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Particle dynamics governed by radiation losses in extreme-field current sheets
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Particles moving in current sheets under extreme conditions, such as those in the vicinity of pulsars or those
predicted on upcoming multipetawatt laser facilities, may be subject to significant radiation losses. We present an
analysis of particle motion in model fields of a relativistic neutral electron-positron current sheet in the case when
radiative effects must be accounted for. In the Landau-Lifshitz radiation reaction force model, when quantum
effects are negligible, an analytical solution for particle trajectories is derived. Based on this solution, for the case
when quantum effects are significant an averaged quantum solution in the semiclassical approach is obtained. The
applicability region of the solutions is determined and analytical trajectories are found to be in good agreement
with those of numerical simulations which account for radiative effects. Based on these results we demonstrate
that radiation reaction itself can provide a mechanism of pinching even within a given field consideration.
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I. INTRODUCTION

Current sheets are magnetoplasma structures that naturally
exist in the Universe. Current sheets with relatively moderate
values of the magnetic field strength and particle energies
appear, for example, as a result of the interaction of solar wind
with planetary magnetic fields. Much attention has been paid
to these sheets and analytical solutions of equations of particle
motion in such structures were obtained [1–8]. Characteristic
values of magnetic fields and particle energies in this case
usually do not require the consideration of radiation losses.

Apart from moderate current sheets there exist extreme
ones, for example, in the vicinity of pulsars [9]. In such sheets
the magnetic field and energies of electrons and positrons can
be strong enough to ensure abundant hard photon emission
and even pair production from photons [10]. Moreover, thanks
to upcoming multipetawatt laser facilities [11] extreme sheets
may naturally emerge in electron-positron plasma as a result
of vacuum breakdown [12,13] due to quantum electrodynamic
(QED) cascades [14]. Analysis of current sheet dynamics in
this case demands for quantum effects to be taken into account
and as a part includes the study of particle dynamics.

Earlier works show that radiative effects can significantly
change individual, as well as collective, particle dynamics
[15–23]. In this paper we investigate theoretically and nu-
merically the influence of radiation losses on dynamics of
ultrarelativistic particles in a model extreme current sheet;
as a reasonable simplification we assume the magnetic field
is fixed (which can often be justified by the relatively high
lifetime of current sheets [13]) and parallel to the current
sheet plane. This quasistationary plasma-field configuration
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is similar to laser excited [12,13] and space current sheets
[1,2,6,9,24].

In our study we consider radiation losses of different in-
tensities and consequently within different approaches. In
the case when a relativistic particle emits photons frequently
and each emitted photon carries away a negligible part of
particle energy, it is reasonable to consider radiation losses
in the form of the Landau-Lifshitz (LL) force [25]. In this
relatively simple case we derive an approximate analytical
solution of equations of motion. In the case when a particle
generally loses a large part of its energy in a single act of
photon emission, quantum effects significantly affect particle
motion and therefore must be taken into account. We modify
our solution in order to comply with quantum corrections of
power of photon emission [26] and obtain an average quantum
trajectory of a particle ensemble.

In order to verify our solutions and ranges of their applica-
bility we solve equations of motion numerically with radiation
losses within different approaches. The first approach employs
the Landau-Lifshitz radiation reaction force. The second one
uses the LL force with quantum corrections. The third and the
more advanced one is the semiclassical approach [27]. This
approach assumes probabilistic discrete emissions of photons
in accordance with quantum electrodynamics [28,29] and un-
perturbed classical Lorentz-force-driven motion in between
emissions. The semiclassical approach is widely considered
as the benchmark (although the terminology may differ)
[30–32]. Details of the employed numerical methods for tra-
jectory simulations in the frame of different approaches are
given in Refs. [33,34].

The structure of this paper is as follows. In Sec. II, we es-
tablish the setup of the problem, mention previously achieved
results for the case without radiation reaction and reformulate
them in a form more suitable for our purposes. In Sec. III we
consider radiation reaction in the form of a continuous force
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FIG. 1. A sample trajectory of the positron in the xz plane is in
blue. Red-green color shows value of By.

of radiative friction in the Landau-Lifshitz form and derive
an approximate analytical solution. In Sec. IV we investigate
the region of applicability of this solution and show how
it performs outside the theoretical bounds of this region in
comparison with a direct numerical solution of equations of
motion. In Sec. V we provide a method to obtain an average
solution in the quantum case based on the solution derived in
Sec. III.

Although current sheets are complicated self-consistent
plasma-field structures and particle dynamics should ideally
be considered self-consistently with the field generated by all
particles, the focus of this paper is the influence of radiation
losses on particle dynamics. As a first step, we ought to con-
sider radiation losses in the simplest possible field structure.
Therefore, in this paper we study the motion of probe particles
experiencing radiation losses in a linear magnetic field model-
ing the field structure of a current sheet. In Sec. VI we discuss
how radiative effects in collisionless plasma can contribute to
or even be the cause of pinching [35,36] and formation of peak
structures.

