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Buoyancy-driven convection flows play a crucial role in global heat and momentum transport in atmosphere.
Simplified planetary and stellar atmospheres can be described by a spherical gap geometry with special boundary
conditions for the temperature. In the spherical gap, the dielectrophoretic effect is used to synthesize the radial
gravity field. Lateral thermal boundary conditions are used to model solar radiation at the equator and at the poles.
The temperature reaches a maximum value at the equator and becomes colder near the poles. In the case of a
rotating gap, the influence of the Coriolis and centrifugal forces are taken into account. Different regimes of the
two-dimensional steady basic flow are discussed in dependence on the Taylor number and Rayleigh number and
for the radii ratio η = Rin/Rout, where Rin, Rout are the radii of the inner and outer surfaces, respectively. Linear
instability theory is used to study when the basic flow becomes unstable. The critical Rayleigh number at which
the steady axisymmetric basic flow becomes time-dependently axisymmetric or three dimensional is found to be
a function of the Taylor number. Furthermore, the critical azimuthal wave number mc, which is responsible for
the structure of the supercritical three-dimensional flow, and the critical frequency of the perturbation ωc were
found. The spatial location of the perturbation helps to understand the origin of the instability.

DOI: 10.1103/PhysRevE.104.065110

I. INTRODUCTION

Large-scale rotating flows play a fundamental role in at-
mospheric applications. In particular, the study of planetary
atmospheres is of great importance for weather forecasting,
climate, and the greenhouse effect. It is well known that atmo-
spheric flows are caused by gravity, rotation of the planet, and
heating due to solar radiation. This heating is inhomogeneous
because the Sun’s rays are perpendicular to the Earth’s surface
at the equator, causing the temperature to be higher than at the
poles. To understand the dynamics of such flows, various sim-
plified models have been proposed. A differentially heated,
rotating cylindrical annulus is the most widely used geometry
system to simulate atmospherelike flows. This configuration
has been suggested by Hide [1] for investigating many effects
that take place in the real atmosphere. Indeed, due to the
heating of the outer surface and the cooling of the inner wall
convective flow occurs because the temperature gradient is
perpendicular to the Earth’s gravity. Moreover, if the system
rotates, then the Coriolis force leads to the inclination of
the convective basic flow as in the real atmosphere. If the
rotation rate increases, then the gradient of the temperature
field is no longer parallel to the pressure gradient, caused baro-
clinic instability. The flow becomes three dimensional and
takes the form of steady waves with different wave numbers
in the azimuthal direction. This flow has been investigated
very thoroughly by many authors experimentally [1–3]. Im-
provement of the computational possibilities and numerical
methods led to publications in which numerical investigations
of the various regimes and transitions [4–6] were carried out.
They found quite good agreement with experiments. Hence,
the combination of the most essential components of the at-

mospheric flow such as gravity, rotation, and heating causes
the formation of large-scale circulation and the occurrence
of baroclinic instability that can be made visible due to the
appearance of the wave structure of the supercritical flow.
The studies cited above were performed in the cylindrical
annulus with horizontal endwalls, but the Coriolis force in
the atmosphere depends on the polar angle. To take this effect
into account, the design of the experiment has been changed
by adding the conical geometry of the bottom and top walls.
The experimental investigation of the flow with such sloping
endwalls [7–10] is a useful tool to study the nonlinear effects
and transition into the chaotic states in the atmosphere using
the comparatively easy geometry.

Unfortunately, the annulus configuration has some restric-
tions. First, the convective basic flow is concentrated in the
vicinity of the isothermal boundaries and causes a stable
boundary layer. Second, solar radiation is responsible for the
differential heating of the Earth’s surface. This heating is par-
ticularly strong in the tropics. Air becomes lighter, rises, and
moves toward the poles, where it becomes denser and sinks
down. This circulation looks much more complex than in the
classical annulus. Therefore, a new experiment has recently
been performed in the cylindrical cavity [11,12]. Only part of
the bottom boundary is heated (corresponding to the ground
at the equator) and part of the upper boundary (corresponding
to the pole), which is closer to the rotation axis, is cooled. The
main result of this new atmospherelike experiment was that
the coexistence of baroclinic and convective instabilities was
detected.

Although many results have been obtained using the cylin-
drical geometry, the spherical geometry is most natural for
the investigation of the atmospherelike flows. The atmosphere
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TABLE I. List of constants for the Novec 7200.

Energy dissipation factor hdiss 5.525 × 10−2

Volume expansion coefficient α (K−1) 1.605 × 10−3

Coefficient of thermal permittivity γ (K−1) 2.407 × 10−3

ac frequency f (Hz) 104

Permittivity εr 7.393
Density ρ (kg m−3) 1420
Spec. heat capacity Cp (J K−1 kg−1) 1220
Kinematic viscosity ν (m2 s−1) 4.708 × 10−7

Thermal diffusivity κ (m2 s−1) 4.5139 × 10−8

of the Earth has three cells: the Hadley cell, the polar cell,
and the Ferrel cell between them. This structure occurs due
to the differential heating and Earth’s rotation and is crucial
for understanding the flow dynamics. Moreover, we have new
numerical tools and specific computer codes that have been
developed using very exact spectral methods [13] that enable
these investigations.

The presented work provides numerical support for the
AtmoFlow experiment [14] on the International Space Station
(ISS). This experiment is to follow the successful GeoFlow se-
ries [15–20], in which geophysically relevant convective flows
were studied under microgravity conditions. Atmospherelike
flows will be simulated on the ISS to eliminate the influence
of Earth’s gravity. The Novec 7200 fluid (Pr = 10.43) is used
as a working fluid in this experiment (Table I).

The paper is structured as follows. We begin the formula-
tion of the problem by discussing the geometry and special
boundary conditions for the temperature in Sec. II A and ex-
plaining the buoyancy force in Sec. II B. After formulating the
governing equations in Sec. II D, we present the numerical
method in Sec. III. The classification of the basic flows for
different Rayleigh numbers and Taylor numbers is discussed
in Sec. IV A. The linear instability analysis is carried out in
Sec. V.

II. FORMULATION OF THE PROBLEM

A. Geometry and boundary conditions for the temperature

The presented work deals with the numerical simulation
of a simplified atmospherelike flow in the spherical gap be-

tween two spherical surfaces (Fig. 1, left), which is filled with
dielectric fluid. The dielectrophoretic effect, discussed below,
enables the creation of the radial force field. The radii ratio is
η = Rin/Rout = 0.7 in the AtmoFlow experiment and η = 0.7,
η = 0.8 for the numerical research. The real spherical gap,
which is much narrower (η = 0.997), cannot be realized in
the experiment because some space for technical devices is
necessary. But this value cannot be used from the numerical
point of view because in this case, an extremely large resolu-
tion in the polar and azimuthal directions would be required
as we will see in Sec. III.

The next important issue is connected with the formu-
lation of relevant thermal boundary conditions. Of course,
realistic boundary conditions are extremely complex due to
many factors such as radiative exchanges, ocean flows, or
surface topography, but thermal boundary conditions should,
nevertheless, obey the following features in three regions [14]:
(1) the temperature at the equator reaches its maximum value
because of infrared radiation, caused by solar heating; (2) the
temperature sinks in the upper atmosphere of both poles; and
(3) moderate temperature distribution between the polar and
equatorial regions. The temperature on the inner surface can
be simulated based on the relation

Tin(θ ) =
(

Thot + Tcold

2

)
+

(
Thot − Tcold

2

)
sinn θ, (1)

where the factor n controls the width of the distribution. When
n = 100, the temperature decreases from Thot at the equator
to (Thot + Tcold )/2 within 30◦. The temperature at the outer
surface should be constant, but not at the poles, where large
gradients in the polar direction have to be simulated. These
gradients can be controlled by the thermal layer parameter
ath. The analytical expression on the outer surface can be
suggested in the form

Tout (θ ) = Tcold +
(

Thot − Tcold

2

)
cosh(ath cos θ ) − cosh(ath )

1 − cosh(ath )
,

(2)
where ath = 50. This choice of parameter increases the tem-
perature from Tcold on the poles to (Tcold + Thot )/2 within
30◦ according to the three-cell atmospheric model. Note that
the tested functions Eqs. (1) and (2) obey all three above-
mentioned conditions. These novel polar angle-dependent
boundary conditions meet the real situation much better in

FIG. 1. Simplified global atmospheric circulation from (left) and one-cell model (right).
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FIG. 2. The geometry of the problem (left), boundary conditions for the temperature (right).

contrast to the case when each surface is maintained at
constant temperature. The geometry of the problem and tem-
perature profiles on the inner and outer surfaces are shown by
Tcold = 295.5 K and Thot = 310.5 K in Fig. 2.

B. Derivation of the radial force field

To generate the radial force field, the electric field is im-
posed on a dielectrically incompressible fluid of density ρ and
a temperature-dependent permittivity ε(T ). The force density
generated by the electric field E can be expressed according
to [21]:

fe = ρeE − 1

2
E2∇ε(T ) + ∇

[
1

2
ρ

(
∂ε

∂ρ

)
T

E2

]
, (3)

where the first term is the density of the Coulomb force
with a free charge ρe. The second term represents the dielec-
trophoretic force density, fdep. The third term corresponds to
the electrostriction force and can be united with the pressure
gradient. The Coulomb force is negligible if the frequency
of the imposed electric field f is much higher than all fre-
quencies responsible for the fluid behavior. These conditions
can be expressed as follows: f � τ−1

e , t−1
ν , t−1

κ , where τe =
ε0εr/σe is the charge relaxation time (ε0 is the vacuum per-
mittivity, εr is the dielectric constant, and σe is the electrical
conductivity), tν = d2/ν is the viscous relaxation time, tκ =
d2/κ is the thermal relaxation time (ν is the kinematic vis-
cosity, κ is the thermal diffusivity), and d = Rout − Rin is the
width of the spherical gap. Furthermore, the width of the gap
must be much larger than the thickness of the Debye layer
on the electrodes, i.e., d � δD [22,23]. Since all of these
conditions are met, only the dielectrophoretic force affects the
flow and must be considered. The dielectrophoretic force can
be rewritten based on the well-known relation

− 1
2 E2∇ε(T ) = − 1

2∇[E2ε(T )] + 1
2ε(T )∇E2. (4)

The first term can be combined with the pressure, and the sec-
ond term can be understood as the buoyancy force. However,
instead of the temperature-dependent density, ρ(T ), we now
have the temperature-dependent electric permittivity ε(T ).
Furthermore, the behavior of the electric permittivity can be
approximated by a linear function of the temperature T :

ε(T ) = ε0εr[1 − γ (T − Tcold )]. (5)

We can interpret Eq. (5) as the “equation of state” that con-
nects permittivity with the temperature (γ is the coefficient of
thermal permittivity) similarly to the corresponding equation
for the density that is widely used in many convective prob-
lems. To understand where the gravity field comes from, the
force fdep can be written after a little algebra as follows:

fdep = −ργ (T − Tcold )ge, ge = ε0εr

2ρ
∇E2, (6)

where ge is the artificial gravity field induced by the electric
field.

