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Shape instabilities in confined ferrofluids under crossed magnetic fields
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We analyze the morphology and dynamic behavior of the interface separating a ferrofluid and a nonmagnetic
fluid in a Hele-Shaw cell, when crossed radial and azimuthal magnetic fields are applied. In addition to inducing
the formation of a variety of eye-catching, complex interfacial structures, the action of the crossed fields makes
the deformed ferrofluid droplet to rotate. Numerical simulations and perturbative mode-coupling theory are
employed to look into early linear, intermediate weakly nonlinear, and fully nonlinear dynamic regimes of
the pattern-forming process. We investigate how the system responds to variations in the viscosity difference
between the fluids, the magnetic susceptibility of the ferrofluid, the effects of surface tension, and in the relative
strength between radial and azimuthal applied magnetic fields. The role played by random perturbations at the
initial conditions in determining the ultimate shape and dynamic stability of the spinning ferrofluid patterns is
also studied.
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I. INTRODUCTION

Ferrofluids are stable colloidal suspensions of nanometer-
sized magnetic particles suspended in a nonmagnetic carrier
fluid. This magnetic fluid behaves superparamagnetically and
can easily be manipulated with external magnetic fields [1,2].
The convenient combination of the fluidity of liquids and the
magnetic properties of solids makes ferrofluids ideal materi-
als to study a variety of interfacial instabilities, and pattern
formation processes [3–7].

A popular setup used to investigate the development of
patterns in ferrofluids is the situation in which a magnetic
fluid drop, surrounded by a nonmagnetic fluid, is confined
between the two closely spaced glass plates of a Hele-Shaw
cell [8–11]. One emblematic example of such confined flow
problems in ferrohydrodynamics is the occurrence of the so-
called labyrinthine instability [12–15]. It takes place when a
ferrofluid droplet is trapped in the cell, and a perpendicular
uniform magnetic field is applied normal to the cell’s plates.
This perpendicular magnetic field arrangement is generated
by a pair of Helmholtz coils having electric currents flowing in
the same direction, while the Hele-Shaw cell is located at the
mid-distance between the coils. The interplay between desta-
bilizing magnetic forces and stabilizing surface tension effects
ultimately leads to the emergence of mazelike, multiply bifur-
cated structures, where a labyrinth-type pattern arises.

A similar Helmholtz coils configuration can produce a very
different applied magnetic field, which is able to produce
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quite distinct ferrofluid patterns in Hele-Shaw cells. Simply
by considering that the electric currents in the coils flow in
opposite directions (a configuration commonly known as the
anti-Helmholtz arrangement [16–21]), one generates a radi-
ally symmetric magnetic field which is coplanar to the cell’s
plates. This radial magnetic field is zero at the axis of symme-
try of the coils and increases linearly with the radial distance.
As a result, a destabilizing magnetic body force acts on the
ferrofluid droplet pointing in the outward radial direction. The
competition of magnetic and surface tension forces provokes
the formation of starfishlike polygonal shapes having sharp
finger tips [22–24].

Another magnetic field configuration that has been used
to study pattern-forming ferrofluid structures in Hele-Shaw
geometry is the azimuthal magnetic field produced by a
current-carrying wire. In this setting, a long straight wire is
placed normal to the cell plates, passing through its center,
where a ferrofluid droplet is located. The azimuthal mag-
netic field acts on the ferrofluid and generates a net magnetic
body force pointing radially inwards. This force attracts the
ferrofluid droplet toward the wire [1,25]. Depending on the
position of the ferrofluid with respect to the nonmagnetic
fluid, such azimuthal magnetic field effects can either stabilize
or destabilize the two-fluid interface. For example, if the fer-
rofluid is the inner fluid, surrounded by an outer nonmagnetic
fluid, then the azimuthal magnetic field tends to stabilize inter-
facial disturbances [25,26]. On the other hand, if the ferrofluid
is the outer fluid, while the inner fluid is nonmagnetic, then the
two-fluid interface is unstable, and one observes the formation
of patterns very distinct from those obtained under perpendic-
ular or radial applied magnetic fields. Steady droplet shapes
presenting flat-tip, penetrating ferrofluid fingers, separated by
balloon-shaped structures of the nonmagnetic fluid [27] have
been identified. More convoluted, time-evolving shapes have
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also be found, presenting multiple invading ferrofluid fingers,
divided by equally complex structures of the nonmagnetic
fluid [28].

Researchers have also examined ferrofluid pattern forma-
tion in Hele-Shaw cells, when two different applied magnetic
fields act simultaneously. This particular setup differs from
previous pattern-forming investigations in ferrofluids in an
important aspect, since now the two major competing forces
are both magnetic in nature. In Refs. [29–32] experiments
considered the action of a uniform perpendicular magnetic
field, supplemented by an AC rotating magnetic field. These
experiments revealed that a confined ferrofluid droplet un-
dergoes to a peculiar morphological transition evolving from
labyrinthine shapes to spiral patterns or suddenly morphing
into visually striking protozoanlike shapes. In addition, in-
vestigators have considered the simultaneous operation of an
applied stabilizing azimuthal magnetic field, plus a desta-
bilizing perpendicular field to gain control over the mode
selection mechanism of the pattern-forming system [33]. By
using linear stability analysis and numerical simulations they
have shown that such crossed magnetic field configuration
can be used to control the morphology and number of fingers
of the resulting patterns. Furthermore, in Ref. [34] this field
composition has been utilized to control the shape of the
patterns, as well as the degree of mixing between a miscible
inner ferrofluid, and an outer nonmagnetic fluid via magnetic
means.

An interesting recent study considered a different crossed
magnetic fields arrangement, namely the action of both radial
and azimuthal applied magnetic fields on confined ferrofluid
droplets in a Hele-Shaw cell [35]. They have conducted a
second-order weakly nonlinear analysis and fully nonlinear
simulations to find that the combination of these two magnetic
fields can induce rotation of a ferrofluid droplet having a stable
shape, with velocities predictable by the proposed theory.

As commented in Ref. [35] their study opened up the
possibility of using the crossed magnetic field configuration
for controlling active fluid suspensions via magnetic means.
Potential applications in soft matter systems are magnetic
manipulation of shape-programmable microswimmers, mi-
crorobots, and giant magnetoliposomes [36–39]. Moreover,
crossed magnetic field techniques could also be utilized to
probe mechanical and rheological properties of certain bio-
logical materials such as developing tissues [40] and living
cells [41]. Another interesting possibility is to use these
crossed magnetic field controlling tools in biomedical pro-
cesses involving magnetically operated drug targeting and
delivery [42]. These more practical and interdisciplinary
examples of soft matter, biomedical, and fluid mechanical sys-
tems involving the interaction of magnetic and hydrodynamic
effects support the academic relevance and possible practical
usefulness of studies like the ones presented in Ref. [35], and
in this work.

In the current investigation, we further explore the system
examined in Ref. [35] by analyzing a myriad of nonlinear pat-
tern forming structures. We find that the presence of random
noise at the early interface can render unstable some nonlinear
shapes that would otherwise be stable had the initial condition
received a symmetrical wavy perturbation. We also consider
situations when the ferrofluid droplet can be either more or

less viscous than the external nonmagnetic fluid surrounding
the magnetic droplet. When the ferrofluid is less viscous,
the inclusion of a Saffman-Taylor instability contribution to
magnetically driven effects can also make the interface un-
stable, and we identify a bifurcation point characterizing this
transition to instability. Finally, we verify that a third-order
mode coupling perturbative analysis can capture the essential
nonlinear morphological features of the interface of some
less deformed patterns calculated by the boundary integral
method.