II. BASE MODEL

We consider the motion of a positron in a constant inho-
mogeneous magnetic field with a single nonzero component
By(x) and an according vector potential Az(x). Particle motion
in a field of such configuration has been studied before in
Refs. [2,4,7], where equations are written in Cartesian coor-
dinates x and z. In the present paper we solve equations of
motion in coordinates x and ϕ, where ϕ is the signed angle
between the positron’s velocity and the z axis (see Fig. 1),
assuming that the positron’s trajectory lies in the xz plane. We
employ such coordinates in order to exploit the analogy with a
pendulum oscillating in a gravitational field (see more below).
In order to first build a base model, in this section we do not
consider radiative effects. Since the positron is the antiparticle
of the electron, the motion of an electron can be obtained by
inverting the z axis and redefining ϕ as π − ϕ.

In these coordinates the system of equations can be written
as

ϕ̇ = −eBy(x)

mcγ
= −e ∂Az (x)

∂x

mcγ

ẋ = V (γ ) sin ϕ,

where e > 0 is the positron charge, m is the positron mass, c
is the speed of light, and γ is the relativistic positron Lorentz
factor. Since the positron’s motion is affected only by the
magnetic field, the first integral of motion is the positron’s ve-
locity V (γ ) = c

√
1 − γ −2 = const and therefore γ = const.

For this system a second integral of motion can be ob-
tained: since the vector-potential A = (0, 0, Az(x)) does not
depend on z, it is evident that Pz = pz − eAz/c = const.

What is of interest to us here is the properties of particle
motion near a null point of the magnetic field. Let us suppose
that the magnetic field changes linearly near the null point:
By(x) = kx, so the vector potential is a quadratic function:
Az(x) = kx2/2.

Then the system of equations can be rewritten as

ϕ̇ = − ek

mcγ
x

ẋ = V sin ϕ (1)

or ϕ̈ + α(γ ) sin ϕ = 0, where α(γ ) = ekV/mcγ is a constant
which depends on the particle’s γ factor and the slope of the
field k. We would like to emphasize that in this case the system
of equations assumes the exact form of the equations describ-
ing an ideal pendulum oscillating in a gravitational field. We
use this fact to draw an analogy between positron motion in
the field configuration specified above and oscillations of a
pendulum. See more in the Appendix. We provide the phase
space describing both systems and show the trajectories in real
space corresponding to those in the phase space (see Fig. 2 and
Table I).

Dividing Pz by the kinetic momentum p = mV γ one can
obtain the key dimensionless integral of motion η, which
determines the type of the trajectory (see Table I) of a system
with given parameters

η = cos ϕ − 1

2

e

c

kx2

mV γ
. (2)

The type and form of trajectory is determined by the
value η. The possible values for η (assuming k > 0) are
−∞< η < 1. Figure 2 and Table I show points on the well-
known phase space of a pendulum and corresponding points
on a trajectory of a positron in a linearly dependent magnetic
field for k > 0.

It can be found by setting x = 0 and cos ϕ = −1 in Eq. (2)
that η|sep = −1 for a particle on the separatrix. The maxi-
mal possible x in the inner region of the separatrix xsep =
2
√

cp/ek, which we will call the height of the separatrix, can
then be found by setting η = η|sep and cos ϕ = 1.

Values of η corresponding to certain trajectories are de-
noted in Fig. 2 and Table I. Particularly, it can be seen from
Eq. (2) that for trajectories that lie inside the separatrix (A-C),
and thus cross the x = 0 line (or the z axis), the exact value
of η is equal to cos ϕ at the instant when the z axis is crossed.
Since the absolute value of the angle is maximized on the axis,
it can be written that η = cos ϕmax. Accordingly, trajectories
type A correspond to values 0 < η < 1, trajectories type B
correspond to values η∗ < η < 0, trajectories type C: −1 <

η < η∗, and trajectories type D: η < −1, where η∗ ≈ −0.65
corresponds to a closed-curve trajectory shaped similar to
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FIG. 2. Phase space of Eqs. (1). Certain points are marked, ac-
cording trajectories are shown in Table I.

the digit 8. The presented classification is similar to the one
presented in Ref. [4].

For trajectories with η close to the maximal value η ≈ 1
the sin ϕ term in the equations can be linearized similarly
to the pendulum equation, and positron motion is close to a

harmonic oscillator with frequency ω0 = √
ekV/mcγ . In the

limit −η � 1 trajectories resemble a Larmor-like gyration
with a slow gradient drift in the negative z direction.