Now we emphasize an important difference between the
problem under consideration and many other convective
problems [e.g., in natural convection, Rayleigh-Bénard (RB)
convection, etc.]. In RB convection, the gravity does not
change, and the flow is controlled due to the temperature gra-
dient, while in our case, �T = (Thot − Tcold )/2 is maintained
at a constant value (�T = 7.5 K), and the flow is triggered by
varying the voltage or artificial gravity. We underline that the
dielectrical effect is a very useful tool to simulate an artificial
gravity under the microgravity conditions in planar [24,25],
cylindrical [26], and spherical [16,19,27,28] geometries. The
theoretical background and applications of this effect can be
found in Ref. [29]. Note that the microgravity condition is
particularly important because the Earth’s gravity is at least
100 times stronger than artificial ge. Hence, to eliminate the
effect of Earth’s gravity, corresponding experiments must be
performed in space, e.g., on the ISS.

C. Influence of dielectrical heating

As we showed in previous publications [14,20], because
of the high frequency of the applied electric field, f , the
volumetric heating must be taken into account in the energy
equation by the source term according to the relation

HE = 2π f ε0εrhdiss

ρCp
E2, (7)

where hdiss is the energy dissipation factor and Cp is the
specific heat capacity. Substituting all necessary values from
Table I and taking into account the fact that the gap width
in the AtmoFlow experiment is d = 0.0081 m and the volt-
age between two surfaces is Vrms = 1000 V (it is a variable
value), we obtain HE ≈ 0.2 K/s. Note that we have electric-
field-dependent (via the voltage) gravity ge ∼ V 2

rmsr
−5 in the
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Navier-Stokes equation [27] and HE ∼ V 2
rmsr

−4 in the energy
equation. Hence, the source term and the gravity are coupled
parameters (HE ∼ ge).

D. Equations

We consider an incompressible viscous dielectric fluid in
the Boussinesq approximation in the spherical gap. In general
form, the problem under consideration can be described by the
Navier-Stokes equation for the velocity,

∂U
∂t

+ (U · ∇)U = −∇peff − γ (T − Tcold )ge + ν∇2U

− 2� × U − ρ(T )

ρ0
� × (� × r), (8)

where U is the velocity field and t is the time,

peff = p

ρ0
− γ ε0εr (T − Tcold )E2

2ρ0
− 1

2

(
∂ε

∂ρ

)
T

E2, (9)

ρ0 = ρ(Tcold ), � is the rate of rotation, and the energy equa-
tion for the temperature

∂T

∂t
+ (U · ∇)T = κ∇2T + HE , (10)

the continuity equation

∇ · U = 0, (11)

and the Gauss equation

∇ · [ε(T )∇υ] = 0, (12)

where υ is the electric potential: E = −∇υ.
The equation for permittivity, Eq. (5), was substituted into

the Navier-Stokes equation. In the term corresponding to the
centrifugal force, the temperature-dependent density must be
taken into account. Therefore, the equation of state

ρ(T ) = ρ0[1 − α(T − Tcold )], (13)

where α is the volume expansion coefficient, ρ0 = ρ(Tcold ) is
necessary to complete the system of equations.

Now let us formulate the boundary conditions for the
velocity field. The first set (BC I) corresponds to the no pene-
tration condition for Ur and no-slip for Uθ , Uφ ,

Ur = 0, Uθ = 0, Uφ = 0, (14)

on the inner bounding surface r = Rin and on the outer bound-
ing surface r = Rout. The second set (BC II) is [Eq. (14)] on
the inner surface and no penetration condition for the radial
velocity component and free-slip for Uθ , Uφ on the outer
bounding surface,

Ur = 0,
∂

∂r

(
Uθ

r

)
= 0,

∂

∂r

(
Uφ

r

)
= 0. (15)

The motivation for solving a problem with these constraints
is as follows. While the first set, Eq. (14), is realized in the
new AtmoFlow experiment to be performed on the Interna-
tional Space Station, the second set, Eq. (15), is closer to
real atmospheric conditions. The boundary conditions for the
temperature and the electric potential are

T = Tin(θ ), υ = Vrms, (16)

on the inner surface r = Rin,

T = Tout (θ ), υ = 0, (17)

on the outer surface r = Rout. The time-dependent voltage
V (t ) = V0 cos 2π f t was replaced by the root-mean-squared
value Vrms =

√
〈V 2(t )〉 = V0/

√
2 according to the time-

averaged relationship over one period of the voltage variation
Te = f −1〈V 2(t )〉 = 1

Te

∫ Te

0 V 2(t )dt . Conditions for this re-
placement were numerically derived in Refs. [30,31] and can
be briefly formulated as follows. First, the Prandtl number
of the working fluid must be large (Pr � 1). Furthermore,
the frequency f must obey two conditions: f � t−1

ν and
f � τ−1

e . Considering f = 104 Hz, Pr = 10.43, ν = 4.708 ×
10−7 m2 s−1, d = Rout − Rin = 0.0081 m, we can conclude
that all these conditions are fulfilled (Table I).

Introducing the dimensionless temperature T ∗ according
to T − Tcold = �T T ∗, where �T = (Thot − Tcold )/2, d for the
length r = r∗d , κ/d for the velocity U = U ∗κ/d , tκ = d2/k
for the time t = t∗d2/κ , Vrms/d for the electric field E =
E∗Vrms/d , ρ0κ

2/d2 for the pressure and p = p∗ρ0κ
2/d2, the

governing equations can be expressed as follows (without
asterisks):

Pr−1

[
∂U
∂t

+ (U · ∇)U
]

= −Pr−1∇p + ∇2U

− 1

4
RaE · T · ∇[∇υ0(r) + ∇υ1(r, θ, φ)]2

−
√

Taez × U + A · Tr sin θs, (18)

where ez = cos θer − sin θeθ , s = −(sin θer + cos θeθ ) are
unit vectors,

∂T

∂t
+ (U · ∇)T = ∇2T + RaE

RaT
[∇υ0(r) + ∇υ1(r, θ, φ)]2,

(19)

∇2υ1(r, θ, φ) = B

1 − B · T
∇T · [∇υ0(r) + ∇υ1(r, θ, φ)],

(20)

RaE = 2ε0εrγ

ρνκ
V 2

rms�T, (21)

is the Rayleigh number and

Ta =
(

2�d2

ν

)2

(22)

is the Taylor number. Further parameters are defined as RaT =
Cpγ�T 2

πν f hdiss
, B = γ�T , A = 1

4α�T PrTa. The electric field E can
be divided into two parts (θ is the polar angle and φ is the
azimuth angle),

E = E0(r) + E1(r, θ, φ), (23)

E0(r) = −∇υ0(r), (24)

E1(r, θ, φ) = −∇υ1(r, θ, φ). (25)
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TABLE II. List of dimensionless parameters (�T = 7.5 K).

Rayleigh number, RaE 2ε0εrγ�TV 2
rms/(ρνκ ) 0–2.45 × 105

Taylor number, Ta (2�d2/ν )2 0–4 × 105

Prandtl number, Pr ν/κ 10.43
Radii ratio, η R1/R2 0.7, 0.75, 0.8
A α�T PrTa/4 0–12555
B γ�T 0.01805
RaT Cpγ�T 2/(πν f hdiss ) 202134

Meanwhile, the field E0(r), satisfying the expression ∇ ·
E0(r) = 0, can be calculated analytically

E0(r) = η

(1 − η)2

1

r2
er . (26)

The field E1(r, θ, φ) has a more complex form since it gen-
erally depends on all three coordinates and must be found
numerically by solving Eq. (20). Substituting E0(r) in Eq. (6),
we obtain the well-known r−5 dependence [27]. It is clear
that the second field occurs due to the temperature-dependent
function ε(T ). The boundary conditions for the temperature
T and the electric potential υ1 are

Tin(θ ) = 1 + sinn θ, υ1 = 0, (27)

on the rin = Rin/d = η/(1 − η) and

Tout (θ ) = cosh(ath cos θ ) − cosh(ath )

1 − cosh(ath )
, υ1 = 0, (28)

on the rout = Rout/d = 1/(1 − η). The parameters RaT and B
do not change with fixed �T . Parameter A depends only on
the Taylor number (for a fixed Prandtl number). Therefore,
we can study a convective flow that depends on the Rayleigh
number (or voltage Vrms) and the Taylor number (or rotation
rate �).

Finally, let us appreciate the influence of the dimensionless
parameters RaT , B, and A in more detail. The values of these
parameters for �T = 7.5 K are RaT = 202134, B = 0.01805,
and A = 0.03139Ta. Note that even for moderate Rayleigh
numbers, e.g., RaE = 5 × 104, the influence of the dielectrical
heating, expressed in terms of RaE/RaT ≈ 0.25, is essen-
tial and must be taken into account. This relation increases
drastically as RaE increases, particularly in the nonrotating
and slowly rotating cases. Parameter A is responsible for the
influence of the centrifugal force that will be discussed later in
Sec. V D. The list of dimensionless parameters can be found
in Table II.