We close this section by discussing how our current paper
differs from the work carried out in Ref. [35]. Despite the
significance and usefulness of their work, in Ref. [35] the
authors restricted their study for the case in which the system’s
viscosity contrast A = −1, and the ferrofluid’s magnetic sus-
ceptibility χ = 1. In this setting, they found that the ferrofluid
droplet reached a steady state, performing a rotating motion
with a prescribed angular velocity, without ever changing
its shape. On the other hand, in this work we analyze how
the dynamical behaviors and shapes of the ferrofluid patterns
respond, if the controlling parameters A and χ are changed.
This raises some interesting questions about the problem. For
instance, if A and χ assume values different from those ex-
amined in Ref. [35], then would the rotating ferrofluid droplet
still reach a steady state? Moreover, what would be the new
shapes of the ferrofluid droplets under such more general
circumstances? And yet how sensitive is the system to the
presence of random perturbations in the initial conditions?
Here we address these pertinent questions, and while doing
it, find other possible dynamical responses (the occurrence of
both steady and transient or ever changing states), and still
unexplored droplet shapes for the rotating patterns. Finally, it
is worth pointing out that our current study certainly impacts
the potential uses and applications mentioned above [36–42].
After all, since depending on the values of A and χ , one
can get either steady or ever growing states for the ferrofluid
droplet, it is indeed very important to know the proper values
of such parameters in order to get an increased control of
such processes. For an optimized control, in principle one
would want to use values of A and χ that lead to steady states
in which the ferrofluid droplet rotates with constant angular
velocity, while keeping its shape immutable. Our work offers
useful insights about the selection of these proper values for A
and χ .

II. NUMERICAL AND THEORETICAL APPROACHES

A. Vortex sheet and the boundary integral method

The flow configuration of the physical problem is illus-
trated in Fig. 1. It shows a Hele-Shaw cell of gap thickness b,
containing an initially circular droplet of ferrofluid of radius
R and viscosity η1, surrounded by a nonmagnetic fluid of
viscosity η2. The fluids are incompressible and Newtonian,
and the surface tension between them is denoted by σ . This
ferrohydrodynamic system is under the action of two crossed
magnetic fields that are constant in time: an azimuthal field
generated by a current-carrying wire passing through the cen-
ter of the cell [25–27] and a radial magnetic field produced
by two coils in the anti-Helmholtz configuration [22–24].
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FIG. 1. Schematic representation of a ferrofluid droplet of vis-
cosity η1, surrounded by a nonmagnetic fluid of viscosity η2,
confined between the plates of a Hele-Shaw cell of gap thickness
b. The system is subjected to a total magnetic field H which is a
combination of radial and azimuthal magnetic fields [Eq. (2)]. The
azimuthal magnetic field is produced by a long, straight current-
carrying wire that is perpendicular to (coaxial with) the plates, while
a radial magnetic field pointing outwards is generated by a pair
of anti-Helmholtz coils having equal electric currents flowing in
opposite directions. The Hele-Shaw cell is coaxial with, and parallel
to, the coils and placed in the midplane between them. Initially, the
ferrofluid droplet has a circular shape of radius R (dashed curve) but
may deform due to the action of H. Small interface perturbations are
denoted by ζ = ζ (ϕ, t ), where ϕ is the azimuthal angle.

The fluids’ displacements are described by Darcy’s law, but
the internal fluid has an augmented term to account for the
magnetic contribution [12–14]

v j = − b2

12η j
∇

[
p j − 1

2
μ0χH2δ j1

]
, (1)

where the applied magnetic field is given by

H = Hϕ + Hr = I

2πr
êϕ + H0

R
rêr . (2)

The first (second) term on the right-hand side of Eq. (2)
represents the applied azimuthal (radial) magnetic field, where
êϕ (êr) is a unit vector in the azimuthal (radial) direction. Since
the flow is incompressible, the velocity in the bulk of the fluids
j = 1 and 2 is irrotational and given by v j , whereas p j denotes
the pressure, μ0 is the magnetic permeability of free space,
χ is the magnetic susceptibility of the ferrofluid, H = |H|,

and δ j1 is the Kronecker delta. In Eq. (2), the electric current
generating the azimuthal field is given by I , while r measures
the radial distance from the wire, and H0 is the magnitude of
the radial component at the initial droplet radius R.

To describe the evolution of the interface, we modify the
boundary integral method previously employed in the cal-
culation of nonlinear pattern formation of ferrofluid droplets
subjected only to the radial magnetic field [24]. This method
tracks the time evolution of the dimensionless vortex-sheet
strength γ = sα (v2 − v1) · ŝ, where ŝ is the unit vector tangent
to the two-fluid interface. The plane curve that describes this
interface has the parameter α taken as the negative of the
azimuthal angle and subscripts represent partial derivatives.
After substituting Darcy’s law from Eq. (1) and appropriate
boundary conditions, as discussed below, the vortex-sheet
yields

γ = −2AsαW · ŝ + 2B
θαα

sα

− 2χ

(
rrα − χr3rα

θα

s2
α

)

+ 2χJ2

{
rα

r3
− χ

rα

r

[
θα

s2
α

− 1

s4
α

(
r4
α

r2
− r2

)]}

+ 2χ2J

{
θα

s2
α

(
r2
α − r2

) + 1

s4
α

(
r4
α − r4

)}
, (3)

where lengths are rescaled by R, and velocities by
b2μ0H2

0 /[12(η1 + η2)R]. Here s is the interface arclength, and
θ denotes the tangent angle to the interface. Equation (3) is an
integrodifferential equation that needs to be solved in every
time step for the vortex sheet, γ , since the interface veloc-
ity, W, is given by a Birkhoff-Rott integral that depends on
γ [43–48]. By inspecting Eq. (3) one verifies that the system
is characterized by four dimensionless governing parameters,
namely,

A = η2 − η1

η2 + η1
, B = σ

μ0H2
0 R

, χ, J = I

2πH0R
.

These parameters are the viscosity contrast A, the effective
surface tension B, the magnetic susceptibility χ , and the di-
mensionless current J which measures the relative influence
of azimuthal and radial magnetic fields. In deriving Eq. (3)
we have employed a modified version of the Young-Laplace
pressure jump boundary condition that includes contribu-
tions due to the interfacial surface tension, as well as to
magnetic traction effects arising from the influence of the
normal component of the ferrofluid’s magnetization at the
interface [1,2,24,49]

p1 − p2 = σκ − 1
2μ0(M · ên)2, (4)

with M = χH, where M is the ferrofluid’s magnetization. In
Eq. (4), κ is the curvature of the fluid-fluid interface and ên

indicates the unit normal vector to the interface. Notice that by
setting J = 0 in Eq. (3) we recover the vortex sheet expression
originally derived in Ref. [24] [their Eq. (4)], when the applied
magnetic field has only the radial component. We point out
that the terms inside the curly brackets multiplied by 2χ2J
in Eq. (3) originate from the coupling between the radial and
azimuthal components. In fact, as discussed in the next section
on the perturbative analysis, the coupling between these terms
appear already at the linear stage.
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Motivated by the Frenet-Serret expression, θα = sακ ,
which simplifies the description of the plane curvature, time
evolution of the nonlinear shapes of the interface employs
as integration variables the Fourier transformed versions of
the perimeter L(t ), and the tangent angle θ . To recover the
coordinates of the interface, we calculate the complex position
of the grid points through zα = L/(2π )exp(iθ ). Finally, we
apply the small scale decomposition to reduce the stiffness of
the governing equations. More details regarding the numerical
implementation can be found in Refs. [24,45–48].