To summarize, we rewrote equations for a positron in a
given magnetic field in coordinates (x(t ), ϕ(t )) and we note
that in this form the system of equations matches that of
an ideal pendulum in a gravitational field. Accordingly, no-
table analogies were drawn between various entities such as
integrals of motion, trajectories, points on trajectories, and
external parameters.

While these exact trajectories take place in a linearly ap-
proximated magnetic field By ∼ x, it is clear that in the general
case the kx2/2 term in expression (2) for η has to be replaced
with the appropriate Az(x): η = cos ϕ − (e/c)Az(x)/mV γ .
Accordingly, for a certain positron with a known value of η

the direction of the positron’s velocity (determined by ϕ) is
tied to its coordinate x. From this follows that as long as Az(x)
is monotonous (meaning there are no additional null points of
By), the above classification of trajectories stands.

TABLE I. Different types of trajectories for a pendulum oscillating in a gravitational field and a positron in a current sheet and the
corresponding values of η. Type A: Low amplitude oscillations. Type B: High amplitude oscillations. Type C: Near-separatrix oscillations.
Type D: Circular motion. η∗ ≈ −0.65.
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III. RADIATIVE RECOIL: CLASSICAL APPROACH

A positron moving along a curvilinear trajectory can emit
photons. Based on the preceding work [13] we allow the
magnetic field and particle energy values to be sufficiently
high in order for the particles to exhibit radiative recoil. Even
though a single impact experienced by the particle as a result
of photon emission can be relatively weak, particle motion
can be qualitatively modified as a result of a sequence of such
acts. While recoil-free motion of particles would be infinite
and periodic as described in Sec. II, even recoil insignificant
over one period of particle motion may accumulate over mul-
tiple periods and have a significant effect on the motion of
particles. In Ref. [13] current sheets are shown to be formed
by ultraintense laser fields. The lifetime of these current sheets
was observed to be much larger than the laser wave period,
which is in turn much greater than the characteristic times
of particle trajectories, so such an accumulation may indeed
take place.

In this section we consider particle motion in the field
structure with a single nonzero magnetic field component
By(x) = kx with radiative recoil. In the case when particles
emit photons often and they carry away a negligible part of
the particle’s energy, it is reasonable to consider radiation
losses in the form of a continuous LL friction force [25].
The restrictions imposed by this and other assumptions are
discussed in Secs. IV–V. We also consider only the ultrarel-
ativistic case p/mc ≈ γ � 1, which allows us to neglect the
first and second terms of the LL force [25]. In our setup this
translates to

�Frad = − 2e4 �V
3m2c7

γ 2V 2k2x2. (3)

In the system of equations (1) γ was constant as there was
no recoil/friction. Accounting for radiative friction forces us
to treat γ as another parameter depending on time. Taking into
account that particle energy reduces due to radiative friction
given by the LL force in Eq. (3), the system of equations (1)
can be rewritten as

ϕ̇ = − ek

mcγ
x

ẋ = V (γ ) sin ϕ

γ̇ = − 2e4

3m3c9
γ 2V 4k2x2 (4)

We study this system of equations in the case of weak
radiative friction, which allows us to consider the Lorentz
factor of the positron as a slowly changing parameter. Con-
sequently, the positron’s motion at any given moment of time
can be approximated by the solution for the case without
radiative friction. Since, as we know, this motion is peri-
odic, the condition for weakness of radiative friction can be
written as

γ

γ̇
� T, (5)

where T is the period of motion for the given parameters of the
trajectory as described in Sec. II. The condition on the rate of
change of trajectory macrocharacteristics is discussed in more
detail further in Sec. IV. For further analysis we use solutions

without radiative friction as a basis, but we can no longer
assume that the prior integral of motion η remains constant,
and therefore must quantify the influence of radiative friction.

We assume γ � 1 (meaning V ≈ c) and employ substitu-
tions

x′ = x
√

ek/m/c

t ′ = t
√

ek/m

μ = 1/γ

D = 2
√

e5k/m3/3c3. (6)

In this case the system (4) can be written as (the primes have
been dropped):

ϕ̇ = −μx

ẋ = sin ϕ

μ̇ = Dx2. (7)

Differentiating the second equation of this system yields ẍ =
ϕ̇ cos ϕ. Substituting ϕ̇ from the first equation and cos ϕ from
(2) yields

ẍ = −μx

(
η + μx2

2

)

μ̇ = Dx2, (8)

where in the new variables

η = cos ϕ − μx2/2. (9)

In these variables xsep can be written as

xsep = 2/
√

μ (10)

and the term μx2/2 in Eq. (8) can be written as 2(x/xsep)2.
Also, it is evident that in this case the momentary frequency
of oscillations is ω = √

μ.
The solutions of Eq. (8) can be searched for in the form

x = Re
(
X (t )ei

∫
ω(t )dt

)
, (11)

where X (t ) = xmax(t ) and ω(t ) are slow real functions. Note
that instances when x(t ) = X (t ) coincide with instances
ϕ(t ) = 0, so it can be found from Eqs. (9) and (10) that
μX 2/2 = 2(X/xsep)2 = 1 − η.