III. NUMERICAL METHOD

The fully three-dimensional pseudospectral numerical
code for the spherical geometry was developed by R. Holler-
bach [13]. The poloidal-toroidal representation of the velocity
field

U = ∇ × ∇ × (�er ) + ∇ × (�er ) (29)

has many advantages. First, the velocity field automatically
obeys the continuity equation. The second reason is that the
separate equations for poloidal � and toroidal � potentials
are obtained by applying the operators ∇ × ∇× and ∇×,

respectively. Note that they are coupled due only to the non-
linear term in the Navier-Stokes equation. Moreover, applying
the above operators eliminates pressure. After performing the
mapping r(z) = 1

2 [z + 1+η

1−η
], where z ∈ [−1,+1], any scalar

function can be expanded in terms of the Chebyshev poly-
nomials in the radial direction and in terms of spherical
harmonics in the polar and azimuthal directions according to

�(t, r(z), θ, φ) =
MU∑
m=0

LU∑
�=�′

KU+4∑
k=1

[gck�m(t ) cos(mφ)

+ gsk�m(t ) sin(mφ)]Tk−1(z)Pm
� (cos θ )

�(t, r(z), θ, φ) =
MU∑
m=0

LU∑
�=�′

KU+2∑
k=1

[ fck�m(t ) cos(mφ)

+ fsk�m(t ) sin(mφ)]Tk−1(z)Pm
� (cos θ ),

(30)

�′ = max(1, m). Four boundary conditions are necessary for
the poloidal potential and two for the toroidal potential. From
Eq. (14) we obtain

� = 0 (31)

on both boundaries. This relation is equivalent to the no-
penetration condition. The next two boundary conditions can
be derived using the continuity equation. In the case of the
no-slip boundary conditions Eq. (14) yields

∂�

∂r
= 0, � = 0, (32)

on both surfaces. The free-slip boundary conditions become
the following form:

(
∂2

∂r2
− 2

r

∂

∂r

)
� = 0,

(
∂

∂r
− 2

r

)
� = 0. (33)

A similar expressions apply to the temperature and electric
potential:

T (t, r(z), θ, φ) =
MT∑

m=0

LT∑
�=m

KT+2∑
k=1

[tck�m(t ) cos(mφ)

+ tsk�m(t ) sin(mφ)]Tk−1(z)Pm
� (cos θ )

υ1(t, r(z), θ, φ) =
MP∑

m=0

LP∑
�=m

KP+2∑
k=1

[pck�m(t ) cos(mφ)

+ psk�m(t ) sin(mφ)]Tk−1(z)Pm
� (cos θ ).

(34)
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FIG. 3. Basic flow for η = 0.7 (BC I). The first row shows the contours of the meridional circulation χ with (a) χmax = 0.09 (0.015);
(b) χmax = 0.6 (0.2), χmin = −6.0 (0.6); and (c) χmin = −40.0 (5.0). The dotted (solid) lines indicate a negative (positive) values of the stream
function. The corresponding vortices rotate counterclockwise (clockwise). The second row shows the contours of the azimuthal velocity U0φ

with maximal and minimal values (a) +0.18 (0.02), −0.06 (0.01); (b) +20.0 (4.0), −40.0 (5.0); and (c) +50.0 (5.0), −80.0 (10.0). The contour
intervals are shown in brackets. The third row shows the contours of the base temperature. The maximum value is Tmax = 2.0 at the equator,
and the minimum value is Tmin = 0.0 on the outer surface at θ = 0. The contour interval is 0.1.

The expressions for the poloidal and toroidal potentials reduce
for the base axisymmetric flow (m = 0) as follows:

�0(t, r(z), θ ) =
LU∑
�=1

g0�(t, r(z))P�(cos θ )

=
LU∑
�=1

KU+4∑
k=1

g0k�(t )Tk−1(z)P�(cos θ )

�0(t, r(z), θ ) =
LU∑
�=1

f0�(t, r(z))P�(cos θ )

=
LU∑
�=1

KU+2∑
k=1

f0k�(t )Tk−1(z)P�(cos θ ). (35)

Similar expressions apply to the base temperature T0(t, r, θ )
and the base electric potential υ1(t, r, θ ).

Twenty Chebyshev polynomials (KU = 20) were neces-
sary to solve the problem in the radial direction for the
velocity. The maximum value for the KT for the temperature
is KT = 30. Unfortunately, many more Legendre polynomials
were needed to obtain a grid-independent solution. While LU
for the velocity field varies between LU = 80 and LU = 160,
the LT should be at least LT = 100 due to boundary condi-
tion Eq. (1). The maximum value was LT = 240 to resolve
the thermal boundary layer for a large Rayleigh number. To
get, for example, a solution for η = 0.7, RaE = 38000, and
Ta = 104 [Regime II, Fig. 3(b)] we need KU = KT = 20,
LU = 80, and LT = 100, i.e., above these parameters the min-
imum value of the stream function χmin = −7.7248 does not
change.
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Spectral coefficients were calculated using the predictor-
corrector method. To obtain a steady two-dimensional basic
flow, a time step �t changes between �t = 10−3 and �t =
2 × 10−5 for large Rayleigh numbers. The time step �t =
10−4 provides an excellent accuracy (within 0.03%) for stabil-
ity analysis. However, for large Rayleigh numbers �t should
be reduced to �t = 10−5.

Note that both test functions Eqs. (27) and (28) not only
satisfy all the required physical conditions but are also favor-
able from a numerical point of view. In other words, they can
be represented in the form of a series with rapid convergence.

IV. BASIC FLOW

A. Flow patterns

The basic flow is steady, axisymmetric ( ∂
∂φ

= 0). There-
fore, the meridional circulation can be expressed in terms of
the stream function χ associated with the velocity components
according to

U0r (r, θ ) = 1

r2 sin θ

∂χ

∂θ
, U0θ (r, θ ) = − 1

r sin θ

∂χ

∂r
. (36)

The relationship between the stream function and the poloidal
potential is

χ (r, θ ) = − sin θ
∂�0(r, θ )

∂θ
. (37)

Furthermore, we present the azimuthal velocity component
U0φ (r, θ ) and the base temperature T0(r, θ ). If the radii ratio η,
the Prandtl number, and �T are fixed, then the flow depends
on two control parameters: the Rayleigh number RaE and
the Taylor number Ta. Depending on the point on the plane
(Ta, RaE ), this results in different basic flow patterns. The
classification of such states for both kinds of the boundary
conditions for the velocity is presented in the next sections.

1. Conductive state

When RaE = 0 (no gravity) and Ta = 0 (no rotation),
there is no flow [U0(r, θ ) = 0]. However, the temperature,
Tcond(r, θ ), corresponding to the conductive state can be found
analytically (cf. Appendix).

2. Solutions for two rigid boundaries

In the case when no voltage is applied, i.e., RaE = 0 but
the spherical system rotates Ta > 0, the centrifugal force is
responsible for the formation of the basic flow. The latter
is predominantly located at the equator and the meridional
vortex rotates clockwise [Fig. 3(a), Regime I, first row]. This
structure is also preserved for large Taylor numbers and small
Rayleigh numbers. The Coriolis force, −2ρ0� × U, is re-
sponsible for the creation of the azimuthal component of the
basic flow [Fig. 3(a), Regime I, second row]. Indeed, the radial
component has the largest (negative) value at the equator.
Therefore, the Coriolis force causes the positive azimuthal
flow at and in the vicinity of the equator. For the same reason,
the azimuthal velocity becomes negative if the fluid moves
toward to the outer surface. The base temperature [Fig. 3(a),
Regime I, third row] looks similar to the conductive state
temperature. Indeed, the source term in the energy equation

does not affect the heat transfer and the convective term is
small because the flow occurs only due to the centrifugal
effects.

As the Rayleigh number increases, the buoyancy force
becomes more and more important and leads to the new basic
flow structure. Because the influence of the centrifugal force
becomes smaller if the Taylor number decreases, the clock-
wise rotating vortex disappears and the meridional basic flow
consists mainly of two parts. The first part occurs due to the
buoyancy force and is located near the equator (equatorial
cell) [Fig. 3(b), Regime II, first row]. The origin of this flow
can be explained as follows. The boundary condition for the
temperature at the inner surface creates a strong temperature
gradient that has both radial and polar components. On the
other hand, the gravity ge has a radial direction. Therefore, this
situation can be compared to natural convection when gravity
and the temperature gradient are not parallel. This combina-
tion causes the convective flow. Due to equatorial heating, the
density decreases and the fluid rises toward the outer surface.
As the fluid moves poleward, it cools, the density increases,
and the fluid descends toward the inner surface. Because the
fluid is heavier than at the equator, the fluid travels down along
the surface, closing the loop. Hence, the occurrence of the
equatorial cell can be compared with the origin of the Hadley
cell, that appears due to solar radiation at the equator. The
poleward flow deviates toward the east due to the Coriolis
force in the upper part of the vortex. In the vicinity of the inner
surface, the flow deviates toward the west. The corresponding
azimuthal component of the velocity is presented in Fig. 3(b),
Regime II, second row. Hence, the equatorial or Hadley cell
is inclined from the east to the west and causes an easterly
wind in the north hemisphere, i.e., our numerical model is
qualitatively in good accordance with three-cell atmospheric
model. There is also a vortex at the pole (polar cell). This
vortex is caused by convective motion of the fluid. Although
the fluid in the vicinity of the pole is colder in contrast to the
equatorial fluid it is still able to trigger the convection. First,
the fluid rises toward the outer surface and moves toward the
pole, where it becomes colder, denser, and descends toward
the inner surface. Due to the high pressure at the pole, the
fluid moves along the inner surface, completing the convective
loop. The Coriolis force is again responsible for the incli-
nation of the polar cell. The mechanism of this deviation is
same as in the case of the equatorial cell. The corresponding
flows are called polar winds. They move from northeast to
southwest in the vicinity of the north pole and from southeast
to northwest in the vicinity of the south pole. The polar cell
is much weaker in contrast to the Hadley cell. This fact is
also in accordance with the atmospheric three-cellular model.
Unfortunately, not enough energy is produced to trigger the
midlatitude or Ferrel cell in the case of η = 0.7 and no-slip
boundary conditions. The base temperature undergoes a sig-
nificant changes, as shown in Fig. 3(b), Regime II, third row.
The temperature becomes a mushroom shape at the equator
and strong radial gradients caused by convection.