The validation of the numerical implementation was done
reproducing linear stability results and through comparisons
of the nonlinear numerical solutions with weakly nonlinear
stages of the dynamics. This was conducted for the purely
radial magnetic field, obtained by setting the dimensionless
current J = 0, and presented in Sec. III and Figs. 1–3 of
Ref. [24]. For the current investigation, additional validation
tests were conducted. Some of them are discussed in Sec. IV,
where a comparison between the current simulations and a
third-order, perturbative analysis is examined.

B. Third-order, mode-coupling perturbative analysis

In this section, we develop a perturbative weakly nonlin-
ear theory for the problem of an initially circular ferrofluid
droplet subjected to crossed radial and azimuthal applied
magnetic fields. In our perturbative analysis, the perturbed
shape of the fluid-fluid boundary is described by R(ϕ, t ) =
R + ζ (ϕ, t ), where ϕ is the azimuthal angle. Here ζ (ϕ, t ) =∑+∞

n=−∞ ζn(t ) exp (inϕ) represents the net interface pertur-
bation with complex Fourier amplitudes ζn(t ), and integer
azimuthal wave numbers n. Mass conservation imposes that
the zeroth mode is written in terms of the other modes as
ζ0 = −(1/2R)

∑∞
n=1[|ζn(t )|2 + |ζ−n(t )|2] [11].

Our perturbative approach will allow us to contrast some
of the less deformed fully nonlinear shapes obtained by em-
ploying the boundary integral numerical method discussed in
Sec. III, with corresponding interfacial patterns obtained by
making use of a perturbative mode-coupling scheme. There-
fore, here our leading goal is to find a differential equation
which describes the time evolution of the perturbation ampli-
tudes ζn(t ), accurate to third-order [O(ζ 3

n )]. The necessity of
analyzing the problem perturbatively up to the third order is
justified by the fact that the key morphological and dynamical
effects can only be properly caught at such high orders. This
will become very clear during the discussion of Sec. IV.

Recall that, as commented in Sec. II A, the flow is irrota-
tional in the bulk. Consequently, we can state the problem in
terms of a velocity potential, v j = −∇φ j [1,2,8–14],

φ j =
∑
n �=0

φ jn(t )
( r

R

)(−1)( j+1)|n|
exp (inϕ), (5)

which obeys Laplace’s equation. Within this perturbative
framing, we follow usual procedures adopted in previous
weakly nonlinear studies in Hele-Shaw cells (see, for instance,
Refs. [11,22,23]), consider |ζ | � R, and use the kinematic

boundary condition [8–10]

∂R
∂t

=
[

1

r2

∂r

∂ϕ

∂φ j

∂ϕ
− ∂φ j

∂r

]
r=R

, (6)

to express the Fourier coefficients φ jn(t ) in terms of the per-
turbation amplitudes ζn(t ), and their time derivatives ζ̇n(t ) =
dζn(t )/dt . Next, we substitute the resulting relations, and the
pressure jump condition [Eq. (4)] into Darcy’s law [Eq. (1)].
Finally, by keeping terms consistently up to third-order in ζ ,
and Fourier transforming, we find the dimensionless equation
of motion for the perturbation amplitudes ζn(t ) (for n �= 0)

ζ̇n = λ(n) ζn +
∑
p�=0

{F (n, p) + λ(p)G(n, p)} ζpζn−p

+
∑

p,q �=0

{[λ(p)I (n, p, q) + G(n, q)(F (q, p)

+ λ(p)G(q, p))] ζpζq−pζn−q

+ [J (n, p, q) + λ(p)K (n, p, q)] ζpζqζn−p−q}. (7)

In Eq. (7) the function

λ(n) = |n|[χ (1 + χ ) − χJ2 − B(n2 − 1) − inχ2J] (8)

is a time-independent, complex linear growth rate. In Eq. (8),
the first term inside the squared brackets represents a destabi-
lizing effect related to the radial component of the magnetic
field. In contrast, the second and third terms account for the
stabilizing contributions coming from the azimuthal com-
ponent of the magnetic field, and surface tension at the
interface, respectively. The presence of an imaginary part in
Eq. (8) is responsible for the propagation of the perturbed
interfacial shape, with linear phase velocity given by v(n) =
− Im[λ(n)]/n = χ2J|n|. After reintroduction of dimensions,
one can readily verify that such velocity vanishes for a purely
radial (i.e., H0 �= 0 and I = 0) or azimuthal (i.e., H0 = 0 and
I �= 0) magnetic fields, and under these circumstances, no
propagating wave packet is observed.

The nonlinear mode-coupling functions appearing on the
right-hand side of Eq. (7) are

F (n, p) = |n|
{χ

2
{[1 + χ (1 + (n − p)p)]

+ J2[3 − χ (n − p)p]} − B
[
1 − p

2
(3p + n)

]
+ ipχ2J

}
, (9)

G(n, p) = A|n|[1 − sgn(np)] − 1, (10)

I (n, p, q) = A|n|[1 − sgn(nq)] − 1 + |q|sgn(pq)[|n|
− |n|sgn(nq) − A], (11)

J (n, p, q) = |n|
{
χ{2J2(χ pq − 1) − iqχJ[1

+ p(n − p − q)]} + B

[
1 − 3p2

−3

2
q(n − p − q)(p2 + 1)

]}
, (12)
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and

K (n, p, q) = (A − 1)A(n, p, q) + (A + 1)B(n, p, q)

2|p|
− |n|(|p| + A)

2
. (13)

In Eq. (13) we have that
A(n, p, q) = (n − p − q)(2p − p|p|)

− 1
2 |p|(|p| − 1)(|p| − 2), (14)

and
B(n, p, q) = (n − p − q)(2p + p|p|)

+ 1
2 |p|(|p| + 1)(|p| + 2). (15)

In addition, the sgn function equals ±1 according to the
sign of its argument. We stress that Eqs. (7)–(15) are made
dimensionless by using the same rescaling utilized to nondi-
mensionalize Eq. (3) in Sec. II A.

Expressions (7)–(15) are the third-order mode-coupling
equations describing the time evolution of the interfacial
shape of a ferrofluid droplet subjected simultaneously to
crossed radial and azimuthal magnetic fields in a Hele-Shaw
cell. Note that after neglecting the third-order terms in Eq. (7),
and subsequent reintroduction of dimensions, one verifies
that Eqs. (7)–(10) agree with the second-order expressions
previously derived in Ref. [35]. Our third-order results also
reproduce the second-order expressions obtained in earlier
studies which analyzed the simplified situation of ferrofluids
subjected to purely radial [22,23], or azimuthal [27] magnetic
fields in Hele-Shaw geometry. Nevertheless, remember that
the inclusion of the third-order terms is essential to a more
accurate perturbative description of the shapes and dynamics
of the ferrofluid structures under the combined influence of
radial and azimuthal applied fields.

III. SHAPE INSTABILITIES IN THE FULLY
NONLINEAR REGIME

We initiate our discussion by investigating the impact
of two very important governing parameters of the system,
namely, the viscosity contrast A, and the ferrofluid’s magnetic
susceptibility χ , on the dynamic behavior and ultimate shape
of the ferrofluid patterns. For the sake of simplicity and clarity,
in Figs. 2 and 3, we vary A and χ , while keeping the effective
surface tension B unchanged. In this scenario, we adjust the
value of the dimensionless current J in such a way that all
simulated cases examined in Figs. 2 and 3 have the same
real part of the linear growth rate, Eq. (8). By doing this we
guarantee that any of the emerging morphological features are
associated with nonlinear effects. The influence of B on the
patterns will be discussed later in this work.