From the second equation of (8) μ can be expressed
as μ(t ) = μ0 + ∫ t

0 Dx2dt = μ0 + (D/2)
∫ t

0 X 2(t )dt +
(D/2)Re(

∫ t
0 X 2(t )e2i

∫
ω(t )dt dt ), where the second term

represents the time evolution of the “slow” 〈μ〉, and the
third term represents the oscillatory part μ̃. The real
part can be expanded, e.g., Re(Z ) = (Z + Z∗)/2, where
* denotes the complex conjugate. After the substitution
of μ and of the assumed form of x(t ) (11) into the first
equation of system (8), the imaginary part of the term of
the resulting equation proportional to ei

∫
ω(t )dt can yield

ω̇X + 2ωẊ = (DX 3/8ω)(η + 3(1 − η)/8). Combining this
result with DX 2/2 ≈ μ̇ ≈ 2ωω̇ gives d/dt (X λω) ≈ 0 or
X λω ≈ const, where λ = 4/(1 + 5(1 − η)/8). In the case
ϕ � 1, equivalent to η ≈ 1, λ = 4, so X 4ω ≈ const [37]
can be considered an adiabatic invariant, which in its turn
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FIG. 3. A typical trajectory of a positron experiencing radiative friction in a current sheet. (a) x(t ) dependence (b) Trajectory in xz plane.
Colors represent the trajectory transitioning through different trajectory types. Blue (black) dashed line — type A-B, green (gray) solid
line — type C, red (black) solid line — type D. Current separatrix height xsep (10) on panel (a) is shown by the dotted black line.

leads to

X = X0

(
1 + t

τ

)− 1
10

ω = ω0

(
1 + t

τ

) 2
5

, (12)

where

τ = 8ω0
2/5DX0

2. (13)

Since xsep = 2/
√

μ and μ = ω2, xsep ∼ (1 + t/τ )−2/5. An
important consequence is that the decay of the separatrix
height xsep is faster than that of the amplitude X of particle
oscillations along x. Strictly speaking above we derived this
only for the case when the particle’s oscillations remain close
to sinusoidal (11), e.g., near the phase space center in the
ϕ � 1 region, but it suggests that eventually due to radiative
recoil a particle can escape the phase space region enclosed
by the separatrix. Let us now show that in fact X/xsep strictly
increases without the aforementioned limitation and that the
particle can indeed escape.

In the general case it can be shown that η̇ � 0. First, we
express η̇ as

dη

dt
= ∂η

∂ϕ
ϕ̇ + ∂η

∂x
ẋ + ∂η

∂ p
ṗ. (14)

Now, since η is constant in the absence of friction (which
is equivalent to ṗ = 0), the sum of the first two terms is zero,
so we obtain

dη

dt
= ṗ

∂

∂ p

(
cos ϕ − 1

2

ek

cp
x2

)
= 1

2

ek

cp2
x2 ṗ � 0, (15)

since ṗ � 0.
From the well-known phase space (Fig. 2) and Eq. (9) it

is evident that this result in fact means that the ratio X/xsep

strictly increases.
We demonstrate this finding in Fig. 3 by numerical model-

ing of the system of equations (8) showing a typical particle
trajectory along x(t ) with its separatrix height evolution

[Fig. 3(a)] and the corresponding trajectory on the xz plane.
The qualitative change in motion is clearly seen in Fig. 3(a)
near the mark t = 1.8 fs, where the particle stops crossing the
x axis, which means that in phase space it has escaped the
separatrix.

Since the type of trajectory and its placing on the (ϕ, ϕ̇)
phase space can be definitively determined from the value of
η (or that of X/xsep), it can be concluded from Eq. (15) that
in any model accounting for radiative friction the evolution
of particle trajectories occurs strictly in one direction from
trajectories type A towards type D. We would like to empha-
size the unusual phase portrait of this system: for a regular
pendulum dissipation leads to the formation of a stable focus
acting as the end point for most trajectories, while in our case
this focus is unstable and most trajectories lead to infinity.

Apart from these important, but qualitative, conclusions,
we note that the derived solutions also give quantitative esti-
mates of characteristic values inherent to the problem, such
as characteristic times (13), amplitudes, etc.. Such results are
useful in further research, including more complicated field
configurations, self-consistent considerations and so on.

IV. THEORY VALIDITY

The particle’s trajectory in the considered single-
component field structure is described by a system of three
first-order differential equations, so its state is completely
defined by three parameters: {x, γ , ϕ}. Variable substitu-
tion allows us to instead use a different set of variables:
{p/mc, η, ϕ}, where

p

mc
= γ

√
1 − γ −2

η = Pz

p
= cos ϕ − 1

2

ek

cp
x2. (16)

In the frictionless case the first two parameters serve as
integrals of motion.