When the Rayleigh number is large, at RaE = O(105), and
the Taylor number is small, at Ta = O(103), the convective
flow is propagated from the equator to the poles, as shown in
Fig. 3(c), Regime III, first row. A meridional vortex rotates
counterclockwise. This vortex occurs in the nonrotating or
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FIG. 4. Basic flow (Regime IV, BC I) for η = 0.8, Ta = 2 × 103, and RaE = 2 × 105. (a) Contours of the meridional circulation χ : χmax =
1.6 (0.4) and χmin = −50.0 (5.0). The dotted (solid) lines indicate a negative (positive) values of the stream function. The corresponding
vortices rotate counterclockwise (clockwise). (b) Contours of the azimuthal velocity component U0φ (r, θ ): U0φmax = 60.0 (10.0) and U0φmin =
−100.0 (20.0). The dotted (solid) lines indicate a negative (positive) values of the azimuthal velocity. The contour intervals are shown in
brackets. (c) The base temperature T0(r, θ ) with a contour interval of 0.2. The maximum value is Tmax = 2.0 at the equator, and the minimum
value is Tmin = 0.0 on the outer surface at θ = 0.

slowly rotating case and is a huge Hadley cell in accordance
with the one-cell model (Fig. 1, right).

Physical features of the Regime III reflect in the numerical
details. The polar gradients of the temperature [Fig. 3(c),
Regime III, third row], ∂T0(r, θ )/∂θ , are due to the specific
boundary conditions much larger than the similar gradients of
the velocity. This explains why more Legendre polynomials
are needed to resolve the thermal layer (LT = 240) in contrast
to the LU = 160. Thickness of the thermal boundary layer in
vicinity of the equator and poles is smaller in contrast the
thickness of the boundary layer for the velocity (δth � δu).
Therefore, more Chebyshev polynomials (KT = 30) are nec-
essary to resolve thermal boundary layer than for the velocity
KU = 20. Note that these features of the boundary layers
are typical for fluids with large Prandtl numbers, i.e., as our
working fluid with Pr = 10.43.

An additional pattern of the basic flow occurs in the nar-
row gap with η = 0.8 (Fig. 4). This new vortex is called the
midlatitude or the Ferrel vortex, which is weaker than polar
and Hadley cells because of absence of proper heat sources.
Therefore the existence of Ferrel vortex fully depends on how
strong polar and equatorial cells are. Note that the size of the
polar cell is much larger than in the case presented in Fig. 3(b).

3. Solutions for the inner rigid and outer free boundary

The case, when the outer surface is free, is interesting
from the point of view of physics because this constellation
is slightly more consistent with the real atmospheric model.
The corresponding numerical simulations of the basic flow are
presented in Figs. 5 and 6.

The meridional circulation, corresponding to the Regime
I [Figs. 5(a), first row] is the same as in the case with both
rigid surfaces. The clockwise rotating vortex is caused by the
centrifugal force, which is dominant if the buoyancy force is
absent or small.

The Regime II [Fig. 5(b), first row] undergoes a remark-
able transformation and differs from the corresponding regime
considered in the previous section. Indeed, now the basic flow
has not only polar and equatorial cells but also a clockwise
rotating midlatitude or Ferrel cell between them. The other
feature of this regime is that each of these cells occupies ap-
proximately 30% of the space from pole to equator. This is in

very good accordance with the three-cell atmospheric model.
Because the outer bounding surface is free the azimuthal flow
undergoes, of course, a significant change. The isolines of
the azimuthal velocity at least at the vicinity of the outer
surface are not the loops now. The maximum of the azimuthal
component shifts toward the pole [Figs. 5(b), second row]. It is
noteworthy that the azimuthal velocity component is positive
in the vicinity of the equator and negative in other parts of the
gap in Regime I [Figs. 5(a), second row] due to the Coriolis
force as in the case considered above. If the Rayleigh number
increases, then U0φ changes their sign in the above regions
[Figs. 5(b), second row]. Hence, we again obtain the correct
direction of the Trade Winds using a very simple atmospheric
model.

The meridional circulation [Fig. 5(c), Regime III, first row]
has the similar shape as in the case with both rigid surfaces.
The counterclockwise rotating vortex occupies the whole gap.
Note that due to strong radial velocity component at the equa-
tor and polar velocity component in the vicinity of the poles
the Coriolis force is very large even when the Taylor number
is small. This leads to the formation of the large gradients of
the azimuthal velocity components [Fig. 5(c), second row],
which is important for understanding of the flow instability in
the next section.

Furthermore, as in the case with two rigid surfaces, we have
a pattern with one clockwise rotating small-scale vortex be-
tween two counterclockwise rotating vortices when the radii
ratio increases, as presented in Fig. 6. This is a Ferrel vortex,
which occurs because it obtains enough energy from the polar
and Hadley cells.

Summarizing insights in form of the four regimes, gained
from numerical investigation, we can now classify two-
dimensional basic flows that have been obtained using the
new thermal boundary conditions in the spherical gaps with
η = 0.7 and η = 0.8. Of course, new flow patterns can occur
if the gap becomes narrower, but these cases are out of the
scope of this research.

We complete the presentation of the basic flow with a
discussion of the influence of the additional electric field
E1(r, θ ) = −∇υ1(r, θ ). It is obvious that the radial compo-
nent of the buoyancy force makes a considerable contribution
to the convective flow. Indeed, working out this compo-
nent, we can see that two terms are particularly important.
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FIG. 5. Basic flow for η = 0.7 (BC II). The first row shows the contours of the meridional circulation χ with (a) χmax = 0.18 (0.02);
(b) χmax = 0.8 (0.2), χmin = −6.4 (0.8); and (c) χmin = −54.0 (6.0). The dotted (solid) lines indicate a negative (positive) values of the stream
function. The corresponding vortices rotate counterclockwise (clockwise). The second row shows the contours of the azimuthal velocity U0φ

with maximal and minimal values (a) +0.8 (0.1), −0.7 (0.1); (b) +35.0 (5.0), −30.0 (5.0); and (c) +60.0 (6.0), −8.0 (1.0). The contour
intervals are shown in brackets. The third row shows the contours of the base temperature with a contour interval of 0.1. The maximum value
is Tmax = 2.0 at the equator, and the minimum value is Tmin = 0.0 at the outer surface at θ = 0.

FIG. 6. Basic flow (Regime IV, BC II) for η = 0.8, Ta = 10, RaE = 211770. (a) Contours of the meridional circulation χ : χmax = 3.0 (1.0)
and χmin = −90.0 (10.0). The dotted (solid) lines indicate negative (positive) values of the stream function. The corresponding vortices rotate
counterclockwise (clockwise). (b) Contours of the azimuthal velocity component U0φ (r, θ ): U0φmax = 140.0 (20.0) and U0φmin = −20.0 (4.0).
The dotted (solid) lines indicate negative (positive) values of the azimuthal velocity. The contour intervals are shown in brackets. (c) The base
temperature T0(r, θ ) with a contour interval of 0.2. The maximum value is Tmax = 2.0 at the equator, and the minimum value is Tmin = 0.0 on
the outer surface at θ = 0.
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FIG. 7. Nusselt number for η = 0.7, (a) Ta = 0, (b) Ta = 15 000, and (c) Ta = 105.

The first is

Fr1 = RaE
η2

(1 − η)4

T0(r, θ )

r5
, (38)

which comes from the potential υ0(r), which plays a highly
essential role and the second is

Fr2 = RaE
η

2(1 − η)2

T0(r, θ )

r2

∂2υ1(r, θ )

∂r2
, (39)

which is a combination of the imposed electrical field E0(r)
and the additional field E1, caused by the temperature gradient
in the Gauss equation. According to numerical simulations,
the maximum value of the additional field is found on the
inner surface at θ = π/2 and is 100 times weaker than the im-
posed field E0(r). Nevertheless, due to the second derivative,
the relationship between the two terms is Fr2/Fr1 ≈ 8% at
(r, θ ) = [η/(1 − η)], π/2), η = 0.7, RaE = 38365, and Ta =
7 × 103 for both kinds of the boundary conditions. Therefore,
it is better to incorporate an additional field into the model
under consideration.

B. Heat transfer

Heat transfer was studied in terms of the Nusselt number
defined as

Nuin = Qconv
in

Qcond
in

, Nuout = Qconv
out

Qcond
out

, (40)

where

Qconv
in = −

∫
Sin

∂T0(r, θ )

∂r
dSin,

Qconv
out = −

∫
Sout

∂T0(r, θ )

∂r
dSout,

Qcond
in = −

∫
Sin

∂Tcond(r, θ )

∂r
dSin,

Qcond
out = −

∫
Sout

∂Tcond(r, θ )

∂r
dSout (41)

and dSin,out = r2
in,out sin θdθdφ for two types of the boundary

conditions and radii ratios η = 0.7 and η = 0.8. According to
the numerical calculations, the energy balance equation for all
the cases considered is

Nuin + RaE

RaT

QE

Qcond
out

− Nuout = 0, (42)

where QE = ∫
V E2dV , i.e., energy flux due to conduction

through the inner surface together with the energy generated
by the internal heating leaves the domain considered through
the outer surface (Fig. 7). Despite the latitudinal dependence
of the boundary conditions, the temperature corresponding to
the purely conductive state can be calculated analytically. The
solution can be found in the form of a series and is shown in
the Appendix. The energy flux is

Qcond
in = Qcond

out = 0.1444
4πη

(1 − η)2
. (43)
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Moreover, because the influence of the additional electric field
υ1 and ∂υ1

∂r is small, the QE can be calculated analytically.
After a little algebra we have

QE = 4πη

(1 − η)2
. (44)

Hence, taking into account Eq. (43), we can conclude that
QE/Qcond does not depend on the radii ratio η, and the energy
balance equation can be written as

Nuin + 6.93
RaE

RaT
− Nuout = 0. (45)

The following consequences can be drawn from the Eq. (45)
and numerical calculations. (1) The influence of the dielec-
trical heating is ∼RaE . This feature of the model under
consideration is very specific and differs from other mod-
els in which sources in the energy equations are negligible.
(2) The heat transfer at Ta = 0, i.e., in the nonrotating case
[Fig. 7(a)] is much stronger in contrast to the rotating case
[Figs. 7(b) and 7(c)]. Hence, the rotation reduces the heat
transfer. (3) The boundary conditions for the velocity affect
the heat transfer at Ta = 0: The free-slip boundary condition
leads to the enhancement of the heat transfer [Fig. 7(a)]. The
Nusselt numbers have almost the same values for both types
of boundary conditions [Figs. 7(b) and 7(c)] in the rotating
case.