It is worthwhile to note that, irrespective of their relevance,
the interesting results of Ref. [35] have been obtained by
considering the specific case in which both A and χ are fixed
(A = −1 and χ = 1). Therefore, our analysis of Figs. 2 and 3
allows one to explore how the viscosity difference between
the ferrofluid and the nonmagnetic fluid (something related
to the Saffman-Taylor instability [8–11]), and a key mate-
rial property of the magnetic fluid sample (i.e., the magnetic

susceptibility) affect the morphodynamics of the ferrofluid
droplet. Furthermore, from the examination of Figs. 2 and 3
we seek to understand another relevant issue for this pattern-
forming system: More precisely, we study the role played by
the presence of random perturbations at the initial conditions.
By comparing the evolution of initial droplets that are sym-
metric to those that are random in nature, we examine how the
fully nonlinear dynamic stability and ultimate morphology of
the simulated ferrofluid shapes are influenced by the inclusion
of noise at the early interface.

As commented earlier, we compare late stages of the non-
linear evolution by choosing parameters such that all frames
of Figs. 2 and 3 have the same real linear growth rate given
by Eq. (8). In this framework, the parameters used for both
figures are identical, and the changes between the fingered
patterns depicted in Fig. 2 and their counterparts in Fig. 3 are
due to differences in their initial conditions. For the patterns
displayed in Fig. 2, we impose an initial wavy perturbation
with wavenumber n = nmax = 6, which is the integer closest
to the mode of maximum growth rate, obtained by setting
d Re[λ(n)]/dn|n=nmax = 0. We name these as symmetric initial
conditions. On the other hand, in Fig. 3, we consider a super-
position of the first 30 modes, each with a random phase. For
this reason, such conditions are referred to as random initial
conditions. The initial amplitude of all perturbation modes
is 10−3. This is small enough so that the patterns undergo
linear growth before nonlinear effects become evident. Linear
evolution and weakly nonlinear behaviors will be discussed in
Sec. IV. We keep the effective surface tension B = 5.0 × 10−4

fixed for all the patterns. In Figs. 2 and 3 the remaining
parameters are arranged for three representative values of the
viscosity contrast: A = −0.9 [(a), (d), and (g)]; A = 0 [(b),
(e), and (h)]; and, A = 0.9 [(c), (f), and (i)]. Notice that for
cases in which A = −0.9 (A = 0.9) the ferrofluid is much
more (less) viscous than the nonmagnetic fluid. Of course,
when A = 0 the ferrofluid and the nonmagnetic fluid have
equal viscosities. In addition, for a given A value, we increase
the magnetic susceptibility, χ , and tune the dimensionless
current J in order to maintain the real part of the linear growth
rate [Eq. (8)] unaltered. That gives us χ = 0.1 and J = 0.69
[(a), (b), and (c)], χ = 0.175 and J = 0.90 [(d), (e), and (f)],
χ = 0.25 and J = 1 [(g), (h), and (i)].

We begin by analyzing the general behavioral and mor-
phological aspects of the ferrofluid patterns under crossed
radial and azimuthal magnetic fields, by inspecting Figs. 2
and 3. Overall, by examining these figures one identifies the
development of various types of fingering patterns having six
fingers whose specific behaviors and ultimate shapes vary as
A, χ , and initial conditions (symmetric in Fig. 2, and random
in Fig. 3) are modified. Generally speaking, one can say that,
due to the action of the crossed magnetic fields, one verifies
the formation of spiky ferrofluid structures (the spikes being
induced by the action of the radial magnetic field), presenting
skewed fingers which tend to turn in the counterclockwise
direction (the turning of the fingers is driven by the coupling
between azimuthal and radial magnetic fields). In accordance
with what has been previously reported in Ref. [35] for the
specific cases in which (A = −1 and χ = 1), we have found
that all the ferrofluid patterns depicted in Figs. 2 and 3 undergo
a rotational motion in the counterclockwise direction. One
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FIG. 2. Representative fully nonlinear patterns for a confined ferrofluid under crossed magnetic fields, generated by using symmetric initial
conditions. The patterns are obtained for A = −0.9 [(a), (d), and (g)], A = 0 [(b), (e), and (h)], and for A = 0.9 [(c), (f), and (i)]. In addition,
we take χ = 0.1 and J = 0.69 [(a)–(c)], χ = 0.175 and J = 0.90 [(d)–(f)], and χ = 0.25 and J = 1 [(g)–(i)]. The values of the final times
taken in these cases are as follows: (a) t = 29, (b) t = 25, (c) t = 20.80, (d) t = 27.10, (e) t = 22.30, (f) t = 19.40, (g) t = 29, (h) t = 25,
and (i) t = 19.40. The effective surface tension B = 5.0 × 10−4.

very important result of Ref. [35] was the finding that, for
A = −1 and χ = 1, the ferrofluid patterns can evolve into sta-
ble rotating shapes. In this work, in addition to examining how
the morphology of the rotating ferrofluid droplets changes for
other values of the governing parameters (including A and χ ),
under both symmetric and random initial conditions, we also
investigate how the stability of the rotating ferrofluid patterns

responds to changes in the parameters and consideration of
random perturbations.

Prior to examining Figs. 2 and 3, a word of caution: It
is important to stress that the shape solution snapshots pre-
sented in these figures are not necessarily equilibrium states.
In fact, as will become clear later in this work, some of the
solutions portrayed in Figs. 2 and 3 are steady state, and some
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FIG. 3. Representative fully nonlinear patterns for a confined ferrofluid under crossed magnetic fields, generated by using random initial
conditions. The patterns are obtained for A = −0.9 [(a), (d), and (g)], A = 0 [(b), (e), and (h)], and for A = 0.9 [(c), (f), and (i)]. In addition,
we take χ = 0.1 and J = 0.69 [(a)–(c)], χ = 0.175 and J = 0.90 [(d)–(f)], and χ = 0.25 and J = 1 [(g)–(i)]. The values of the final times
taken in these cases are as follows: (a) t = 25.30, (b) t = 21.20, (c) t = 17.14, (d) t = 24.30, (e) t = 19.34, (f) t = 15.80, (g) t = 60, (h)
t = 17.56, and (i) t = 16.40. The effective surface tension B = 5.0 × 10−4.

others are transient (i.e., with the fingers continuing to grow
indefinitely). These issues are of great importance, and will be
thoroughly discussed during the course of this work.

First, we focus on identifying the main morphological as-
pects of the patterns shown in Fig. 2, for symmetric initial
conditions. For a small value of the magnetic susceptibility
χ = 0.1 (first row of Fig. 2), and for A = −0.9 [Fig. 2(a)]

and A = 0 [Fig. 2(b)] one verifies the rising of star-shaped
patterns having fairly long and thin fingers having pointy tips.
In addition, when A = 0.9 [Fig. 2(c)] a different structure
emerges having shorter, and thicker fingers with bulbous ends.
Considering the reduced value of χ , and the fact that in this
last case the viscosity contrast is positive (less viscous fer-
rofluid pushing a more viscous nonmagnetic fluid) one can
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say that the shape characteristics of the pattern shown in
Fig. 2(c) result from the competition of a magnetic and the
Saffman-Taylor instability. Another interesting feature clearly
revealed in Figs. 2(a)–2(c) is the direction of the fingers of the
nonmagnetic fluid penetrating the ferrofluid which depends
on the sign of A. For A = 0.9 (A = −0.9) the invading, inward
moving fingers of the nonmagnetic fluid turn to the right (left),
while for A = 0 the penetrating fingers are more symmetric at
their tips, invading the ferrofluid droplet in a more straight
manner. These findings indicate that viscous shear effects do
play a role in determining the overall shape of the patterns.
Similar observations remain valid for the structures illustrated
in Figs. 2(d)–2(f) for a larger value of the magnetic suscep-
tibility (χ = 0.175). However, in Figs. 2(g)–2(i), for an even
higher value of χ (χ = 0.25) magnetic effects start to domi-
nate, and the viscosity contrast-induced differences among the
resulting patterns are not so evident.

