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In this work, the electrohydrodynamic instability induced by a unipolar charge injection is extended from
a single-phase dielectric liquid to a two-phase system that consists of a liquid-air interface. A volume-of-fluid
model-based two-phase solver was developed with simplified Maxwell equations implemented in the open-
source platform OpenFOAM. The numerically obtained critical value for the linear stability matches well with
the theoretical values. To highlight the effect of the slip boundary at interface, the deformation of the interface
is ignored. A bifurcation diagram with hysteresis loop linking the linear and finite-amplitude criteria, which is
Uf = 0.059, was obtained in this situation. It is concluded that the lack of viscous effect at interface leads to a
significant increase in the flow intensity, which is the reason for the smaller instability threshold in two-phase
system. The presence of interface also changes the flow structure and results in a shear distribution of electric
force, which may play an important role in the interface deformation.

DOI: 10.1103/PhysRevE.104.065109

I. INTRODUCTION

Multiphase electrohydrodynamics (EHD) is a complex
subject that involves interactions of two or more fluids and
also an external electric field. It attracts a wide range of
fundamental research interest due to its complex flow struc-
tures and rich bifuractions [1–5]. This type of flow motion
also plays the center role in several engineering applications,
such as electrosprays, ink-jets, boiling heat transfer, and EHD
pumping [6–10]. Besides, several research on the so-called
EHD mixers, which use electric field to mix two incompatible
liquids between plate electrodes, has been reported [11–13].
These studies involve a kind of classical problem: stability of
the interface under the electric field.

In a two-phase EHD problem, the stability of the inter-
face between two fluid layers was first discussed by Taylor
and McEwan [14]. They gave a theoretical and experimental
analysis to the instability of a perfect conducting liquid layer
placed between two plane electrodes. A flourish of extending
this topic from various aspects has occurred in recent years.
For example, it has been proved that the electric field is able
to produce many different flow. patterns in the absence of
shear flow between layers [15–17]. Some typical interface
instabilities between two fluid layers like the Rayleigh-Taylor
instability can also be controlled by electric field [18–20].
When the shear flow is considered, the problem turns into film
flow under the electric field and the original instability will be
affected significantly due to the enriched interplay among the
electric force, viscous stress, and surface tension [21–24]. The
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influence of the wall topography [25–27] as well as the ac-dc
characteristics of the electric field [28–30] on film stability are
also widely studied.

Inspired by the experimental observation of Rose window
instability [31,32], the gas-liquid flow subjected to charge
injection has also attracted many research interests. The Rose
window instability arises when a corona discharge is applied
on a liquid surface with low conductivity. The electric field
pushes the charged liquid surface and a regular interface
deformation like a Rose window appears. Intrigued by the
flow pattern of Rose window instability, Atten and Koulova-
Nenova gave a linear stability analysis with a two-dimensional
(2D) model considering a layer of liquid and a layer of air
between parallel plates under unipolar injection [33,34]. No
criterion related to Rose window instability was found in their
work but a criterion for the EHD instability caused by bulk
charge in liquid layer is obtained. The EHD instability caused
by bulk charge is a classical research topic in electrohydrody-
namics [35,36]. The injected charge in the liquid bulk tends
to destabilize the system and trigger the flow motion. The
hydrostatic state will be broken when the driving parameter
is higher than creation obtained by linear stability analysis
[37]. Besides, research also predicts a subcritical bifurcation
and a nonlinear finite-amplitude criterion which is induced by
the electric migration of the charge carriers with a finite ionic
velocity under electric field [38]. Since the finite-amplitude
criterion is lower than the linear one, a hysteresis loop is
established and this hysteresis characteristic can be reflected
by measuring the voltage current curve of the system in the
experiments [39]. The competition between electric migation
and flow convection in the transportation of free charge leads
to the formation of the so-called charge void region. The
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charge void region refers to an area with very thin charge
density where the electric migration of charge is offset by the
convection [35,36,40]. In the charge void region, inner charge
is transported out of the area due to the dominate convection
and external charge cannot be injected into the region with
the neutralized electric migration. The existence of hysteresis
loop and charge void region has been proved by experiments
[39,41] and numerical simulations [42–44], and these two
phenomena are considered as the key features of the EHD
instability induced by the charge in the liquid bulk. Atten and
Koulova-Nenova’s work showed that the deformation of the
interface will decrease the linear critical value for the bulk
charge instability compared to a single-phase dielectric fluid
system. Many subsequent works tried to find the critical value
corresponding to the Rose window instability [45–47] based
on Atten and Koulova-Nenova’s work and this was finally
made by Chicón and Pérez [48]. The bulk charge instability
threshold they found is close to Koulova-Nenova’s value and
a new criterion which is related to the Rose window instabil-
ity was obtained when the thickness of liquid layer is small
enough.