V. LINEAR INSTABILITY ANALYSIS

In this part, the stability of the basic flow is examined.
Linear instability analysis is used to find a critical Rayleigh
number, RaEc, above which (RaE > RaEc) the steady axisym-
metric basic flow is always unstable. If RaE < RaEc, then the
basic flow is stable with respect to infinitesimal perturbation
but may be unstable with respect to finite perturbation. To
solve the eigenvalue problem, the linearized Navier-Stokes
equation, the energy equation, and the Gauss equation are
formulated. The most important property of the perturbation
u,�, υ̃ for the velocity, temperature, and electric potential,
respectively, is that due to the equatorial symmetry of the base
flow, the perturbations satisfy either

{ur, uθ , uφ,�, υ̃}(r, θ, φ)

= {ur,−uθ , uφ,�, υ̃}(r, π − θ, φ), (46)

which are equatorially symmetric (symmetry class I), or

{ur, uθ , uφ,�, υ̃}(r, θ, φ)

= {−ur, uθ ,−uφ,−�,−υ̃}(r, π − θ, φ), (47)

which are equatorially antisymmetric (symmetry class II). As
we will see, unlike the case where the temperatures of the
inner and outer enclosures are kept at constant values and
only equatorially symmetric perturbations [Eq. (46)] are re-
sponsible for the instability [20], both classes are important in
the problem considered. Hence, a rich variety of supercritical
states is expected. According to linear instability theory, the
basic flow U0(r, θ ), the base temperature T0(r, θ ), and the
base electric field Ebase = −∇υ0(r) − ∇υ1(r, θ ) are subjected
to all possible infinitesimally small perturbations u(t, r, θ, φ)
for the velocity, �(t, r, θ, φ) for the temperature, p̃(t, r, θ, φ)

for the pressure, and υ̃(t, r, θ, φ) for the electric potential.
The linearized Navier-Stokes equation, energy equation, and
Gauss equation to be solved are

Pr−1

[
∂u
∂t

+ (u∇)U0 + (U0∇)u
]

= −Pr−1∇ p̃ + ∇2u−1

4
RaE · � · ∇[∇υ0(r)+∇υ1(r, θ )]2

−1

2
RaE · T0∇{[∇υ0(r) + ∇υ1(r, θ )] · ∇υ̃(r, θ, φ)}

−
√

Taez × u + A · �r sin θs, (48)

∂�

∂t
+ (U0 · ∇)� + (u · ∇)T0(r, θ )

= ∇2� + 2
RaE

RaT
[∇υ0(r) + ∇υ1(r, θ )] · ∇υ̃(r, θ, φ),

(49)

�υ̃ = B

1 − B · T0(r, θ )
(��υ1(r, θ )

+∇T0(r, θ ) · ∇υ̃(r, θ, φ)

+∇� · [∇υ0(r) + ∇υ1(r, θ )]. (50)

Together with the continuity equation

∇ · u = 0, (51)

we obtain the system of equations that can be solved numer-
ically. The boundary conditions for the perturbation are the
same as in Eqs. (14) and (15). The boundary conditions for
the temperature and the potential υ̃(r, θ, φ) are

� = 0, υ̃ = 0. (52)

on the two surfaces. Due to the linearity of the stability
equations and because the basic flow is steady, the temporal
structure of the solution takes the form ∼eλt , where λ is the
complex time growth rate. Moreover, the stability equations
can be formulated separately for each azimuthal wave num-
ber m due to the orthogonality conditions of the spherical
harmonics. The goal of the instability analysis is to find, for
all relevant modes m, such Rayleigh numbers RaE (m, Ta) for
fixed Taylor numbers for which the real part of λ is zero:
Re(λ) = 0. Therefore, the smallest value of RaE (m, Ta) for
each symmetry class of perturbations is the critical Rayleigh
number,

RaEc(class I, class II) = min
m

RaE (m, Ta), (53)

and the azimuthal wave number mc, which minimizes the
Rayleigh number, is the critical azimuthal wave number. The
imaginary part of the eigenvalue determines the kind of bi-
furcation. If Im(λ) = 0, then the flow becomes unstable with
respect to the stationary perturbation. The instability sets in as
an oscillated bifurcation when ωc = Im(λ) > 0, where ωc is
the circular oscillation frequency of the dominant perturbation
with m = mc. The value ωc/mc shows direction and drift ve-
locity of the dominant perturbation. Although it is impossible
to find the amplitude of the perturbed flow due to the linear
theory, we can derive not only the critical parameters like
RaEc and mc but also localization of the instability. Hence,
linear instability analysis gives much information about three-
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dimensional flow without performing expensive calculations
of the three-dimensional flows.

The eigenvalue problem was solved by direct numerical
integration. It is important to note that the instability problem
must be solved for both types of perturbations [Eqs. (46) and
(47)], i.e.,

RaEc = min RaEc(class I, class II). (54)

The same poloidal-toroidal decomposition is used for the
velocity field as for the calculation of the base flow. In ad-
dition, however, azimuthal dependence was also considered
to account for the general shape of the perturbation.

Linear instability analysis was performed for radii ratios
η = 0.7 and η = 0.8 and for two types of boundary con-
ditions. The stability curve has a closed form for all cases
considered, i.e., the range in which the flow is stable to in-
finitesimal perturbations, bounded by the intervals (0, Tac),
(0, RaEc), and the stability curve, where the numbers Tac and
RaEc depend on the radii ratio η and the type of boundary
condition. In the first interval, only centrifugal and convec-
tive effects are responsible for the instability due to the
atmospheric boundary conditions for the temperature, while
buoyancy-induced instability predominates in the second in-
terval. Moreover, near the equator, the buoyancy force and
centrifugal force compete. Therefore, studying a situation in
which these two effects occur is of particular interest for un-
derstanding atmospheric flows with a relatively simple model.
We plot the critical Rayleigh number as a function of the
Taylor number RaEc(Ta) using the linear-log plot and the drift
velocity of the dominant perturbation ωdrift = ωc/mc vs. the
Taylor number for each η due to the log-log representation.
The subplots RaEc(Ta) for small Taylor numbers are shown
using the linear plot in both directions. The critical azimuthal
wave numbers, mc, are shown near the stability curves. The
subscripts s and a indicate that the basic flow becomes un-
stable with respect to equatorially symmetric or equatorially
antisymmetric perturbations, respectively.

The general property of the stability diagrams is that for
large Taylor numbers the basic flow abruptly becomes un-
stable with respect to the perturbations at a low azimuthal
wave number mc = 1 and mc = 2. Furthermore, in this case,
the instability is located near the poles. Therefore, the critical
Rayleigh numbers corresponding to the two symmetry classes
are very close to each other. Nevertheless, the radii ratio and in
particular the boundary conditions have a significant influence
on the stability. Hence, it is necessary to consider the results
of the instability analysis in detail.

A. Instability analysis for two rigid boundaries

In this section, we discuss the instability analysis for radii
ratios η = 0.7 (Figs. 8 and 9) and η = 0.8 (Fig. 10).

According to the numerical calculations performed for
η = 0.7, the axisymmetric steady basic flow loses its stability
with respect to the axisymmetric oscillating perturbations in
the nonrotating and slowly rotating case (0 � Ta � 100). The
critical Rayleigh number ranges between RaEc = 2.26 × 105

and RaEc = 229 250. Further investigation of the axisymmet-
ric oscillating flow can be performed, e.g., by means of the
Floquet theory, but it is out of scope of the study presented. If

FIG. 8. Critical Rayleigh numbers vs. Taylor number for η = 0.7
and BC I. The numbers in the vicinity of the stability curves are the
critical azimuthal wave numbers mc.

the Taylor number increases (100 � Ta � 3800), then the ba-
sic flow becomes unstable with respect to perturbations with
low azimuthal wave numbers mc = 1a and mc = 2a. Both
instabilities locate in the vicinity of the poles. The instability
shifts toward the equator if the Taylor number increases from
Ta = 3800 to Ta = 4.0 × 104. The basic flow becomes un-
stable to the antisymmetric perturbations with mc = 3a − 6a,
as shown in Fig. 8. This part of the stability diagram is
most interesting from the physical point of view because
the Regime II, which good correlates with the atmosphere-
like flows, belongs to this Taylor-number interval. According
to linear instability theory the basic flow is unstable above
the curve and the flow becomes three-dimensional structure
and remains its stability with respect to the small perturba-
tions below this curve. Further increasing in Taylor number
(4.0 × 104 � Ta � 4.04 × 105) leads to the movement of
the instability back to the poles. Hence, the range in which
the flow is stable to infinitesimal perturbations, bounded by
the intervals (0, Tac = 4.04 × 105), (0, RaEc = 2.26 × 105)
and the stability curve. In all cases considered, the instability
sets in as an oscillating bifurcation. The perturbative flow
drifts as shown in Figs. 9 with a velocity ωdrift = ωc/mc in
the rotating case, where ωc is the frequency of the dominant

FIG. 9. Drift velocity vs. Taylor number for η = 0.7 and BC I.
The numbers near the drift velocity curves are the critical azimuthal
wave numbers mc.
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FIG. 10. Critical Rayleigh numbers vs. Taylor number for η =
0.8 and BC I. The numbers in the vicinity of the stability curves are
the critical azimuthal wave numbers mc.

perturbation. Note that the drift velocity is always negative,
i.e., the perturbative flow moves in a retrograde direction.