It is assumed that radiative friction is weak enough so that
the characteristic times of significant change p/ṗ and μ/μ̇ for
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FIG. 4. The discrepancy between theory and numerical solution
δ as a function of p/mc and ϕmax, where cos ϕmax = η. The blue long-
dashed line marks the upper edge of the region of weak radiative
friction. The green short-dashed line and the solid red line mark the
value of the quantum parameter χ equal to 0.2 and 1, respectively.

these parameters are much larger than that of ϕ. In this case
ϕ is considered a quasiperiodic rapidly changing variable, so
a dimension reduction can be performed by eliminating “fast”
motion: the “slow” state of the system can be described by just
two parameters p/mc and η.

In order to further study validity and applicability of the
developed theory we have compared the rates of change for
parameters p/mc and η, which describe the state of the sys-
tem, yielded by the theory and by numerical solving for the
particle’s trajectory using Eqs. (4). The numerical simulation
is based on the fourth-order Runge-Kutta method with the
Landau-Lifshitz force included into equations of motion. In
Fig. 4 we present the map of deviation of these values for the
parameter η [38].

Let us denote as η̇sol the slow (averaged over oscillations of
ϕ) rate of change of η obtained in a numerical solution of the
system (4), and as η̇th, the one obtained using the theoretical
solution (12). Then |1 − η̇th/η̇sol| could be used as a measure
of accuracy of the theoretical solution. We use the value δ =
log10|1 − η̇th/η̇sol| < 0 and plot it as a function of p/mc and
ϕmax (where cos ϕmax = η). The relative difference between
the theoretical and numerical result is then equal to 10δ , which
represents the error in the rate of movement of the system on
the (p/mc, η) parameter plane.

As evident from Fig. 4, within the dark area (characteristic
values 10 � p/mc ≈ γ � 150, ϕmax � 20◦) the derivatives of
ηth and ηsol differ by less than 1%. The apparent condition
p/mc > 10 is easily explained by the assumption γ � 1 made
during derivation of the theory, as is ϕmax < 20◦ by ϕ �
1 rad. The apparently stronger limitation on ϕmax for higher
p/mc can be explained by the assumption of weakness of
radiative friction (below blue curve in Fig. 4). The particular
expression derived from Eqs. (5) and (12) and used in this
figure is p/mc = 0.1(2/D(1 − cos ϕmax))2/5, where the value
k ≈ 4.3 · 1017 Gs/cm is used, a characteristic value for the
problem in Ref. [13]. The red and green curves are discussed
in the following section. It should be noted that the position of
all three curves is dependent on k.

The area marked in black and dark grey can be con-
sidered the region of validity of the theoretical results in
Sec. III.

V. RADIATIVE RECOIL: QUANTUM APPROACH

In the previous section we showed that the proposed
analytical model for particle motion provides results well-
matching those obtained by direct solving of the system of
differential equations (4) (representing the ultrarelativistic
case of continuous radiative friction in the LL form) even
beyond the theoretical region of applicability. However, in
the case of stronger magnetic fields or larger particle en-
ergy a particle may lose a significant part of its energy in
a single act of photon emission, therefore quantum effects
start to affect particle motion. The quantum parameter χ =
(eh̄/m3c4)

√
(ε �E/c + �p × �H )

2 − ( �p · �E )
2

is a measure of non-
classicality of motion, where e and m are the positron charge
and mass, h̄ is the Plank constant, c is the speed of light, �E and
�H are the electric and magnetic fields and ε and �p are the par-

ticle’s energy and momentum. In our case χ ≈ γ H/H0, where
H0 = m2c3/eh̄ is the Schwinger field. It is usually considered
that at χ > 0.2 quantum effects start coming into play [26,39],
however we would like to note that at χ = 0.2 the quantum
correction already decreases the power of radiation by a factor
of two, so the correction may be relevant for even lesser values
of χ . We have included the curve χ = 0.2 (in green) in Fig. 4
to mark the region of applicability of the solution obtained
within the LL approach.

When considering the quantum case, first of all, the power
of the photon emission should be corrected because the LL
approach leads to overestimation of radiation losses [26]. Sec-
ond, photon emission has a probabilistic nature, so particles
initially in identical conditions may have different trajecto-
ries. The more advanced approach applicable in the quantum
case is the semiclassical model [27]. Within this approach a
charged particle is assumed to move classically and friction-
free in between instantaneous acts of photon emission. The
probability rate and spectrum of photon emission is obtained
in quantum electrodynamics [28,29]. The direction of prop-
agation of the emitted photon is assumed to match that of
the parent particle, which is an adequate assumption for the
ultrarelativistic case [25]. Thus the semiclassical method more
correctly describes the average power and the stochasticity of
photon emission.