In the configuration of Rose window instability system, the
interface works as a flexible electrode from the perspective of
liquid layer. This flexible electrode has two key differences
compared with the rigid one in single-phase situation, which
are the deformability and the slip boundary condition. The
effect of deformability is discussed by Koulova-Nenova and
Atten as mentioned before while the role of slip boundary has
not been carefully studied. Based on the previous numerical
studies on the single-phase EHD instability problem [42–44]
and the latest analytical work [48], this work presents a nu-
merical analysis of EHD instability of a horizontal liquid-air
interface subjected to unipolar charge injection with specifi-
cally developed finite-volume solver based on the open-source
platform OpenFOAM [49]. The effect of slip boundary condi-
tion on the bulk charge instability has been highlighted. The
remainder of the paper is organized as follows: A description
of the physical problem and the mathematical formulation is
presented in the next section; the numerical methodology is
described in Sec. III; the results are presented and discussed in
Sec. IV; and, finally, the concluding remarks are summarized
in the last section.

II. MATHEMATICAL FORMULATION

A. Problem description and governing equations

The flow domain shown in Fig. 1 consists of two flat plate
electrodes in parallel configuration that encloses a layer of di-
electric liquid and a layer of air with the thicknesses of D and
L, respectively. The upper plate electrode is maintained at a
higher electric potential φ = φ0 > 0 and the bottom electrode
is grounded. It is assumed that unipolar injection of positive
ions takes place from the upper emitter electrode. A uniform
and constant charge density ρe = ρe0 (i.e., a homogeneous
and autonomous injection) is considered at the emitter elec-
trode.

Both the liquid and air are considered to be incompressible,
Newtonian, and perfectly insulating. Following previous theo-
retical and numerical studies, the governing equations for the

FIG. 1. The schematic diagram of the air-liquid EHD problem.

flow motion consists of classical continuity and momentum
equations [48]:

∇ · u = 0, (1)

∂ρu
∂t

+ ∇ · (ρuu)

= ∇ · (μ∇u) − ∇p + ρg + Fe + σ (∇s · n). (2)

Here u = (ux, uy) is the velocity of the fluid, ρ is the density,
μ is the dynamic viscosity, and p is the pressure. The body
force ρg refers to the gravity pointing to the negative direc-
tion of the y axis, and σ (∇s · n) is the surface tension force
where σ is the surface tension coefficient, ∇s is the surface
gradient operator [1,50], and n is the unit vector normal to the
interface and pointing toward the liquid. The electric force Fe
is calculated from the divergence of Maxwell stress tensor in
incompressible fluid [51]:

Fe = ∇ ·
(

εEE − εE2

2
I

)
= ρeE − 1

2
E2∇ε, (3)

where ρe is the charge density, ε is permittivity, and I is the
unit tensor. The first term and second term in Eq. (3) represent
the Coulomb force determined by the charge density and the
dielectric force caused by the permittivity differences of two
phases, respectively. The electric field E and charge density ρe

in Eq. (3) can be obtained by solving the simplified Maxwell
equations as follows [48]:

E = −∇φ, (4)

∇ · (ε∇φ) = −ρe, (5)

∂ρe

∂t
+ ∇ · (ρeu) + ∇ · (ρeKE) = 0. (6)

Here φ represented the electric potential, K is the ion mo-
bility and D is the diffusion coefficient. Besides the transient
term, the convection, electromigration, and diffusion of charge
transportation are expressed from left to right in Eq. (6). In
general, the contribution of charge diffusion is very small
when compared to convection and electromigration [52].
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The liquid and air regions are differentiated by solving a
scalar transport equation for the local liquid volume fraction
α as follows:

∂α

∂t
+ ∇ · (αu) = 0. (7)

The value of α varies from 0 to 1. The regions with α = 1
and α = 0 are identified as liquid and air, respectively. This
interface model is known as the volume-of-fluid (VOF) model
[53] and the physical properties are expressed as a function of
local liquid fraction as follows:

P = αPl + (1 − α)Pa, (8)

where “P” represents physical properties including ρ, μ, K ,
and ε and the subscripts “l” and “a” indicate the values in the
liquid and air regions, respectively.

The boundary conditions at the electrodes have been shown
in Fig. 1. The left and right sides of the domain are treated as
periodic:

ux,l = ux,r, uy,l = uy,r, (9a)

φl = φr, (9b)

ρe,l = ρe,r, (9c)

where the subscripts “l” and “r” refer to the left boundary and
right boundary, respectively. In addition, due to the absence of
an interface charge for insulating liquids, the physical quanti-
ties satisfy the following relationships at the interface [48]:

[E] × n = 0, [εE] · n = 0, [KEρe] · n = 0, (10a)

μt · (∇u + ∇uT
) · n = 0, (10b)

−[p] + μn · (∇u + ∇uT
) · n + [ε(E · n)2]

−[
1
2εE2

] − σ (∇s · n) = 0, (10c)

where [A] = Al − Aa represents the jump of any quantity A
from liquid to air and t is the unit vector tangential to interface.
Based on Eq. (10a), the ratio of the normal electric fields
strength El,n/Ea,n and the ratio of charge density ρe,l/ρe,a on
the two sides of the interface are equal to εa/εl and Kaεl/Klεa,
respectively. Thus, the charge density will have a huge jump
at the interface since air usually have smaller permittivity and
much larger ion mobility. Equation (10b) and Eq. (10c) give
the balance of tangential and normal stress at the interface, re-
spectively. Since the dielectric force only works at the normal
direction of the interface and the Coulomb force has no effect
to the interface with the absence of interface charge, the right-
hand side of Eq. (10b) is zero. Meanwhile, the pressure jump
at the interface is determined by the viscous force, dielectric
force, and surface tension, as it is showed in Eq. (10c). It is
also necessary to point out that the absence of Coulomb force
at the interface does not guarantee its absence in the single-
phase region near the interface. On the contrary, the role of
Coulomb force may become very important considering the
jump of charge density at the interface, which will also be
highlighted in the following chapters.

B. Nondimensional equations

The above set of governing equations can be rewritten
into dimensionless form using the following characteristic
scales for length, time, pressure, electric field, charge density,

and electric current density D, ρcD2/μc, μc
2/(ρcD2), V/D,

εcV/D2, and εcKcV 2/D3, respectively. Here ρc, μc, εc, and
Kc are the characteristic physical properties. The obtained
nondimensional system of governing equations [48]:

∇ · u∗ = 0, (11)

∂ρ∗u∗

∂t∗ + ∇ · (ρ∗u∗u∗)

= ∇ · μ∗∇u∗ − ∇p∗ + UF∗
e + ρ∗g∗ + g∗

Bo
(∇s · n),

(12)

E∗ = −∇φ∗, (13)

∇ · (ε∗∇φ∗) = −ρ∗
e , (14)

M

U 1/2

∂ρ∗
e

∂t∗ + M

U 1/2
∇ · (ρ∗

e u∗) + ∇ · (ρ∗
e K∗E∗) = 0. (15)

The superscript “*” represents the dimensionless values of the
corresponding entities. Adopting the treatment in Ref. [48],
the properties of liquid (ρl , μl , εl , Kl ) are chosen as char-
acteristic properties (ρc, μc, εc, Kc). For the convenience of
expression, we define the dimensionless total charge trans-
port velocity as u∗

t = M
U 1/2 u∗ + K∗E∗. Other nondimensional

parameters that are defined to facilitate the analysis are ex-
pressed as follows:

g∗ = ρ2
c D3

μ2
c

g, Bo = ρcgD2

σ
, M = 1

Kc

√
εc

ρc
, U = εcρcV 2

μ2
c

.

