~ 3.1 x 107*. The fit is using the tails
of the distribution, resulting in a better accuracy than the
binning. The resolution of the peaks are only limited by the
trapping time and much higher resolution is possible. From a
simple calibration procedure, the expected frequency differ-
ence Af between these peaks representing the two masses
of B! Xe™ and ¥ Xe™' should be about 660.34 Hz. The
corresponding frequency difference from the simulation with
4000 and 40000 ions is about 660.11 and 658 Hz, respec-
tively. These results show that for relatively low mass, and for
low bunch density, the EIBT, in the self-bunching mode, is
able to be operate as a precise mass spectrometer. However,
the effect of higher ion density is also clearly observed as
the frequency difference decreases with the increase in ion’s
density.

To gain further insight into the effect of peak coalescence
for higher mass, we run a series of simulations with masses of
1000 and 1003 for different number of ions. The simulation
was performed as a function of the number of ions in the
bunches (identical for both masses). Figure 14 shows the
Fourier transform (second harmonic) of the pickup signal for
the four cases of 2000, 4000, 40 000, and 100 000 ions. The
results show that for small number of particles (2000 and
4000), the peaks are well resolved with a FWHM of about
22 Hz, which corresponds to 8m/m = 28f/f ~ 7 x 10~* and

6 X107
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=44
=
Q
=
£3 »
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14 ‘J
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~17
3.0 210
(b) 132y o+ — 40000 ions
2.5 181 o+
gZ.O-
-
215
< 1.0
0.5
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173000 173200 173400 173600 173800 174000 174200 174400
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FIG. 13. Fourier transform of the pickup signal (from simula-
tion) for the two Xe isotopes (131 and 132) trapped together in the
self-bunching mode for 50 ms for (a) 4000 ions and (b) 40 000 ions
(bottom).

the frequency separation is about 97.34 Hz, while for 40 000
and 100 000 the coalescence effect is clearly seen.

To quantify this, we show in Fig. 15 the frequency dif-
ference Af as a function of the number of ions in the
self-bunching mode for a storage time of 50 ms. The coales-
cence effect is clearly apparent starting from 15 000 ions, but
relatively minor for less ions, and is asymptotically approach-
ing the value expected (shown as a dashed line) if these two
ions would have been stored separately, as tested by running
the simulation for each mass separately.

These results show that while peak coalescence is a major
concern for large number of ions, it can be minimized by trap-
ping relatively small number of ions. While more simulations
are needed to fully characterize this effect for different range
of masses, energies and slip factors the simulation developed
here is a first step toward understanding this phenomena, and
the limitation it imposes on the use of a EIBT as a mass
spectrometer.

V. SUMMARY

In this work, we have developed a particle-in-cell simu-
lation technique to study the dynamics of ions trapped in an
EIBT both in the dispersive and in the self-bunching mode
of the trap. The simulation results have been compared with
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FIG. 14. Fourier transform of the pickup signal (from simulation) for the two masses (1000 and 1003) trapped together in the self-bunching
mode of the trap (a) 2000 ions; (b) 4000 ions; (c) 40 000 ions, and (d) 100 000 ions.

experimental data, and overall a good agreement is found.
The main aspect of this study has been to understand the
role of the ion-ion interaction in the dynamics of ions in the
trap. In the dispersive mode, we have found that the ion-ion
interaction leads to faster dispersion of the ion bunches; while
in the self-bunching mode it leads to the preservation of the
ion bunches for more than 100 ms, limited by the time of the

Af(Hz)

60000 80000 100000

No. of lons

0 20000 40000

FIG. 15. Simulated frequency difference (Af) between the
nearby masses 1000 and 1003 as a function of number of ions in
self-bunching mode. The error bars are calculated from the standard
error in the mean value of the Gaussian fit. The dashed line is
the expected frequency difference obtained by trapping each mass
separately. The line is drawn to guide the eyes.

simulation or minimum ion density criteria. The simulation
also enables characterization of the peak coalescence in a
more quantitative way, demonstrating the value of the EIBT
as a high resolution/separation mass spectrometer that, when
operated in the self-bunching mode with low ion density,
allows for self-bunching and avoids coalescence. The study
of time-dependent ion dynamics using external RF and chirp
pulse to understand the auto resonance cooling of ions [6] is
under progress.
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APPENDIX: DATA ANALYSIS

To analyze the signal from the pickup electrode in both
experimental and simulation data, a windowed thresholding
method was developed and used to extract the full width at
half maximum (FWHM) of each peak. This choice was made
because both the simulated ion bunches and the ion bunches
detected by the pickup electrode were often asymmetric and
varied in shape, with no known analytical form. This makes
extracting FWHM information from Gaussian or Lorentzian
fits to the data unviable.
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FIG. 16. Raw experimental pickup data, used for the analysis
shown in Fig. 8, which illustrates the variation in the baseline. The
data were acquired over duration of 100 ms and contain over 17 000
ion peaks. The zoom inset makes a small subset of the peaks gener-
ated by the ions visible on top of the baseline.