It is worth to translate dimensionless parameters such as
the critical Rayleigh number and the drift velocity of the dom-
inant perturbation into the real physical values. We present the
corresponding values in Table III with the radii ratio η = 0.7
as in the AtmoFlow experiment. Note that the absolute value
of the drift velocity ωdim

drift as opposed to the angular velocity �

is only larger for small Taylor numbers Ta = 102. For medium
and large Taylor numbers, the drift velocity of the perturbation
becomes much lower.

Now let us consider the situation when the spherical gap
becomes narrower, e.g., η = 0.8 (Fig. 10). In this case, the
basic flow loses its stability with respect to the perturbations
with mc > 0 at Ta = 0. The dominant wave number is mc =
12, but the critical Rayleigh numbers corresponding to the
two classes, are so close (much less 1%) that it is impossi-
ble to say which class is responsible for the instability. This
feature of the basic flow shows that the instability is located
in the vicinity of the poles. Moreover, it is necessary to note
that the Rayleigh numbers, RaE (m = 13, Ta), are larger than
RacE (Ta), but the difference is within 1%. This suggests that
the supercritical three-dimensional flow has a very complex
structure because of the nonlinear terms in the governing
equations.

The next feature of the stability diagram at η = 0.8 is that
both symmetry classes are responsible for the instability of
the atmospherelike flows. Indeed, while the three-dimensional
supercritical flow is antisymmetric with respect to equator
with mc = 4a − 7a for 4 × 103 � Ta � 11 250, the three-
dimensional (3D) flow has a equatorially symmetric structure

when the Taylor number varies in the interval 8900 � Ta �
4.5 × 104 with mc = 17s − 20s. Although in the narrow gap,
the interval, which is relevant for atmospherelike flows, does
not become essentially wider, it is much more interesting
because our model under consideration enables rich variety
of three-dimensional states and transitions. Indeed, due to the
U-shaped trend of the stability curve it is possible, e.g., at
Ta = 104 to obtain two different three-dimensional solutions,
corresponding to both symmetry classes: with mc = 17s and
mc = 7a.

As in the case above, the basic flow becomes unstable with
respect to perturbations with low azimuthal wave numbers
for large Taylor numbers. Hence, the range, in which the
flow is stable to infinitesimal perturbations, is bounded by
the intervals (0, Tac = 1.49 × 105), (0, RaEc = 186 880), and
the stability curve. Behavior of the drift velocity is similar
to the above considered case with η = 0.7 and is not pre-
sented here. The next important point is the discussion of the
origin and location of instability. The azimuthally integrated
kinetic energy of the nonaxisymmetric perturbation e(r, θ ) =∫ 2π

0 u2r sin θdφ is a useful tool for a study of this kind. This
function of r and θ is shown in Fig. 11 along with the basic
flow in the form of angular velocity (top row) and merid-
ional circulation (second row) at the critical Rayleigh number.
Moreover, it is preferable to discuss the origin of the instabil-
ity in the case of η = 0.8, since it is the only spherical gap
considered in which all types of instabilities occur. According
to the instability analysis, the basic flow becomes unstable
with respect to the low azimuthal wave numbers for small
and large Taylor numbers. The instability is concentrated near
the two poles, where the polar cells of the basic flow occur.
Moreover, the transition is associated with the boundary layer
because the instability is near the maximum of the radial
[Fig. 11(a)] and longitudinal [Fig. 11(d)] velocity components
of the basic flow. The flow in the other parts of the gap remains
axisymmetrical. The instability between these cases is associ-
ated with equatorial cells. The basic flow becomes unstable
with respect to the antisymmetric perturbations in the vicinity
of the equator, as shown in Fig. 11(b). The instability is con-
centrated near the equator but not quite there and is associated
with radial jet of the basic flow. The radial velocity component
of the three-dimensional flow, shown in Fig. 12, has a wavy
structure with m = 6a periodicity in φ, in agreement with
instability theory. As expected, most of the energy of the flow
is concentrated near the equator. Further increasing the Tay-
lor number leads to a different kind of instability. The basic
flow is unstable to symmetrical perturbances [Fig. 11(c)]. The
maximum kinetic energy of the perturbation is now exactly
at the equator, and the instability is associated with the ra-
dial component of the meridional circulation. In agreement

TABLE III. Connection between nondimensional characteristics (RaEcL , ωdrift) of the instability and dimensional characteristics (Vrms, ωdim
drift)

for η = 0.7 and BC I. mc are the critical azimuthal wave numbers.

Ta � (rad s−1) RaEcL Vrms,crit (V) mc | ωdrift | ωdim
drift (rad s−1)

102 0.03588 229100 1710.74 1a 124.39 0.08558
104 0.3588 37146 688.85 4a 0.6482 0.4459 × 10−3

105 1.1346 56796 851.79 1a 11.29 0.7769 × 10−2
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FIG. 11. Basic flow and the location of the instability for η = 0.8 and BC I. The top row shows the isolines of the azimuthal velocity of the
basic flow with maximal and minimal values (a) +10.0 (2.0), −20.0 (4.0); (b) +4.8 (0.8), −10.0 (2.0); (c) +2.0 (0.5), −5.0 (1.0); and (d) +1.2
(0.4), −2.0 (0.4). The dotted (solid) lines indicate negative (positive) values of the azimuthal velocity. The second row shows the isolines of
the meridional circulation of the basic flow with maximal and minimal values (a) −42.0 (6.0); (b) −14.0 (2.0); (c) +0.07 (0.01); −6.4 (0.8);
and (d) +0.8 (0.2), −2.0 (0.2). The dotted (solid) lines indicate negative (positive) values of the stream function. The corresponding vortices
rotate counterclockwise (clockwise). The contour intervals are shown in brackets. Gray indicates the azimuthally integrated kinetic energy of
the nonaxisymmetric instability.

with the instability results, the three-dimensional flow has a
periodicity of m = 17s in φ for Ta = 104. The supercritical
three-dimensional flow again has a steady wave structure. The
same transition has been detected in the cylindrical annulus.
The baroclinic origin of the instability can be seen particularly
well in the equatorial plane in Fig. 13 for the temperature.
The next three-dimensional solution is obtained for Ta = 105

FIG. 12. Radial velocity component of the three-dimensional
flow on the surface r = 4.25 for η = 0.8, Ta = 7 × 103, and RaE =
8 × 104.

(Fig. 14). The linear instability analysis predicts that the basic
flow becomes unstable with respect to perturbations with low
azimuthal wave number, m = 2s. Moreover, the perturbation
locates in vicinity of the poles. Exactly this structure of the
3D flow we calculated at Ta = 105 and RaE = 6.5 × 104: The
supercritical flow remains its axisymmetrical structure but at
the poles.

FIG. 13. Contours of the temperature at the equator plane for η =
0.8, Ta = 104, and RaE = 31 600.
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FIG. 14. Radial velocity component of the three-dimensional
flow on the surface r = 4.25 for η = 0.8, Ta = 105, and RaE =
6.5 × 104.

B. Instability analysis for inner rigid and outer free boundary

In this section, we discuss the instability analysis for radii
ratios η = 0.7 (Figs. 15 and 16) and η = 0.8 (Fig. 17) in the
case when free-slip boundary condition is valid on the outer
surface.

Beginning with the radii ratio η = 0.7 (Fig. 15), we found
that basic flow loses its stability to the axisymmetric os-
cillating perturbations solely in the nonrotating case. The
critical Rayleigh number is RaEc = 285 200. Further shape
of the stability curve is very unexpected. The basic flow
becomes unstable with respect to perturbations with domi-
nant azimuthal wave number m = 1a if the Taylor number
varies between Ta ≈ 0 and Ta = 4100. Only in small interval
Ta ∈ [4100, 7800], symmetric perturbations with mc = 11s
and mc = 12s are responsible for the instability. This region is
essential for our study because all three cells exist here even
for RaE < RaEc (Fig. 5, Regime II).

As in the case considered above, further increasing in
Taylor number (7800 � Ta � 268 334) causes the instability

FIG. 15. Critical Rayleigh numbers vs. Taylor number for η =
0.7 and BC II. The numbers in the vicinity of the stability curves are
the critical azimuthal wave numbers mc.

FIG. 16. Drift velocity vs. Taylor number for η = 0.7 and BC II.
The numbers in the vicinity of the drift velocity curves are the critical
azimuthal wave numbers mc.

with low wave numbers. Hence, the range in which the ba-
sic flow remains stable bounded by the intervals (0, Tac =
268 334), (0, RaEc = 285 200), and the stability curve. The
shape of the drift velocity shown in Fig. 16. The instability
drifts westwards, i.e., has a negative sign. Hence, we have
a qualitatively similar situation as in the case with sloping
endwalls considered in Refs. [7,8]. These studies observed a
clockwise (retrograde) drift in the cylindrical annulus in the
case when ∂D/∂r > 0, where D is the fluid depth. Moreover,
retrograde drift has been observed in the classical cylindrical
gap in Ref. [5]. The absolute value of the drift velocity ωdim

drift is
significantly smaller than � for all Taylor numbers (Table IV).

As in the case when both surfaces are rigid, the basic
flow becomes unstable with respect to high wave numbers if
the radii ratio increases, as shown in (Fig. 17) for η = 0.8,
i.e., in the interval Ta ∈ [0, 14] the three-dimensional flow
promises to be chaotic. Critical Rayleigh number decreases
from RaEc = 218 200 at Ta = 14 to RaEc = 36 870 at Ta =
3000, i.e., increasing in Taylor number destabilizes the basic
flow as in all cases considered. The critical azimuthal wave
numbers increase dramatically as the Taylor number varies
between Ta = 3000 and Ta = 54 000. This Taylor-number in-
terval is of interest for our study. Unfortunately, the critical

FIG. 17. Critical Rayleigh numbers vs. Taylor number for η =
0.8 and BC II. The numbers in the vicinity of the stability curves are
the critical azimuthal wave numbers mc.
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TABLE IV. Connection between nondimensional characteristics (RaEcL , ωdrift) of the instability and dimensional characteristics (Vrms, ωdim
drift)

for η = 0.7 and BC II. mc are the critical azimuthal wave numbers.