(16)
Here g∗ can be treated as a nondimensional measure for the
acceleration due to gravity. Bo is the Bond number, which
represents the ratio of gravitational force to the surface tension
force. M is the ratio of the so-named hydrodynamic mobility
to ionic mobility. The parameter U represents the ratio of
electric force to viscous force and it serves as the driving
parameter for the present system. The corresponding nondi-
mensional boundary conditions at electrodes are as follows:

u∗ = 0, φ∗ = 1, ρ∗
e = C at y∗ = 1 + L∗,

u∗ = 0, φ∗ = 0 at y∗ = 0, (17)

where C = ρe0D2/εcV is a parameter that serves an indication
for the injection strength and L∗ = L/D denotes the nondi-
mensional thicknesses of the air layer. Meanwhile, in order
to highlight the role of each dimensionless parameter at the
interface, the dimensionless form of Eq. (10) is also given as:

[E∗] × n = 0, [ε∗oE∗] · n = 0, [K∗E∗ρ∗
e ] · n = 0, (18a)

t · (∇u∗ + ∇u∗T ) · n = 0, (18b)

−[p∗] + n · (∇u∗ + ∇u∗T
) · n + U [ε∗(E∗ · n)2]

−U
[

1
2ε∗E∗2

] − g∗

Bo
(∇s · n) = 0. (18c)

III. NUMERICAL METHODOLOGY

The numerical model for the two-phase EHD problem
presented in this work is built on the VOF method-based
finite-volume framework of OpenFOAM [49]. The govern-
ing equations for the electric potential, electric field, charge
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FIG. 2. Flow chart of the solution procedure. nCorrectors times
is the solving times of electric equations.

transport, and the expression for electric body force term are
implemented into the framework. Meanwhile, since Eq. (10)
is obtained by integrating the respective conservation equa-
tions across the interface, the conservative VOF method is
able to ensure that the numerical solution satisfies Eq. (10)
without explicit enforcement. A sequential, iterative solution
procedure based on the PIMPLE algorithm [54] is employed
to solve the discrete equations. Since the Poisson’s equation
and charge density conservation equation are coupled, an it-
erative subloop is designed to ensure full convergence and

enhance the solving stability. Figure 2 presents the overall
solution procedure.

The governing equations are discretized using the stan-
dard finite-volume procedures available in OpenFOAM as
described by Moukalled et al. [55]. The time derivatives are
discretized using the Crank-Nicolson scheme with a weight-
ing factor of 0.9. The Laplacian terms present in the governing
equations are discretized using a second-order accurate central
differencing scheme. A third-order cubic scheme is employed
to discretize the gradient terms. The convective terms in the
momentum and charge density conservation equations are
discretized using the third-order QUICK scheme [56] while
a second-order total variation diminishing (TVD) Van Leer
scheme is employed [57] to discretize the convection term
in the phase fraction equation. For the electromigration term,
TVD Van Leer scheme is also used to get accurate charge
density distribution near the electrode [58]. OpenFOAM also
introduces an interface compression term in Eq. (7) to sharp
the interface [59,60] and this term is discretized with central
scheme.

IV. RESULTS AND DISCUSSION

This work primarily presents a numerical investigation of
EHD stability of a dielectric liquid with horizontal liquid-air
interface exposed to a vertical electric field. The process of
charge transport under electrohydrostatic equilibrium state
and the instability feature as well as the flow pattern are
systematically studied.

A. Choice of parameters and stability analysis

The geometrical configuration, boundary conditions, and
governing parameters used in this study are basically adopted
from the linear stability of Chicón and Pérez [48]. However,
few parameters are set different from Ref. [48] in order to
reduce the computational expenses. The parameters used in
this study are summarized in Table I.