1. Windowing

To reduce the influence of a nonconstant DC baseline be-
tween peaks, it is necessary to chop the data into windows
containing only a single peak. An initial number of data points
is defined as the window width, with a few additional param-
eters controlling how the peak finding algorithm responds in
the case of no peak found or multiple peaks found. In the case
of no peak found, the window width increases by a given num-
ber of data points up to a predefined maximum width. In the
case of multiple peaks found, the window width decreases by
a given number of data points down to a predefined minimum
width. In the case that the maximum or minimum window
width has been reached but a single peak was not found, the
window is advanced a given number of data points until a peak
is located. In this way, the peak finding algorithm dynamically
controls the window width and translates it along the time axis
to capture individual peaks representing ion bunches. This
helps to linearize the baseline, which is not flat and exhibits
significant undershoot, by constraining it close to the peak.

2. Thresholding

The method described in this supplement is used both to
locate peaks and extract the FWHM information.

First, the data in the window is lightly smoothed using a
Savitzky-Golay filter [32] with a given polynomial order and
window size. This filter type can greatly reduce noise with
minimal peak distortion. The smoothed data is then placed
into a histogram.

The number of histogram bins chosen needs to be large
enough for the chosen threshold, Otsu’s Method [33], to work
well. For Otsu’s Method, it is important for the histogram to be
a bimodal distribution so the variance between the two modes
can be maximized. In practice, the baseline is found in one of
the modes and the top of the peak is found in the other.

To create enough bins such that the resulting histogram is
bimodal, but not so many bins that the bimodal structure is
lost, the number of bins N is calculated using the number
of data points n by multiplying a modification of Sturges’
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- FWHM

- Peak Height
—— Otsu Variance

- Otsu Max

11200
11150

11100
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FIG. 17. Binned data from the seventh peak shown in the inset
from Fig. 16. The green shaded area contains data below the baseline.
The red shaded area contains the data between the baseline and
the half maximum amplitude value. The solid line is the calculated
Otsu variance, and the black vertical dotted line marks the point
of maximum variance and the division point between the left and
right sections. The peak height is defined as the the last bin in the
histogram.

formula [34] with the standard square-root formula:
N = Inn * +/n. ()

This formula was chosen after systematically trying most
of the well known binning methods and combinations thereof.

After binning, Otsu’s Method is applied to divide the his-
togram at the point of maximum variance into left and right
sections. An example of this process is shown in Fig. 17.

To the left of the maximum variance, the signal baseline is
taken as either the mean or median of the data in that section,
whichever is smaller. The green shaded region indicates the
detected baseline level. The maximum height of the signal is
defined as the last bin in the histogram. The distance between
the baseline and the maximum height is taken to be the full
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FIG. 18. The raw and smoothed data from the seventh peak
shown in the inset from Fig. 16. The adaptive windowing algorithm
has clearly isolated a single peak, smoothed the data, applied the
threshold, and extracted the FWHM. Note that the peak would be
poorly approximated by a Gaussian or Lorentzian fit.
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height, from which the half maximum height is calculated.
The red shaded area contains the signal values that fall be-
tween the baseline and half maximum height.

3. FWHM

Once the half maximum height is found, the smoothed sig-
nal data is analyzed by an algorithm that applies certain con-
straints to ensure only a single peak is found in the window.

First, the half maximum height is applied as a threshold.
Only data above this threshold will be considered a potential
peak. Then, the left and right locations where each peak in-
tersects the half maximum height are calculated. If a potential
peak’s width is above a predefined value and the peak is not

too close to the left or right side of the windowed region, the
peak is analyzed further.

If the data are noisy, then narrow peaks sufficiently close
to one another are not interpreted as individual peaks but
instead are merged into a single peak. This merging behavior
is configurable.

The list of peaks found in the window is then returned to
the main windowing algorithm for processing. If exactly one
peak is found, then the smoothed signal data are interpolated
around the half maximum height to extract the FWHM. Oth-
erwise, the window is adjusted according to the procedure in
Appendix 1.

The result of the analysis of this single peak is shown in
Fig. 18.
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