At this point, we contrast the patterns generated in Fig. 2
for symmetric initial conditions, with the corresponding
ferrofluid structures illustrated in Fig. 3 which have been
produced for identical physical parameters, but for random
initial conditions. Despite of the visible distinction between
the patterns created under symmetric and random conditions,
they still share some aspects in common. For instance, all
patterns present the same number of fingers. In addition, the
fingered structures tend to be long and thin (with sharp tips)
for A � 0, and shorter and thicker (with bulbous ends) when
A > 0. Finally, we have found that all patterns rotate coun-
terclockwise, leading to the formation of skewed ferrofluid
fingers that tend to turn in the same direction.

However, the most common element between the patterns
in Figs. 2 and 3 is not directly related to their similarity in
shape, but refers to their own dynamic stability. As a matter of
fact, regardless of whether they are created from symmetric or
random conditions, we have found that most of these patterns
are indeed unstable. In other words, the majority of these
ferrofluid structures will not end up evolving to a stable state
in which they rotate indefinitely with an immutable shape.

A convenient way to assess the dynamic instability (or
stability) of the rotating ferrofluid patterns under crossed mag-
netic radial and azimuthal fields is given by the time evolution
of the interface perimeter [50–52]. With the application of
the crossed magnetic field, the interface deforms, and in the
course of time its perimeter starts to grow. If the pattern is
dynamically unstable, then its perimeter will keep growing
as time progresses. Nevertheless, if the rotating ferrofluid
pattern eventually reaches a stable state of permanent profile,
its perimeter ceases to vary with time.

By investigating the stability of the rotating ferrofluid pat-
terns via the time evolution of their interfacial perimeters, we
have found some interesting results. For instance, we have
verified that patterns (d)–(f) in Fig. 2 are unstable. This can
be confirmed by examining Fig. 4 which plots the dimension-
less interfacial perimeter L as a function of time t , for the
ferrofluid patterns portrayed in Figs. 2(d)–2(f) (solid curves),
and in Figs. 2(g)–2(i) (dashed curves). For the sake of clarity
regarding the unstable nature of the pattern shown in Fig. 2(i)
for A = 0.9, an extra curve has been added into Fig. 4 for
the situation in which χ = 0.25, J = 1, and A = 0.85 (gray
dashed curve).

FIG. 4. Time evolution of the interfacial perimeter L for the
ferrofluid patterns presented in Figs. 2(d)–2(f) (solid curves) and in
Figs. 2(g)–2(i) (dashed curves). Perimeter evolution shows that the
nonlinear behavior for χ = 0.175 is unstable regardless the value of
the viscosity contrast A. However, stability for χ = 0.25 depends on
the value of A, as further described in Fig. 5. The additional gray
dashed curve refers to the unstable situation in which χ = 0.25,
J = 1, and A = 0.85.

By following the behavior of the solid curves in Fig. 4,
initially one observes a latency time period for which the
initially circular ferrofluid shape practically does not change.
Then, due to the destabilizing role of the crossed magnetic
field one sees a steep growth of L, which keeps growing
as time advances. This shows that the patterns appearing in
Figs. 2(d)–2(f) are indeed unstable. Incidentally, although not
shown in Fig. 4, we have found that this is also the case for
the structures disclosed in Figs. 2(a)–2(c). Actually, we have
concluded that when a pattern is unstable with a symmetric
initial condition, it will be unstable under a random perturba-
tion. However, notice that the opposite is not true. If a pattern
turns out to be unstable at late stages having had a random
perturbation in the initial condition, the symmetric equivalent
may be stable. This is the case of frame (h), which is stable in
Fig. 2(h) (as can be explicitly verified in Fig. 4), and unstable
in Fig. 3(h). This suggests that in this specific case, we have an
instability that is triggered by the random noise. By the way,
from these observations, we can say that all patterns (a)–(f) in
Figs. 2 and 3 are unstable.

Another curious situation can also be found in the bottom
rows of Figs. 2 and 3. The patterns displayed in frames (i) are
unstable, for both symmetric and random cases, because of the
effect of the viscosity contrast A. This can be seen by examin-
ing Fig. 4, since it has a growing perimeter for large t values.
As mentioned above, the pattern in Fig. 2(h) is stable, but the
equivalent structure in Fig. 3(h) becomes unstable due to the
random perturbation. Finally, notice that in Figs. 2(g) and 3(g)
the resulting pattern is always stable whether symmetric (as
seen in Fig. 4) or random perturbations are imposed as ini-
tial conditions. This robust stability behavior, and symmetry
recovery (cf. supplemental material) [53] from the random
beginnings in Fig. 3(g), appears to be favored by the fact
that the system is stable with respect to the Saffman-Taylor
instability (A = −0.9).

Although not shown, we have also investigated a larger
value of the magnetic susceptibility and dimensionless
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FIG. 5. (a) Perimeter evolution for increasing values of the viscosity contrast, A. The remaining parameters are the same as in Fig. 2
[(g)–(i)], i.e., B = 5.0 × 10−4, χ = 0.25, J = 1. The perimeter evolutions for A � 0.60 increase to a maximum and decay, achieving steady
state. On the other hand, the perimeter monotonically grows for A � 0.70. A bifurcation point, located in the interval 0.6 � A � 0.7, marks a
transition to instability. The dashed line highlights time t = 21.12, while the black circles denote the nonlinear shapes superposed in frame (b),
for A = 0, 0.2, 0.4, 0.6, and 0.75. The phase shift observed in the superposition of the nonlinear shapes result from differences in the rotating
speeds, with larger A values having smaller angular velocities, and falling behind in the counterclockwise movement.

current, i.e., χ = 0.5 and J = 1.12, which also has the same
real linear growth rate as all the parameters investigated in
Figs. 2 and 3. We report that the resulting nonlinear shapes
for this larger value of χ are very similar to the ones obtained
for χ = 0.25 and J = 1, displayed in the bottom rows of
Figs. 2 and 3. The stability characteristics are also equivalent:
For A = 0.9 the pattern is unstable with a growing perime-
ter, and for A = 0 and A = −0.9 the simulation reaches a
steady state and the perimeter saturates. The main difference
between the χ = 0.25 and the χ = 0.5 cases is the time in
which this steady state is achieved: For the case in which the
ferrofluid is more viscous with A = −0.9, the saturation time
(i.e., dL/dt |t=ts = 0) for the larger χ value is around ts = 9,
while ts = 22.7 for χ = 0.25. These observations corroborate
the expectation that, for increasing values of the magnetic sus-
ceptibility, the magnetic effects are dominant, and differences
induced by changes in the viscosity contrast are not so evident
in the nonlinear pattern shapes, and manifest mostly in the
presence of instability for large A values.

To close the discussion on the influence of the viscos-
ity contrast A, and the magnetic susceptibility χ on the
nonlinear interfacial shapes, we briefly deliberate on the coun-
terclockwise angular velocity, and its dependence on these
two governing parameters. As already stated, in general, the
perturbed initial circular droplet remains unaltered for a while
before the skewed radial fingers start to develop. This la-
tency time is clearly shown in the evolution of the perimeter
in Fig. 4. During this latency period, the ferrofluid droplet

rotates with a constant angular velocity, in agreement with
the linear phase velocity, v(n), defined in Sec. II B. As the
perimeter grows, we have found that the rotating speeds tend
to decrease. In addition, since ferrofluid droplets with larger
χ values tend to have smaller perimeters, as indicated by
Figs. 2–4, we conclude that larger magnetic susceptibilities
are associated with higher rotating speeds.