The first modification is to increase the ratio of ion mobility
between the liquid layer and the air layer from 5 × 10−6

used by Chicón and Pérez to 1 × 10−2. The usage of very
small ionic mobility ratio leads to a high electromigration flux
KE in the air layer and low flux in the liquid. Thus, a very
small time step (around 10−4 dimensionless time) as well as a
long simulation time (around 104 to 105 dimensionless time)
are required to achieve a divergence free numerical solution.
Therefore, a greater ionic mobility ratio is considered to re-
duce simulation consumption. For the same purpose, the air
and liquid layers are set to be of the same thickness in this
paper while Chicón and Pérez [48] used an air layer which
is 11.5 times thicker than the liquid layer. The instability

TABLE I. The parameters used in the previous linear stability analysis and the present study.

Thickness of liquid layer Kl/Ka εl/εa ρl/ρa νl
a C Bo g∗ M L∗

Linear stability analysis [48] 1.2 mm 5 × 10−6 2.73 800 5 × 10−5 m2/s 10 0.678 6.78 317.36 11.5
Present study 1 × 10−2 1.0

aThe viscosity in the air layer is not required in the linear stability analysis since it ignores the flow in air. In our simulation, the viscosity of
the air is set to be 1.57 × 10−5 m2/s.
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FIG. 3. The instability diagrams with the original and changed
parameters.

diagram plotted using the parameters used in Ref. [48] shows
a good agreement with the instability diagram obtained using
the modified parameters in this study (Fig. 3). For details
of the stability analysis process, please refer to Ref. [48].
The critical values obtained using the modified parameters
are Uc = 0.1106 and kc = 4.4 which are close to the critical
values Uc = 0.1155 and kc = 4.4 obtained by using the pa-
rameters considered by Ref. [48]. Thus, it is confirmed that
the modified parameters used in this study do not alter the key
stability characteristics of the liquid layer.

To understand why the adjustment of air layer parameters
has no significant effect on the stability of the system, the role
of air-liquid interface in this problem needs to be discussed.
In the stability analysis, the air layer is considered to be
in electrohydrodynamic equilibrium because of the large ion
mobility in the air layer [48]. Therefore, the instability of the
system is dominated by the liquid layer and the interface acts
as a flexible electrode plate boundary for the liquid layer. In
the mechanics part, the relations at interface have not changed
since the velocity in the air layer is assumed to be zero in
the stability analysis. In the electrical part, the change of ion
mobility in the air layer will affect the charge accumulation at
the interface. However, the charge density in the liquid layer
has already become saturated due to the high charge injection
intensity. Thus, the limited change of charge accumulation at
interface has negligible effect on the electric field characteris-
tics in the liquid layer. As a result, the stability feature shown
in Fig. 3 has not changed.

B. Electrohydrostatic equilibrium regime

The present flow problem exhibits an electrohydrostatic
regime when the driving parameter U is kept smaller than the
critical value. In this regime, the electric body force is weak
and cannot induce any motion in the liquid region and thus
the system remains in a rest state. An analytical solution for
the charge density, electric field distribution, and pressure in

TABLE II. The constants in the equations of static solution.

a b c d

0.211738 1 + 1.5038701 × 10−5 1.281494 0.003663

FIG. 4. Comparison of numerical results from present work
with analytical solutions in electrohydrodynamic equilibrium con-
dition along the y direction. (a) Electric field strength. (b) Pressure.
(c) Charge density.

FIG. 5. Time evolution of charge density in the mesh cell closest
to the interface in the liquid layer.
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FIG. 6. The charge density (green line) and electric field strength (blue line) distributions during the injection process with U = 0.10.
When t∗ = 44.4, the charge density near the interface reaches its peak value, while it reaches its bottom value at t∗ = 576. (a)t∗ = 30, in stage
I. (b) t∗ = 44.4, at the boundary between stages I and II. (c) t∗ = 250, in stage II. (d) t∗ = 576, at the boundary between stages II and III. (e)
t∗ = 850, in stage III. (f) t∗ = 1180, at the boundary between stages III and IV.

the electrohydrostatic regime is given below [48]:

E∗
l = c

√
(1 − y∗ + d ), E∗

a = a
√

(1 − y∗ + b), (19a)