Ta � (rad s−1) RaEcL Vrms,crit (V) mc | ωdrift | ωdim
drift (rad s−1)

102 0.03588 43 098 742.0 1a 7.2702 0.005002
104 0.3588 33 638 655.52 1a 4.4269 0.003046
105 1.1346 71 750 957.38 1a 9.6486 0.005638

Rayleigh number is to small to trigger the Ferrel cell. The
range in which the basic flow remains stable bounded by
the intervals (0, Tac = 84 143), (0, RaEc = 218 200), and the
stability curve.

The location of the instability for different Taylor numbers
is shown in Fig. 18 for η = 0.8. The instability is associated
with the azimuthal flow for small Taylor numbers, as shown
in Fig. 18(a). The increase in Taylor numbers causes a shift
in the instability toward the outer surface [Fig. 18(b)] and is
associated again with the azimuthal velocity component of the
basic flow in the region of the polar cells. Note that both flows
become unstable with respect to perturbations with mc = 1.
A further increase in the Taylor number causes the instability
to occur at the equator with high mc [Fig. 18(c)]. This type
of instability has the same origin as in the case of two rigid
bounding surfaces. Finally, the azimuthal flow of the basic
flow is responsible for the instability at large Taylor numbers
[Fig. 18(d)]. Regimes Figs. 18(a)–18(c) are perspective for
our study. Unfortunately, regime Fig. 18(d) is too far from the
atmospherelike model and cannot be considered.

C. Influence of the induced field

The next issue to be examined is the role played by the
induced electric field Ẽ = −∇υ̃. This field occurs not only
because an imposed electric field influences the flow but also
because the flow varies the electric field. To clarify their
influence, we have performed some calculations of the crit-
ical Rayleigh numbers both considering the Gauss equation
Eq. (50) and corresponding terms in the Navier-Stokes and
energy equations and without taking into account the induced
field. The results for two rigid bounding surfaces are presented
in Table V. In all cases, the induced field has stabilizing
effect, i.e., the critical Rayleigh numbers become larger if the
induced field is involved in the numerical model. The induced
electric field is particularly important, when the Rayleigh
number is large and the Taylor number is small.

In contrast to the case when both surfaces are rigid, the in-
duced electric field is not significant when the outer surface is
free, i.e., the corresponding critical Rayleigh numbers change
within 0.4–1.42% (Table VI).

FIG. 18. Basic flow and the location of the instability for η = 0.8 and BC II. The top row shows isolines of the azimuthal velocity of
the basic flow with maximal and minimal values (a) +24.0 (3.0), −5.0 (1.0); (b) +10.0 (2.0), −10.0 (2.0); (c) +2.4 (0.4), −2.0 (0.4); and
(d) +1.0 (0.2), −0.6 (0.2). The dotted (solid) lines indicate a negative (positive) value of the angular velocity. The second row shows isolines
of the meridional circulation of the basic flow with maximal and minimal values (a) +5.0 (1.0), −80.0 (10.0); (b) +0.25 (0.05), −25.0
(2.5); (c) +0.45 (0.09), −4.0 (0.8); and (d) +0.45 (0.09), −0.12 (0.03). The dotted (solid) lines indicate negative (positive) values of the
stream function. The corresponding vortices rotate counterclockwise (clockwise). The contour intervals are shown in brackets. Gray shows the
azimuthally integrated kinetic energy of the nonaxisymmetric instability.
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TABLE V. Influence of the induced electric field on the critical Rayleigh number (BC I).

η = 0.7 η = 0.8
Ta RacE Rano induction

cE Diff. (%) Ta RacE Rano induction
cE Diff. (%)

3 × 103 189 976 168 303 12.88 3 × 103 156 939 151 935 3.29
2 × 104 41 484 40 697 1.93 2 × 104 38 127 37 765 0.95
105 56 796 56 450 0.61 105 59 265 58 470 1.36

TABLE VI. Influence of the induced electric field on the critical Rayleigh number (BC II).

η = 0.7 η = 0.8
Ta RacE Rano induction

cE Diff. (%) Ta RacE Rano induction
cE Diff. (%)

50 61 881 61 630 0.41 50 75 202 76 266 1.42
5000 28 393 28 106 1.02 5000 17 700 17 569 0.75
2 × 105 68 697 68 423 0.40 2 × 105 53 327 52 693 1.20

TABLE VII. Influence of the centrifugal force on the critical Rayleigh number (BC I).

η = 0.7 η = 0.8
Ta RacE mc Rawithout c.f.

cE mc Diff. (%) Ta RacE mc Rawithout c.f
cE mc Diff. (%)

104 37 146 4a 37 725 4a 1.56 104 31 198 17s 24 029 17s −22.9
105 56 796 1a 77 661 5a 36.7 105 59 265 2s 45 693 21s −22.9

TABLE VIII. Influence of the centrifugal force on the critical Rayleigh number (BC II).

η = 0.7 η = 0.8
Ta RacE mc Rawithout c.f.

cE mc Diff.(%) Ta RacE mc Rawithout c.f
cE mc Diff.(%)

104 33 638 1a 33 920 13s 0.84 104 23 907 17s 17 413 17s −27.16
5 × 104 51 846 1a 62 873 1a 21.27 5 × 104 69 628 22s 34 933 22s −49.83
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D. Influence of the centrifugal force

We complete this section with a discussion of the influence
on the centrifugal force. Even in the cylindrical geometry,
this force must be incorporated into the equations because the
temperature cannot be represented as a gradient of the scalar
function that can be combined with pressure at sufficiently
high Rayleigh numbers [6,32]. Centrifugal effects are much
more important in the spherical geometry, particularly with
atmospherelike boundary conditions for the temperature. We
performed some calculations of the critical Rayleigh numbers
with and without centrifugal force for both kinds of boundary
conditions. The results, summarized in Table VII (BC I) and
Table VIII (BC II), show that the centrifugal force essentially
influences not only the critical Rayleigh number but also
the structure of three-dimensional flow for both kinds of the
boundary conditions.

VI. SUMMARY AND CONCLUSIONS

The goal of the study presented here was to perform the
numerical analysis of the convective flow in the rotating spher-
ical gap caused by the atmospherelike boundary conditions
for the temperature field. These boundary conditions reflect
the most important features of the temperature on the Earth’s
surface due to the Sun’s radiation. Two kinds of boundary
conditions for the velocity field have been taken into account:
While the first case corresponds to a situation when both
bounding surfaces are rigid, the second one corresponds to the
inner rigid and outer free bounding surface. The radial force
field was produced due to the dielectrophoretic effect.

The basic flow is steady axisymmetric and equatori-
ally symmetric. We found three regimes for η = 0.7. These
regimes occur as a result of competition between the buoyancy
force, Coriolis force and centrifugal force. The meridional
circulation, corresponding to the second regime, is most
interesting from the physical point of view because this
one produces atmospherelike flows of a qualitatively correct
shape, consisting in polar and equatorial or Hadley vortices.
The fourth regime has been observed when the gap becomes
narrower at η = 0.8. In contrast to Regime II, the small-
scale clockwise rotating vortex, associated with the Ferrel or
midlatitude cell, occurs between large-scale counterclockwise
rotating vortices. This regime feeds energy from the polar and
Hadley cells in good agreement with the three-cellular atmo-
spheric model. Although our a quite simple model (rotation
+ polar dependent temperature conditions) shows many simi-
larities with atmospheric flows, it is worth to mention reasons
of deviations from them. (1) The realistic gap (η = 0.997) is
much narrower in contrast to the considered. (2) Not only
the Coriolis force but also temperature dependent [due to
density ρ(T )] centrifugal force must be taken into account.
(3) The Prandtl number is Pr = 10.43 corresponds to
Novec7200. This Pr is much larger than of the air with
Pr = 0.71. Unfortunately, we need the silicon oil as working
fluid for producing the radial force field using the dielec-
trophoretic effect. (4) The value of �T = 7.5 K is much
smaller in comparison to the temperature gradient between
equator and pole. Our choice is limited by the validity of the
Boussinesq approach. Anyway, the variety of the regimes is

closely connected with polar-angle-dependent thermal bound-
ary conditions, which is key for understanding and simulating
atmospheric flows of this kind. Only Regime I was observed
when both spherical surfaces are maintained at constant tem-
peratures (Tin > Tout) [20].

The stability of the basic flow has been studied in frames
of the linear instability analysis. The results were presented
in the form of diagrams RaEc(Ta), i.e., critical Rayleigh num-
bers were calculated as a function of the Taylor number for
a fixed radii ratio and Prandtl number. The analysis reveals
that the basic flows lose their stability with respect to either
antisymmetric perturbations (for η = 0.7) or symmetric per-
turbations for η = 0.8 with respect to the equator. This is a
very surprising behavior of the instability, particularly taking
into account that only symmetric perturbations are dominant
when both surfaces are maintained at a constant temperature.
The next unexpected result of the linear instability analysis is
the closed form of the stability diagrams. In other words, if
the buoyancy force is absent, then the critical Taylor number
exists above which the flow becomes unstable with respect
to low azimuthal wave numbers. However, in the nonrotating
case and at very small Taylor numbers, if the Rayleigh number
exceeds a critical value, then the basic flow either becomes a
two-dimensional oscillating structure (η = 0.7) or undergoes
a transition into a three-dimensional chaotic state (η = 0.8).
Again, these results differ completely from the behavior of
the stability curve when the temperatures of the bounding
surfaces are constant. If the dielectric heating is negligible
[16], then the critical Rayleigh number changes according to
RaEc ∼ Ta2/3. This dependence was also theoretically found
by Roberts [33] in the cylindrical geometry. When the di-
electrical heating is taken into account [20], this dependence
is stronger, RaEc ∼ Ta. Hence, from the basic flow analysis
and shape of the stability curves we can conclude that the
“classical” spherical annulus model with constant tempera-
tures on the both surfaces cannot be used to simulate of the
atmospherelike flows.