Now, even though v(n) does not depend on the viscosity
contrast, A, we realize that, at the nonlinear level, changes
in this parameter also contribute to changes in the angular
velocities. This can be recognized by inspecting Fig. 5. For the
same parameters as the bottom row of Fig. 2, i.e., B = 5.0 ×
10−4, χ = 0.25, J = 1, Fig. 5(a) reveals that the perimeter
monotonically increases as the viscosity contrast increases. As
before, larger perimeters result in reduced angular velocities.
This is confirmed by Fig. 5(b), which portrays superposed
interfacial patterns that arise at points A, B, C, D, and E, given
by the intersection of the vertical dashed line at time t = 21.12
in Fig. 5(a). The phase shift observed by the superposition of
the nonlinear shapes results from differences in the rotating
speeds, with larger A values having smaller angular velocities,
and falling behind in the counterclockwise movement.

In addition, one realizes in Fig. 5(a) that the perimeter
evolutions for A � 0.60 increase to a maximum and saturate,
while for larger A values the nonlinear patterns are unstable
and the perimeters grow continuously. This characterizes a
bifurcation point for the transition to instability. It is interest-
ing to verify that, in this scenario the own unstable or stable
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FIG. 6. Fully nonlinear patterns for a confined ferrofluid under crossed magnetic fields, generated by using symmetric [(a)–(c)], and random
[(d)–(f)] initial conditions, when B = 10−4. The patterns are obtained for A = −0.9 [(a) and (d)], A = 0 [(b) and (e)], and for A = 0.9 [(c) and
(f)]. In addition, χ = 0.1 and J = 0.69. The values of the final times taken in these cases are: (a) t = 14.30, (b) t = 11.50, (c) t = 9.10,
(d) t = 12, (e) t = 8.76, and (f) t = 5.20. All these patterns are unstable.

nature of the rotating ferrofluid shape depends on the value
of the viscosity contrast A. Here, only A values larger than
0.6 manage to induce unstable dynamic behavior at late time
stages.

To make the parametric study complete, in Fig. 6 we in-
vestigate the dynamics for a different value of the effective
surface tension parameter B, choosing a smaller value, B =
10−4, which has nmax = 14 as predicted from linear analysis.
We set A = −0.9 [Figs. 6(a) and 6(d)]; A = 0 [Figs. 6(b)
and 6(e)]; and, A = 0.9 [Figs. 6(c) and 6(f)]. Moreover, we
take χ = 0.1, and J = 0.69 as in Fig. 2(a)–2(c). Both sym-
metric [Figs. 6(a)–6(c)], and random [Figs. 6(d)–6(f)] initial
conditions are considered. Figure 6 displays the formation of
complex, visually striking ferrofluid patterns. The most em-
blematic nonlinear features explored in the previous figures of
this work are also observed here. We see that the patterns have
growing spiky fingers, with the finger directions dependent
on A, revealing a tendency towards the formation of bulbous
finger tips (and toward fingertip pinch-off) when A = 0.9, due
to the contribution of the Saffman-Taylor instability. These
general nonlinear behaviors for B = 10−4 are similar to the
cases in which B = 5.0 × 10−4 discussed in Figs. 2–5. This
suggests that B does not have a dramatic influence on the

fundamental morphological behavior of the patterns, although
paramount to determine the number of ramifications.

As a last remark about the results depicted in
Figs. 2–9, we ensure that all the dimensionless parameters
(A, B, χ , and J) considered in this work are consistent with
realistic physical quantities related to existing experiments
in confined ferrofluids in Hele-Shaw cell arrangements. For
instance, one may consider a ferrofluid droplet of radius R =
1 cm and viscosity η1 = 2.0 × 10−3 Pa s, surrounded by a
nonmagnetic fluid of viscosity 10−4 � η2 � 3.8 × 10−3 Pa s.
Typically, magnetic susceptibility of ferrofluids varies within
0 < χ � 5, but it can be as high as 40, and surface tension
lies in the interval 2.0 × 10−6 � σ � 6.0 × 10−2 N/m. In
addition, the radial component of the applied magnetic field
varies in the range 0 < H0 � 3.2 × 104 A/m, while the
electric current generating the azimuthal field can range
from a few mA up until 100 A. By considering dimensional
quantities in these intervals, the dimensionless parameters
utilized in our work are easily attained. We direct the
interested reader to the experimental studies [6,14,20,21,29–
32,50,54–63] for a comprehensive review of material prop-
erties of ferrofluids and typical physical quantities utilized in
laboratories.
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FIG. 7. Comparison of the perturbative solutions for the fer-
rofluid interface shape obtained by numerically solving Eq. (7) up to
(a) first (linear), (b) second, and (c) third order of perturbation, with
(d) the fully nonlinear solution found by employing the boundary
integral method described in Sec. II A. Here, we set A = −0.9,
B = 5 × 10−4, χ = 0.25, J = 1, and t = 20. In addition, the per-
turbative solutions [(a), (b), and (c)] are plotted by considering the
nonlinear coupling of N = 60 (n, 2n, . . . , and 60n) participating sine
and cosine Fourier modes, with n = nmax = 6 being the fundamental
mode.

IV. PERTURBATIVE VS FULLY NONLINEAR SHAPES

In Sec. III, we have found a variety of pattern-forming
structures and dynamical responses of the ferrofluid interface
as the relevant dimensionless parameters of the system A, B,
χ , and J were varied. Most of the produced fully nonlinear
patterns exhibit considerable intricate shapes, presenting the
formation of long fingered structures. Of course, these kinds
of interfacial behaviors can only be appropriately described
by fully nonlinear computational methods such as the bound-
ary integral scheme employed in this work. Nevertheless,
by closer inspection of the patterned structures depicted in
Fig. 2, we note that in some cases, the magnetically induced
viscous fingering patterns are not so excessively disturbed.
More specifically, the less deformed structures illustrated in
Figs. 2(g)–2(i) develop short skewed fingers with lengths
notably smaller than the unperturbed radius R of the fer-
rofluid droplet. Although these patterns are formed in the
fully nonlinear (FNL) regime of the dynamics, it seems that a
perturbative weakly nonlinear (WNL) approach could access
these shape instabilities, given that their amplitudes are small.

In this section, we investigate how some perturbative solu-
tions obtained from the mode-coupling Eq. (7) compare to an
equivalent fully nonlinear shape obtained by using boundary
integral simulations. We do this by systematically increasing
the perturbation order from first (purely linear) up to third

FIG. 8. Snapshots illustrating the time evolution of the ferrofluid
interface as predicted by the third-order WNL solution (dashed
curves), superposed to the corresponding FNL shape (solid curves).
The values of time taken in each frame are (a) t = 10, (b) t = 15,
(c) t = 17, and (d) t = 20. The other physical parameters and initial
conditions used here are identical to those utilized in Fig. 7.

order. By doing this, we aim to extract the most important
morphological features of the emerging ferrofluid patterns,
and possibly get perturbative pattern-forming structures that
progressively resemble the symmetric, and less deformed
fully nonlinear shapes, as those portrayed in Figs. 2(g)–2(i).

FIG. 9. Behavior of the interfacial perimeter L(t ) with respect
to variations in time t , corresponding to the situations leading to
the patterns illustrated in Fig. 7. All physical parameters and initial
conditions used here are identical to those utilized in Fig. 7.
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To illustrate how perturbative solutions approach the corre-
sponding long-time simulated structures, we pick the simplest
fully nonlinear ferrofluid pattern depicted in Fig. 2, namely
Fig. 2(g), as a base for comparison. In this way, in Fig. 7
we plot the ferrofluid droplet shapes obtained by utilizing
the perturbative solutions of the mode-coupling Eq. (7) up to
first [Fig. 7(a)], second [Fig. 7(b)], and third [Fig. 7(c)] order
of perturbation, plus the equivalent fully nonlinear pattern
[Fig. 7(d)]. As in Fig. 2(g), all ferrofluid patterns depicted in
Fig. 7 are obtained by considering the parameters A = −0.9,
B = 5 × 10−4, χ = 0.25, and J = 1. Moreover, the snapshots
displayed in Fig. 7 are taken at time t = 20.