Within the semiclassical approach an analytical study in
the general case is very complex, in many cases impossible,
due to the stochasticity of photon emission. A particle may
have a significant probability to lose almost all of its energy in
a single act of photon emission, and if a particle may exhibit
several regimes of motion, any averaging of parameters may
become inaccurate. Moreover, a large and abrupt energy loss
can break the condition of slowly varying parameters. These
factors become prominent when χ � 1. For the problem at
hand in the current paper this means that a significant portion
of particles may abruptly escape out of the separatrix due to
a large energy loss and continue motion in a different regime.
In Fig. 4 the curve χ = 1 is also presented (in red) and marks
the condition for significant stochasticity of photon emission.

However, in the case χ � 1 averaging of the particle en-
semble in the quantum case can be performed analytically.
One of the ways is the use of a Fokker-Planck-like equa-
tion [18]. Another way is based on averaging of radiative
recoil [40]. Note that the ratio of the average recoil force
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experienced by the particles in the quantum case to the LL
force is a factor (which we will denote as g) depending only
on χ : FQC/FC ≈ I (χ )/Iclass = g(χ ) < 1, where FQC and I (χ )
are the averaged force and power given by the semiclassical
model and FC and Iclass are the classical values [26]. Thus
a semiclassical model can be reduced to the corrected con-
tinuous radiative friction model by considering a continuous
radiation reaction force equal to the average radiation reaction
force given by the semiclassical model: Fcorr = FQC .

We implement this correction in the following way. Since
we assume that radiative recoil does not change the direction
of propagation of the particle, it is evident from the second
equation of (16) that η̇ ∼ ṗ, as well as γ̇ ∼ ṗ = F in the
ultrarelativistic case. Since the correction has the form of
an additional factor g < 1 in ṗ dependant on χ (and thus,
ultimately on parameters γ and η and oscillation phase ϕ),
it can be written for instantaneous values that

η̇corr (γ , η, ϕ) = g(χ (γ , η, ϕ))η̇class(γ , η, ϕ),

γ̇corr (γ , η, ϕ) = g(χ (γ , η, ϕ))γ̇class(γ , η, ϕ).

We are interested in the evolution of γ and η on times much
greater than the oscillation period, so the rapid oscillations
can be averaged out: we will denote with an overline values
averaged over a period of rapid oscillations of ϕ. In this way,
the averaged value is a function of only parameters γ and η.

χ (t ) can be viewed as a product of the slowly chang-
ing envelope χmax(γ (t ), η(t )) and fast oscillations f (ϕ(t )).
In this expression f (ϕ(t )) is a quasiperiodic function, so
g(χ (γ , η, ϕ)) is also quasiperiodic.

In this way, values yielded by the corrected model can be
computed as

ηcorr (t ) ≈ η(t = 0) +
∫ t

0
g(χ )

dη

dt class
dt,

γcorr (t ) ≈ γ (t = 0) +
∫ t

0
g(χ )

dγ

dt class
dt . (17)

In simpler words these curves can be obtained by stretching
every dt in the classical curves by a factor of 1/g(χ (t )).

A. Averaged quantum solution

We have performed a series of modeling of particle dy-
namics using the semiclassical approach with the help of our
code, based on the Runge-Kutta method, to solve equations of
motion and the Monte Carlo method to simulate random acts
of photon emission [33]. In order to be able to compare semi-
classical results with continuous-friction results, for each of
the initial conditions considered (an initial condition is defined
by |p| and η) 100 semiclassical trajectories were analyzed and
the average parameters |p| and η were computed for each mo-
ment of time t . These results were compared with the results
obtained in the classical LL model of continuous radiative
friction and the corrected continuous radiative friction model.

An example of evolution of η obtained using different mod-
els is presented in Fig. 5. As predicted, a clearly observable
difference is found in the evolution of slow parameters of
particles (in this case η) between the averaged semiclassical
case (blue) and the classical LL friction (green). However, it

FIG. 5. An example η(t ) using different models. Classical LL
model — green dashed line, Corrected LL model — red solid line,
Semiclassical case (averaged) — blue dotted line, Semiclassical case
(100 particles) — black. The initial parameters used are p/mc ≈ 176,
ϕmax = 20◦.

was also shown that this difference is substantially negated by
using the corrected LL friction model (red).