ρ∗
el = c

2
√

(1 − y∗ + d )
, ρ∗

ea = aεa

2εl
√

(1 − y∗ + b)
, (19b)

p∗
l = P∗

0l + (g∗ + UJ0)(1 − y∗),

p∗
a = P∗

0a +
(

ρ∗g∗ + UJ0
1

K∗

)
(1 − y∗ + L). (19c)

In Eq. (19c), P∗
0l and P∗

0a are the initial parameters de-
termined by the pressure near one of the electrodes and the
pressure jump at the interface. J0 is the nondimensional cur-
rent density defined as J0 = K∗E∗ρ∗

e . The coefficients a, b,
c, d presented in Table II are constants determined with the
parameters listed in Table I. The values of a, c, and d are
related to (1-b), and thus b needs to have high accuracy. Fig-
ure 4 presents a comparison of our numerical solution with the
analytical solution in the electrohydrostatic regime. A nonuni-
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FIG. 7. Variation of the maximal velocity Umax with different driving parameters U . (a) The maximum velocity in the liquid layer.
Logarithmic coordinates are used to show the exponential growth rate of the velocity in the insert diagram. (b) The linear relationship between
the exponential growth rate and driving parameter when U is close to Uc.

form grid that has been refined near the injection electrode
is used in our numerical procedure. There are 200 cells in
the vertical direction before refinement which is proved to be
mesh independent(see Appendix). The numerical results for
the distributions of electric field, pressure, and charge density
exhibit a good agreement with the analytical solution.

Figure 5 presents the charge density evolution with time
near the interface, starting with all zero fields in the bulk.
Accordingly, the profiles of E∗ and ρ∗

e across the interface
at some selected moments are presented in Fig. 6. In stage
I where t∗ < 44.4, the charge accumulates near the inter-
face and it is observed that the charge does not penetrate
much deeper into the liquid layer. Then in stage II where
44.4 � t∗ � 576.0, the charge accumulation near the inter-
face reaches a very high value and the charge distribution
begins to seep into the liquid region. The charge density near
the interface depends on the balance between the electro-
migration velocity in the liquid and air layer. From Eq. (4)
and Eq. (5) we can obtain that once the charge is injected
into liquid, the corresponding electric field strength El will
increase and finally cause the growth of the migration velocity
KlEl in the liquid layer. This increase breaks up the original
balance of migration velocities on both sides of the interface
and results in the rapid drop of the interface charge density.
However, with the further charge transport to the liquid layer,
the electric field strength on the liquid side of the interface
decreases gradually [as shown in Fig. 6(c) and Fig. 6(d)].
Due to the decreased migration velocity caused by the fall
in electric field strength in liquid region, the charge transport
velocity in the air layer dominates again. Then, the charge
density near the interface again begins to shoot up and this
stage is marked as stage III [576 � t∗ � 1180, from Fig. 6(e)
to Fig. 6(f)]. When the charge reaches the collector electrode,
the last stage (1180 < t∗, stage IV in Fig. 5) begins. Electric

field and charge distribution in the liquid layer will undergo
an adjustment process to achieve the final state.

C. Stability threshold and flow pattern

The fluid motion will occur if the driving parameter U
is greater than the critical value. To study the flow pattern
near the stability criterion, the width of the flow domain in
our simulation is considered to be 1.43 times the thickness of
the liquid layer, corresponding to the critical wavelength. The
variation of the maximum velocity within the liquid layer with
respect to the driving parameter U is presented in Fig. 7(a).
The liquid layer, which is at an equilibrium state, gradually
evolves into a dynamic state. It is observed that the time evolu-
tion curve of the maximum velocity undergoes an exponential
growth after an initial period of latency. The corresponding
linear stability criterion can be estimated using the growth
rate of the curve as presented in Refs. [61–63]. Following
this approach, the velocity growth curve with respect to the
parameter U is plotted in Fig. 7(b). The critical value of U is
calculated as 0.102, which matches well with the analytical
result. The flow pattern and its formation mechanism are
presented in Fig. 8 and Fig. 9, respectively. First, as shown in
Fig. 8(a) and Fig. 9(a), the velocity owns an upward compo-
nent between two vortices. This direction is opposite to the
local electric field, and thus the total transport velocity of
charge KE + u is weaker there [Fig. 8(b)]. Meanwhile, since
the charge flux injected from the interface remains unchanged,
the weakened transport velocity in the bulk finally results in a
charge accumulation area near the interface and a thin charge
region between vortices [Fig. 8(c) and Fig. 9(b)]. The thinner
charge in turn reduces the local electric strength E according
to ∇ · εE = ρe derived from Eq. (4) and Eq. (5), which de-
creases the total transport velocity of charge KE + u on the
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FIG. 8. The cloud chart of each dimensionless physical quantity at the moment just before the interface deformation with U = 0.13.
(a) The distribution of velocity with corresponding streamline. (b) The distribution of total transport velocity with corresponding isoline. Since
the total transport velocity in the air layer is much larger than the value in the liquid layer, another color scale is used in the air layer. (c) The
distribution of charge density with corresponding isoline. (d) The distribution of tangential electric force.