Before proceeding with the analysis of Fig. 7, we briefly
explain how the perturbative solutions of the first (linear),
second (WNL second), and third orders (WNL third) are
plotted. First, we consider the nonlinear coupling of N = 60
Fourier modes, namely the fundamental mode n = nmax = 6
and its harmonics 2n, 3n, . . . , and 60n, and rewrite the net
interfacial perturbation ζ (ϕ, t ) in terms of the real-valued co-
sine an(t ) = ζn(t ) + ζ−n(t ), and sine bn(t ) = i[ζn(t ) − ζ−n(t )]
amplitudes. The time evolution of the mode amplitudes an(t )
and bn(t ) can then be obtained by numerically solving the
corresponding coupled nonlinear differential equations. Of
course, the time evolution of these amplitudes depend on the
order of perturbation that is being considered in Eq. (7). Once
this is done, the shape of the evolving interface can be easily
acquired by utilizing

R(ϕ, t ) = 1 + ζ0 + [an(t ) cos(nϕ) + a2n(t ) cos(2nϕ) + · · ·
+ a60n(t ) cos(60nϕ)] + [bn(t ) sin(nϕ)

+ b2n(t ) sin(2nϕ) + · · · + b60n(t ) sin(60nϕ)],

(16)

where ζ0 is an intrinsically nonlinear constraint related to
the ferrofluid droplet mass conservation, as indicated at the
beginning of Sec. II B.

Based on the symmetry properties of the fully nonlinear
structure [Fig. 7(d)], and without loss of generality, we set
the initial (t = 0) harmonic mode amplitudes to zero, i.e.,
a2n(0) = a3n(0) = . . . = aNn(0) = 0, and b2n(0) = b3n(0) =
. . . = bNn(0) = 0, where N = 60. Therefore, at t = 0 only the
fundamental cosine mode n has a nonzero amplitude |an(0)| =
10−3, and bn(0) = 0. This guarantees that the interfacial be-
haviors we detect are spontaneously generated by the weakly
nonlinear dynamics, and not by artificially imposing large
initial amplitudes for the harmonic modes. Note that the fully
nonlinear pattern depicted in Fig. 7(d) has also been obtained
under these same initial conditions.

We initiate our discussion by examining Figs. 7(a)
and 7(d), which depict the ferrofluid patterns generated by uti-
lizing the linear perturbative solution, and its fully nonlinear
counterpart, respectively. By contrasting the linear interfacial
shape in Fig. 7(a) with the FNL pattern in Fig. 7(d), it is
evident that the first-order perturbative solution does not ac-
curately match the FNL ferrofluid structure. Note that the six
smooth protuberances emerging at the ferrofluid boundary in
Fig. 7(a) have considerably larger amplitudes than the FNL
instabilities presented in Fig. 7(d). Furthermore, the purely
linear, sinusoidal fingered structures do not resemble the short

counterclockwise skewed fingers appearing in the FNL pat-
tern. Recall that in the first-order perturbative description of
the dynamics, the Fourier modes decouple, and the pattern
illustrated in Fig. 7(a) is a consequence of the exponential
growth of a single mode, namely the fundamental mode n =
nmax = 6. Therefore, it is reasonably expected that this simple,
lowest perturbative order solution cannot capture the more
intricate features of a FNL interface shape.

Motivated by the poor agreement between the linear pertur-
bative pattern, and the FNL shape, we increase the complexity
of our perturbative solution by considering one more order of
perturbation, extending our linear perturbative description to
a WNL second-order solution. The resulting WNL second-
order perturbative pattern is presented in Fig. 7(b). The most
noteworthy feature revealed by this second-order perturba-
tive shape is the presence of slightly bent fingers which are
sharper at their tips than the corresponding fingered shapes
obtained in Fig. 7(a). These aspects make the WNL second-
order structure a bit more similar to the FNL pattern found
in Fig. 7(d). This more structured second-order morphology
arises due to the growth and interaction of various participat-
ing modes, other than just the dominant fundamental mode,
as in Fig. 7(a) for the linear interface. The nonlinear coupling
between Fourier modes tend to make the fingers sharper, and
also act to restrain the purely exponential growth that occurred
at the linear level. Therefore, one can say that the inclusion of
an extra order in the perturbative description of the problem
has a positive impact on the morphology of the resulting pat-
tern. Nevertheless, the lengths of the fingers, and the overall
aspect of the second-order pattern shown in Fig. 7(b) are still
in discordance with the corresponding features of the FNL
structure displayed in Fig. 7(d). So, despite the morphological
improvements provided by the WNL second-order solution,
it is clear that this description is still not good enough to
properly describe the actual ferrofluid droplet shape, and that
an extra order of perturbation must be included.

We continue by extending our perturbative description up
to third-order, and use it to generate the weakly nonlinear
pattern shown in Fig. 7(c). When compared with the structures
discussed previously in Figs. 7(a) and 7(b), the differences
are quite evident. It is apparent that the WNL third-order
pattern disclosed in Fig. 7(c) does present the most important
morphological characteristics of the FNL shape illustrated in
Fig. 7(d). By inspecting Fig. 7(c), one can verify the for-
mation of a pattern presenting short-length fingers which are
skewed in the counterclockwise direction, similar to the FNL
shape portrayed in Fig. 7(d). Aside from the straight edges
and peaky fingertips appearing in the perturbative interfacial
shape, one may say that the structures shown in Figs. 7(c)
and 7(d) share a close resemblance. Incidentally, such small
differences between the WNL third-order solution and its
FNL counterpart are expected due to the intrinsic limitations
of a truncated perturbative scheme. However, it is reassuring
to see the the WNL third-order solution does a good job in re-
producing the actual FNL shape. These mode-coupling results
demonstrate that our willingness to go to such a high-order
perturbation level has been rewarded by the emergence of a
pattern-forming structure closely related to the more elaborate
FNL shape obtained by using boundary integral numerical
simulations.
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Although in Fig. 7 we have demonstrated a good morpho-
logical agreement between the WNL third-order solution and
the corresponding FNL pattern, it is still of relevance to inves-
tigate the dynamics prior to the establishment of the patterns
portrayed in Figs. 7(c) and 7(d) for t = 20, at intermediate
values of time (t � 20). This relevant matter is addressed in
Fig. 8, where we plot snapshots of the interface illustrating
the time evolution of the ferrofluid droplet shape as predicted
by the WNL third-order solution (dashed curves), superposed
to the corresponding FNL pattern (solid curves). These rep-
resentative snapshots are obtained at times (a) t = 10, (b)
t = 15, (c) t = 17, and (d) t = 20. By contrasting the WNL
third-order patterns depicted in frames (a), (b), and (c) to the
corresponding FNL interfacial shapes, one verifies that the
perturbative approach indeed offers an excellent approxima-
tion to the interfacial shape obtained by numerical means,
since the difference between the interfacial morphologies pre-
dicted by these two different methods is very small. As time
increases and the fingers develop further, one perceives a more
noticeable difference between the morphologies, as shown in
frame (d). In addition, note that in Fig. 8(d), the perturbative
shape is slightly out of phase when compared to the numerical
pattern, indicating that the WNL pattern rotates with a differ-
ent speed than the corresponding FNL interface.