Based on the results presented, a number of experi-
ments and further numerical investigations can be suggested.
(1) According to the stability analysis, the drift velocity and
the rotation rate have opposite signs for a wide range of
Taylor numbers. This effect could be investigated numerically
in detail. The next issue is the analytical connection between
the drift rates and �. According to the theoretical prediction
[34] this connection ωdrift = ωc/mc ∝ �−ζ with ζ = 1. This
power law has been observed experimentally in the baroclinic
annulus with ζ = 1.17 [10,35]. The first results in the spheri-
cal geometry show that the power law is valid but with higher
value of ζ , e.g., ζ = 2 for the dominant wave number mc = 5
presented in Fig. 9. (2) Since the critical wave numbers mc

corresponding to the symmetric mode increase drastically
with increasing in η, the supercritical three-dimensional flows
are expected to have a quite complex structure. Research
of that topic could answer many open questions concern-
ing the kind of bifurcations occurring, the amplitude of the
perturbation, the heat transfer of the supercritical states and
the transition into the further states. The following scenarios
and transitions can be realized: Regime 2 → steady wave
→ amplitude vacillation → irregular flow for fixed Taylor
number and increasing Rayleigh number; Regime 3 → steady
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wave → amplitude vacillation → irregular flow for fixed
Rayleigh number and increasing Taylor number analogically
to the corresponding simulations in the cylindrical annulus
[6]. (3) The next important issue is the influence of the �T .
Only a lower symmetric regime is observed when �T is small
(�T = 1 K) in the cylindrical annulus. The upper symmet-
ric regime appears when �T increases (3 K � �T � 30 K)
[2,6]. Therefore, it is important to clarify whether the Regime
3 occurs at small �T and how the temperature gradient influ-
ences the stability. (4) The radii ratio η seems to be a very
important parameter and may be the most essential. Initial
results show that the three-cell atmospheric model can be real-
ized better if the spherical gap becomes narrower. Therefore,
it is worth performing a similar investigations for η = 0.85
and η = 0.9.
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APPENDIX: DERIVATION OF THE EQUATION
FOR THE CONDUCTIVE STATE

The solution of the equation corresponding to the conduc-
tive state

�Tcond(r, θ ) = 0 (A1)

with boundary conditions Eqs. (27) and (28) can be written in
the following form:

Tcond(r, θ ) = Trad(r) +
∞∑

�=1

(C1�r� + C2�r−�−1)P�(cos θ ),

(A2)

where

Trad(r) =
[

− η

1 − η
+ η

(1 − η)2

1

r

]
D10,

+
[

1

1 − η
− η

(1 − η)2

1

r

]
D20, (A3)

D10 = 1

2

∫ π

0
Tin(θ ) sin θdθ

D20 = 1

2

∫ π

0
Tout (θ ) sin θdθ, (A4)

C1� = − (1 − η)�

(1 − η2�+1)
(η�+1D1� − D2�),

C2� = η�+1

(1 − η)�+1(1 − η2�+1)
(D1� − η�D2�), (A5)

D1� = 2� + 1

2

∫ π

0
Tin(θ )P�(cos θ ) sin θdθ,

D2� = 2� + 1

2

∫ π

0
Tout (θ )P�(cos θ ) sin θdθ (A6)

for � = 1, etc. Substituting of the expression from Eq. (A2)
into Eqs. (41) yields

Qcond
in = Qcond

out = − 4πη

(1 − η)2
(−D10 + D20). (A7)

Because D10 = 1.1244, D20 = sinh(ath )−ath cosh(ath )
ath[1−cosh(ath )] = 0.98, we

have

Qcond
in = Qcond

out = 0.1444
4πη

(1 − η)2
. (A8)

[1] R. Hide, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
250, 441 (1958).

[2] W. Fowlis and R. Hide, J. Atmos. Sci. 22, 541 (1965).
[3] R. Hide, P. Mason, and R. Plumb, J Atmos. Sci. 34, 930 (1977).
[4] P. Read, J. Fluid Mech. 168, 255 (1986).
[5] G. Williams, J. Fluid Mech. 49, 417 (1971).
[6] A. Randriamampianina, W.-H. Fruh, and P. M. P. L. Read,

J. Fluid Mech. 561, 359 (2006).
[7] M. Bastin and P. Read, J. Fluid Mech. 339, 173 (1997).
[8] M. Bastin and P. Read, Phys. Fluids 10, 375 (1998).
[9] M. Vincze, U. Harlander, T. von Larcher, and C. Egbers,

Nonlin. Process. Geophys. 21, 237 (2014).
[10] M. Vincze, S. Borchert, U. Achatz, T. von Larcher, M.

Baumann, C. Liersch, S. Remmler, T. Beck, K. Alexandrov, C.
Egbers, J. Froehlich, V. Heuveline, S. Hickel, and U. Harlander,
Meteorol. Z. 23, 611 (2015).

[11] H. Scolan and P. Read, Exp. Fluids 58, 75 (2017).
[12] S. Wright, S. Su, H. Scolan, R. Young, and P. Read, Fluids 2,

41 (2017).
[13] R. Hollerbach, Int. J. Numer. Methods Fluids 732, 773

(2000).

[14] F. Zaussinger, P. Canfield, A. Froitzheim, V. Travnikov, P.
Haun, M. Maier, A. Meyer, P. Heintzmann, T. Driebe, and
C. Egbers, Micrograv. Sci. Tech. 31, 569 (2019).

[15] C. Egbers, W. Beyer, A. Bonhage, R. Hollerbach, and P.
Beltrame, Adv. Space Res. 32, 171 (2003).

[16] V. Travnikov, C. Egbers, and R. Hollerbach, Adv. Space Res.
32, 181 (2003).

[17] B. Futterer, C. Egbers, N. Dahley, S. Koch, and L. Jehring,
Acta Astronaut. 66, 193 (2010).

[18] B. Futterer, N. Dahley, S. Koch, N. Scurtu, and C. Egbers,
Acta Astronaut. 71, 11 (2012).

[19] B. Futterer, A. Krebs, A.-C. Plesa, F. Zaussinger, R. Hollerbach,
D. Breuer, and C. Egbers, J. Fluid Mech. 735, 647 (2013).

[20] V. Travnikov, F. Zaussinger, P. Haun, and C. Egbers, Phys. Rev.
E 101, 053106 (2020).

[21] L. Landau and E. M. Lifshitz, Electrodynamics of Continuos
Media, Course of Theoretical Physics, Vol. 8, 2nd ed. (Elsevier
Butterworth-Heinemann, Burlington, MA, 1984).

[22] R. J. Turnbull and J. R. Melcher, Phys Fluids 12, 1160 (1969).
[23] J. Melcher, Continuum Electromechanics (MIT Press, Cam-

bridge, MA, 1981).

065110-19

https://doi.org/10.1098/rsta.1958.0004
https://doi.org/10.1175/1520-0469(1965)022<0541:TCIARA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1977)034<0930:TCIARF>2.0.CO;2
https://doi.org/10.1017/S002211208600037X
https://doi.org/10.1017/S0022112071002180
https://doi.org/10.1017/S0022112006000711
https://doi.org/10.1017/S0022112097005259
https://doi.org/10.1063/1.869530
https://doi.org/10.5194/npg-21-237-2014
https://doi.org/10.1127/metz/2014/0600
https://doi.org/10.1007/s00348-017-2347-5
https://doi.org/10.3390/fluids2030041
https://doi.org/10.1002/(SICI)1097-0363(20000415)32:7<773::AID-FLD988>3.0.CO;2-P
https://doi.org/10.1007/s12217-019-09717-7
https://doi.org/10.1016/S0273-1177(03)90248-1
https://doi.org/10.1016/S0273-1177(03)90249-3
https://doi.org/10.1016/j.actaastro.2009.05.027
https://doi.org/10.1016/j.actaastro.2011.08.005
https://doi.org/10.1017/jfm.2013.507
https://doi.org/10.1103/PhysRevE.101.053106
https://doi.org/10.1063/1.1692646


VADIM TRAVNIKOV AND CHRISTOPH EGBERS PHYSICAL REVIEW E 104, 065110 (2021)

[24] P. Roberts, Q. J. Mech. Appl. Methods 22, 211
(1969).

[25] H. Yoshikawa, O. Crumeyrolle, and I. Mutabazi, Phys. Fluids
25, 024106 (2013).

[26] H. N. Yoshikawa, M. Tadie Fogaing, O. Crumeyrolle,
and I. Mutabazi, Phys. Rev. E 87, 043003
(2013).

[27] I. Yavorskaya, N. Fomina, and Y. Belyaev, Acta Astronaut. 11,
179 (1984).

[28] F. Feudel, K. Bergemann, L. S. Tuckerman, C. Egbers, B.
Futterer, M. Gellert, and R. Hollerbach, Phys. Rev. E 83,
046304 (2011).

[29] I. Mutabazi, H. Yoshikawa, M. Fogaing, V. Travnikov, O.
Crumeyrolle, B. Futterer, and C. Egbers, Fluid Dyn. Res. 48,
061413 (2016).

[30] B. L. Smorodin, Tech. Phys. Lett. 27, 1062 (2001).
[31] B. L. Smorodin and V. G. Velarde, J. Electrostat. 50, 205 (2001).
[32] A. Randriamampianina, E. Leonardi, and P. Bontoux, in Ad-

vances in Computational Heat Transfer, edited by G. De Vahl
Davis and E. Leonardi (Begell House, Danbury, CT, 1998), pp.
322–329.

[33] P. Roberts, Philos. Trans. R. Soc. A 263, 1136 (1968).
[34] E. Eady, Tellus 1, 33 (1949).
[35] J. Fein, Geophys. Astrophys. Fluid Dyn. 5, 213 (1973).

065110-20

https://doi.org/10.1093/qjmam/22.2.211
https://doi.org/10.1063/1.4792833
https://doi.org/10.1103/PhysRevE.87.043003
https://doi.org/10.1016/0094-5765(84)90106-1
https://doi.org/10.1103/PhysRevE.83.046304
https://doi.org/10.1088/0169-5983/48/6/061413
https://doi.org/10.1134/1.1432371
https://doi.org/10.1016/S0304-3886(00)00036-X
https://doi.org/10.3402/tellusa.v1i3.8507
https://doi.org/10.1080/03091927308236118