FIG. 9. The sketch of the flow pattern development process. (a) The velocity distribution induced by the vortex flow. (b) The ununiform
charge density distribution caused by the ununiform charge transportation. (c) The shear distribution of electric field due to the uneven charge
density.
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FIG. 10. The interface deformation and corresponding charge distribution with U = 0.13. (a) The irregular interface deformation. A solid
black line is used to distinguish the interface. (b) The distribution of irregular charge. (c) The distribution of velocity.

one hand and decline of the Coulomb force ρeE on the other
hand [Fig. 9(c)]. The reduced Coulomb force between vortices
increases the local velocity correspondingly since the opposite
direction they owned [Fig. 9(a)], and the above process will be
staged again, establishing an unstable positive cycle.

Besides, the charge between the vortex is weakened and
the charge near the interface is enhanced, while the charge
density in the center of the vortex is basically unaffected
[Fig. 9(b)]. This kind of charge density distribution results
in the opposite direction of horizontal electric field in the
corresponding region [Fig. 9(c)], which eventually leads to the
shear distribution of tangential electric force near the interface
[Fig. 8(d)]. In Sec. IV D, we will show that this shear distri-
bution exists only in a two-phase system. Since the surface
tension is always perpendicular to the interface, the tangential
electric force getting larger with the growth of the vortex
strength can only be balanced by finite viscous stress, which
is a possible mechanism behind interface instability. However,

before this mechanism works, the up-flow component in the
vortex will deform the interface first. It makes the interface
where the highest charge density is seen to protrude upward
(see Fig. 8). The deformation time is marked in the velocity
curve in Fig. 7(a) and the charge at interface will no longer be
stable after the interface’s deformation. The unstable charge
density leads to more irregular deformation of the interface,
as seen in Fig. 10. After the appearance of the surface de-
formation, the liquid velocity will jump by several orders, as
seen in Fig. 10(c), and the system will become more and more
chaotic as time increases.

D. The charge void region and the effect of the slip
boundary at interface

It is worthwhile to first emphasize that the slip boundary
condition mentioned here refers to the role of the interface for
the liquid layer rather than the boundary conditions required

0.0127
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15
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FIG. 11. The charge and total transport velocity distribution in the domain when U = 0.12. (a) The charge void region with the black line
as the isoline of ρ∗ = 0.5. (b) The total transport velocity distribution with corresponding streamline. Since the total transport velocity in the
air layer is much larger than the value in the liquid layer, another color scale is used in the air layer.

065109-9



LIU, PÉREZ, SELVAKUMAR, YANG, AND WU PHYSICAL REVIEW E 104, 065109 (2021)

FIG. 12. Time evolution of dimensionless electric field, charge
density, electric force, velocity, and total transport velocity of charge
with the ordinate of y∗ = 0.5 at junction of two vortices when U =
0.12.