Particularly, it was obtained that for values of χ ∼ 1
parameters of trajectories (p and η) averaged over a large
number of random realizations are well approximated by the
corrected LL friction model. This result is substantial because
although individual trajectories at such values of χ feature
highly nonclassical individual dynamics, the average dynam-
ics allows for analytical description. As a quantitative measure
of the effectiveness of such a correction we offer the average
value of |ηav − ηcorr|/|ηav − ηLL|, which in the case of quite
strong stochasticity χinit = 0.5 amounts to � 0.1. In other
words, we have established that even for rather high values
of χ stochasticity does not play a decisive role for particles
experiencing the same type of motion, and their collective
(average) behavior can be well described analytically by
taking into account only the correction for the radiation re-
action force described above.

As such, the described above method can be used to
construct an averaged quantum solution from the classical
solution obtained with the LL model.

VI. DISCUSSION

In this section we try to apply our new knowledge to show
(from the point of view of particle trajectories) how radiative
effects can contribute to or even be the cause of pinching and
formation of peak structures.

In order to do that we would first like to consider a model
problem of a current carrying particle flow. We will assume
it consists of particles with identical absolute values of mo-
mentum p and the dimensionless parameter η moving in the
fixed field By = kx and we will take into account continuous
radiative friction as in Sec. III. This can give some insights
about the temporal evolution of the z-directed current Iz given
by these particles and its width along x. Although this consid-
eration is not self-consistent, it can either relate to the case of
a low-density collisionless plasma or serve as a first step of an
iterational approach to the self-consistent problem.

We have already shown both analytically and numerically
that the amplitude X , also serving as the width of the current
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FIG. 6. An example numerical solution of the system (4). The
evolution of (a) particle trajectory amplitude X (blue dashed line),
current Iz (green dash-dotted line), and linear current density iz (thick
red line), (b) Lorentz-factor gamma. The parameters used are D =
0.01 and the initial conditions are γ0 = 200, x0 = 0 and ϕ0 = 0.5◦.

profile, can decrease significantly [see Eq. (12) and Fig. 3]. In
itself it is not too surprising that a current can become more
narrow, as it can be achieved simply by removing particles
from the outer edges. It is, however, considerably more excit-
ing if this can happen without prompting a large reduction of
total current Iz, in which case it results in an increase of current
density and closely resembles the outcome of the pinching
process. In our setup Iz ∼ V cos ϕ, and we illustrate our point
by the case of γ � 1 (ensuring the first factor V ≈ c) and
ϕ � 1 (ensuring the second factor cos ϕ ≈ 1), see example in
Fig. 6.

Figure 6 represents the results of a numerical solution
of the system (4) with substitutions (6) [41] for D = 0.01
and initial conditions γ0 = 200, x0 = 0 and ϕ0 = 0.5◦. It is
evident that in this case energy loss [Fig. 6(b)] is accom-
panied by a decrease of the particle trajectory amplitude X
[Fig. 6(a)]. Since in the absence of radiation reaction X =
const (see Sec.II), this decrease is the direct consequence
of radiation losses. At the same time the total current Iz

remains nearly constant [Fig. 6(a)]. Without going into the
internal structure of the current profile, we consider the linear
current density as iz = Iz/X , which in this case evidently
increases by a factor of more than 1.6 [42]. Therefore, we
have shown that radiation losses can lead to an increase
of current density even in purely magnetic fixed fields.
This result is counterintuitive as one might expect damp-
ing to result in relaxation, not further accentuation, of peak
structures.

It should be noted that in a self-consistent problem such
an increase of current density would lead to an increase of
the magnetic field slope, further accelerating radiative effects
and creating somewhat of a positive feedback process. This
helps explain from the point of view of particle trajecto-
ries how radiative effects can contribute to two-dimensional
(2D) and 3D self-consistent z pinching [43]. This positive
feedback, however, is heavily constrained by the amount
of particles able to carry current near the center of the
sheet (and their speed is obviously limited by c): those that
lose enough energy end up in type D trajectories at a dis-
tance from the sheet center and with a negative contribution
to Iz.

In the case of current sheet generation in laser fields
though, a strong electric field component Ez can be present,
which can help lift this constraint. Particularly, in Ref. [13]
at inception and shortly after the current sheet field structure
includes a strong Ez component in the direction of propa-
gation of ϕ = 0 positrons (this is also a commonly studied
configuration for current sheets manifesting in astrophysi-
cal circumstances). The inception of a current sheet in that
problem was observed (via numerical modeling) to be an
extremely rapid process, during which particle density and
current density grow significantly, a strong magnetic field ro-
tor dBy/dx forms and the electric field depletes in the vicinity
of the magnetic null point.

The analysis performed in this paper allows us to conjec-
ture about particle motion possible in the presence of such
Ez. For gyrating particles the electric field leads to a drift in
crossed fields towards the x = 0 plane, effectively sweeping
all such particles towards the center of the sheet. Amazingly,
such sweeping of particles together with generation of new
particles via a QED cascade can lift the constraint on the
positive feedback process discussed above as they provide
additional particles able to carry current. As a result, the
magnetic field slope can increase much more significantly.
Although our simple model does not allow us to find the limit
to this positive feedback process, the natural limitation would
be the depletion of the electric field Ez serving as a source
of energy. All of this echoes the observations from numerical
experiments.