By scrutinizing Eqs. (7)–(15) it is clear that the third-order
terms add extra complexity to the description of the problem.
However, the inclusion of these terms are necessary to provide
a more thorough description of the interface dynamics than
previous first- and second-order approaches [22,23,35]. Note
that contributions coming from higher perturbative orders
[e.g., O(ζ 4

n ), O(ζ 5
n ), etc.] are less important than the first,

second, and third orders, due to the smallness of ζn with
respect to R (|ζn| � R). Nevertheless, these contributions can
still provide a noticeable improvement in the morphologi-
cal agreement between WNL perturbative solutions and FNL
shapes. On the other hand, the consideration of perturbative
terms beyond the third-order is not trivial to implement, and
would make the mode-coupling equation simply humongous
and very cluttered.

To further validate the conclusions reached from the analy-
sis of Figs. 7 and 8 in a more quantitative fashion, in Fig. 9 we
plot the time evolution of the dimensionless perimeter L(t ) of
the interfaces associated to each situation examined in Fig. 7.
Note that, for the perturbative solutions, the time-dependent
interfacial perimeter is given by

L(t ) =
∫ 2π

0

√
R2(t ) +

[
dR(t )

dϕ

]2

dϕ. (17)

Inspecting the four curves in Fig. 9, we note that initially all
of them overlap. First, one observes a latency time period for
which the perimeter does not change, indicating that the in-
terface remains circular. Then, due to the destabilizing action
of the applied magnetic field, the ferrofluid droplet starts to
deform. At this early stage of the dynamics, the perturbations
emerging at the fluid-fluid boundary are very small, and non-
linear effects are negligible. Therefore, the nonlinear curves
(WNL and FNL) coincide with the linear one.

Nonetheless, as time advances and nonlinear effects start
to become important, each nonlinear curve in Fig. 9 reaches a

maximum value, and saturates, while the linear curve contin-
ues to grow exponentially. This is consistent with the fact that
the linear perturbative description fails to predict the proper
dynamical behavior of the interface for larger values of time.
Conversely, both WNL curves capture the saturation of the
perimeter occurring at longer time values. However, while the
WNL second-order curve saturates at L(t ) ≈ 9.00, the WNL
third-order curve reaches its maximum at L(t ) ≈ 6.90. This
WNL third-order value is indeed much closer to the perimeter
L(t ) ≈ 6.98 attained by the FNL curve, when a stable rotating
droplet shape is detected. Furthermore, notice that the time ts
for which saturation occurs is considerably overestimated by
the WNL second-order curve (ts ≈ 28.5) when compared with
the corresponding times ts ≈ 22.0, and ts ≈ 22.7 obtained by
the WNL third-order, and FNL solutions, respectively.

The findings presented in Figs. 7–9 point to the fact that
the employment of a third-order perturbative description of
the problem is not only necessary to provide a better mor-
phological agreement between perturbative patterns and fully
nonlinear shapes, but also needed to accurately predict the de-
velopment of fully nonlinear, spinning ferrofluid droplets that
evolve into stable interfacial profiles as detected in Ref. [35]
and also in Sec. III of this work.

Finally, it should be stressed that, as long as the ferrofluid
patterns are not too deformed, the important dynamic be-
haviors identified in Figs. 7–9 are indeed quite general and
representative of what occurs when similar comparisons of
linear and WNL solutions are performed with corresponding
FNL results when other values of the governing parameters A,
B, χ , and J are used.

V. CONCLUDING REMARKS

It is well known in the ferrohydrodynamic literature that
the employment of different applied magnetic field configu-
rations results in a great variety of dynamic responses and
morphological behaviors for ferrofluid droplets confined in
Hele-Shaw cells. An interesting, recent theoretical study on
this topic [35] has revealed a particularly attractive aspect of
the problem: The use of crossed radial and azimuthal magnetic
fields leads to the formation of peculiar swirling ferrofluid
patterns having skewed fingers, which rotate with a con-
trollable angular velocity, with stable permanent interfacial
profiles. In Ref. [35], this appealing pattern-forming behav-
ior has been examined by focusing on particular parametric
circumstances, in which the viscosity contrast A = −1 (i.e.,
viscous ferrofluid droplet surrounded by a nonmagnetic fluid
of negligible viscosity), and for a relatively large value of the
ferrofluid magnetic susceptibility χ = 1.

In this work, we revisited the problem of a confined
ferrofluid droplet under the influence of crossed radial and
azimuthal magnetic fields, and examined still unexplored
facets of its rich pattern formation dynamics. Boundary in-
tegral numerical simulations, and a third-order perturbative
mode-coupling scheme were employed to reveal how the mor-
phology of the rotating ferrofluid droplets, and their dynamic
instability respond to changes in the dimensionless governing
parameters of the system, namely: The viscosity contrast A,
the ferrofluid’s magnetic susceptibility χ , the effective sur-
face tension B (ratio of capillary to magnetic forces), and
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the current parameter J (relative magnitude of azimuthal and
radial fields). By conveniently tuning J to keep the same linear
growth for all situations, and by keeping B fixed, we have
been able to unveil, by varying A and χ , a gallery of various
possible shapes for the rotating ferrofluid droplet, ranging
from starlike patterns having long thin fingers with sharp tips,
or structures with thicker and shorter fingers having bulbous
ends, through distorted polygonal-like shapes having skewed
fingers at their vertices.

Fundamentally, these families of shapes result from the
competition between magnetic and viscous fingering insta-
bilities. We also verified that smaller values of B lead to
more deformed patterns having a larger number of emerg-
ing fingers. Still regarding the morphological aspects of the
patterns, we compared numerically simulated fully nonlinear
shapes with equivalent perturbative structures for increasing
perturbation orders (first, second, and third). We found that
the inclusion of third-order mode-coupling contributions is
necessary to provide a more accurate agreement between
fully nonlinear and perturbative solutions for the interface
shapes.

Further development of this work is connected with ac-
counting for the role played by the system’s governing
dimensionless parameters on the dynamic instability of the
spinning ferrofluid droplets. Our numerical simulations re-
vealed that modifications of the governing parameters may
have a nontrivial impact on the stability of the patterns. We
concluded that, despite having the same initial linear growth,
nonlinear patterns predicted as stable for a given set of con-
trolling parameters (A, χ B, and J) can become dynamically
unstable if some of these parameters are changed. In particu-
lar, as the viscosity contrast, A, is increased and the ferrofluid
droplet becomes less viscous than then outer nonmagnetic

fluid, a viscous instability contributes to the magnetically
driven fingering growth. Interestingly, for particular cases in
which the calculated shapes are stable (e.g., χ = 0.25, B =
5 × 10−4, and J = 1), the patterns only become unstable for
A > 0.6.

In addition, we investigated how the shape and dynamic
stability of the patterns are affected by initial conditions.
This was done by contrasting the pattern-forming structures
rising by imposing symmetric and random initial conditions.
The imposition of random initial conditions is a convenient
way to test the robustness of the stable dynamic nature of a
given pattern. In that sense, we have found patterns present-
ing stable shapes (e.g., A = 0, χ = 0.25, B = 5 × 10−4, and
J = 1) when a symmetric initial condition is imposed that
turned out unstable under random perturbations. In general,
by contrasting a number of patterns, under symmetric and
random conditions, and for various parametric situations, we
have found that for 0 � χ � 0.5 and −0.9 � A � 0.9, most
of the structures are indeed dynamically unstable. Our results
indicate that dynamic stability of the rotating ferrofluid pat-
terns under radial and azimuthal crossed magnetic fields is
favored for larger, negative values of the viscosity contrast
A (A → −1), and values of the ferrofluid’s magnetic sus-
ceptibility greater than χ � 0.25. This is in accordance with
the findings of Ref. [35] that explored the parameter regime
A = −1 and χ = 1.
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