To summarize, from the point of view of particle tra-
jectories we have ascertained a mechanism based solely on
radiative effects that can lead to pinching in a collisionless
plasma even in fixed fields. Based on this mechanism, we have
suggested a probable means of formation of thin current sheets
in laser fields [13].

VII. CONCLUSION

Motion of ultrarelativistic charged particles in neutral
current sheets taking into account radiation reaction was
considered. Their phase space was studied and analytical so-
lutions were obtained in the approximation near the phase
space center. It was demonstrated both analytically and nu-
merically that a key parameter (serving in the frictionless case
as an integral of motion) η strictly decreases as the result of
radiative friction. Since this parameter solely defines the type
of a particle’s trajectory, this defines the path of evolution of
particles’ trajectory types: from current carrying trajectories
in the +z direction along the sheet to Larmor-like gyration
with a weak drift in the −z direction. Analytical solutions
were compared against numerical solutions of the system of
differential equations featuring radiative friction in the classi-
cal Landau-Lifshitz form and found to be a match within 1%
inside the theoretical region of applicability of the analytics
and within 10% well outside of it. A comparison of models
featuring continuous radiative friction against semiclassical
models was performed, it was shown that the usage of the
corrected LL model significantly reduces the error of the con-
tinuous models versus the results of the semiclassical model
averaged over a large number of realizations. As a result, a
method for analytical description of averaged parameters of
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particle trajectories in the semiclassical case was proposed.
Finally, it was shown from the point of view of particle trajec-
tories how radiative friction can contribute to current pinching
processes in collisionless plasma and assist self-consistent
current sheet formation by ultraintense laser fields considered
previously in Ref. [13].
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APPENDIX: ANALOGY BETWEEN POSITRON
IN CURRENT SHEET AND PENDULUM

The system of equations (1) assumes the exact form of
the equations describing an ideal pendulum oscillating in a
gravitational field, which is assumed to be a mass m (we
intentionally use the same designation as the positron’s mass)
suspended on a massless rod of length l under influence
of gravitational acceleration g. We use this fact to draw an
analogy between positron motion in the field configuration
specified above and oscillations of a pendulum. No kind of
energy loss or friction is considered in this section. The phase
space describing both systems and the corresponding trajecto-
ries in real space can be found in (see Fig. 2 and Table I).

The corresponding physical values and equations for these
two problems can be seen in Table II. First of all, the external
conditions driving the system are determined by the values g
for the pendulum and k = dBy

dx for the positron. Second, the

TABLE II. Corresponding physical values and equations for a
pendulum oscillating in a gravitational field and a positron in a
current sheet.

Positron in
Pendulum current sheet

Ext. Parameter g k

Int. Property l = const Ek = const

Cyclic Variable ϕ ϕ

Ang. Velocity ϕ̇ ϕ̇

Frequencya ω0 =
√

g
l ω0 =

√
ekV
mcγ

Diff. Equation ϕ̈ + g
l sin ϕ = 0 ϕ̈ + ekV

mcγ sin ϕ = 0

EM/Pz
1
2 ml2ϕ̇2 − mgl cos ϕ mV γ cos ϕ − 1

2
e
c kx2

η cos ϕ − 1
2

V 2

gl cos ϕ − 1
2

e
c

kx2

mV γ

aOf infinitesimal oscillations.

length of the pendulum l and speed V or kinetic energy Ek

of the positron are both crucial properties of the system that
determine its dynamics and are both constant throughout its
evolution. Ek or V or γ (any one of the three values can be
expressed through any one of the others) can be considered
as the first integral of motion for the positron. Third, the z
component of generalized momentum �P—the second integral
of motion for the positron—corresponds to the full mechan-
ical energy EM of the pendulum. Dividing Pz by the kinetic
momentum p = mV γ and −EM by the maximal potential
energy of pendulum (see Table II), one can obtain the key
dimensionless integral of motion η (see last line of Table II),
which determines the type of the trajectory (see Table I) of
a system with given parameters. Note that in the case of the
pendulum a higher velocity V (or kinetic energy EK ) of the
pendulum results in a lower η: ∂η

∂EK
� 0, while for the positron

is it the opposite: ∂η

∂EK
� 0.

Beside the constant in time external conditions and inte-
grals of motion the analogy also extends to time-dependant
variables. The angle ϕ formed between the pendulum and
the vertical axis fully corresponds to the angle ϕ between
the positron’s velocity and the axis z, so in this case we
intentionally use the same designation for these angles. The x
coordinate for the positron does not have a direct analogy, but
it is proportional to ϕ̇ of both the positron and the pendulum.
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