by the numerical solution of the governing equations. The
interface is completely located in the computational domain
in our numerical procedure, and we have mentioned in
Sec. III that the relationship between physical quantities
at the interface can be guaranteed by the VOF method.
The existence of the interface brings two new factors,
deformability and the slip boundary condition, to the system.
In order to study the effect of slip boundary conditions at
the interface separately, the phase fraction equation Eq. (7)
is blocked in this section. This does not change the boundary
conditions at the interface while keeping the interface
undeformed. The so-called charge void region shown in
Fig. 11(a) then can be captured without the phase update code.
The occurrance of this structure is the result of a positive
cycle illustrated in Fig. 9 before, which is interrupted by
interface deformation in early cases as described in previous
section. To further illustrate this positive cycle, Fig. 12 shows
the time evolution of the related variables at the region near
the interface with U = 0.12. As shown in this figure, the
growth of the velocity is accompanied by the decrease of total
charge transport velocity |u∗

t,y|, limiting the amount of charge

injected into the liquid layer. Meanwhile, thinner charge
in turn reduces the local electric field value. This not only
causes the further reduction of the magnitude of |u∗

t,y| but also
reduces the local electric force, which further increases the
local velocity again. Finally, the total charge transport velocity
u∗

t,y turns its direction and the charge can no longer be injected
into the deeper liquid; the system reaches a steady state. The
final distribution of the whole dimensionless charge transport
velocity is given in Fig. 11(b) and the self closed streamline
of total velocity in the figure shows that no free charge can be
injected into or escape from the charge void region.

The key characteristic of EHD-related convection, the sub-
critical bifurcation, is also observed in this study. As shown in
Fig. 13(a), the system will remain at rest when the simulation
is started with a small driving parameter U . With the increase
of U , the stable convection cell as well as the charge void
region will occur when U > Uc. This critical value corre-
sponds to the linear stability criterion. The strength of the flow
will gradually weaken when U is decreased from a steady
convection until it meets another critical value, where the
motion suddenly stops. This criterion is marked as Uf as it is
related to finite-amplitude instability. We numerically found
Uf = 0.059. Since Uf is smaller than Uc, a hysteresis curve
is established as presented in Fig. 13(a). The hysteresis of the
single-phase case is also plotted in Fig. 13(b) for comparison.
The shape of the charge void region with driving parameters
both greater and less than Uc is shown in Fig. 14. Since the
electric torque which drives the flow is proportional to the size
of the void region [35], the void region area owns a nonzero
value when U = 0.06 which is close Uf . The width and height
of the charge void region become smaller with the decrease
of driving parameters while the neck of the region becomes
larger. When U lies between the two critical values, the profile
changes more sharply than when the driving parameter is less
than the Uc. This variation is consistent with the results of a
single-phase EHD convection [64].

The charge void region in two-phase system exhibits some
key differences from a single-phase EHD problem. To illus-
trate this point, we show the charge void regions both formed

FIG. 13. Comparison of hysteresis loop in two-phase and single-phase system. (a) Two-phase system. (b) Single-phase system.
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FIG. 14. The isoline of ρ∗
e = 0.5 with different drive parameters.

by the single-phase electroconvection and the two-phase flow
in Fig. 15. The two charge void regions are simulated with the
same driving parameters. Key differences between two charge
void regions can be summarized as follows. First, the void
region in the two-phase system has a larger size, which means
the convection strength is greater. This can also be related
to Fig. 13 where the single-phase case shows a much higher
linear and nonlinear critical values. Second, the upper edge
of the charge void region coincides with the interface in the
two-phase system while there exists a notable gap between the
void region and the interface(electrode) in a single-phase case.
This can be explained by the velocity boundary conditions

at interface and rigid electrode. The interface acts as a slip
boundary condition since the velocity is continuous between
the movable air and liquid, which allows vortex structure in
the liquid layer extend to the interface. While the viscous
effect near the no-slip electrode forces the vortex to stay away
from the injection electrode for a single-phase problem. This
viscous effect is also the main reason for the smaller charge
void region in single-phase flow. Third, the charge density at
the interface exhibits a much higher peak value and horizontal
gradient in air-liquid system. This phenomenon can be un-
derstood from two aspects. On the one hand, the convection
strength is much larger in the presence of an interface, which
makes the flow have a stronger influence on charge distribu-
tion. On the other hand, since the charge cannot be transported
into charge void region due to the self-closed total migration
velocity [Fig. 11(b)], the interface closely connected with the
void region in air-liquid system cannot inject enough charge
to the liquid layer, which makes it easier for that part of
interface to accumulate more charge from the upper layer.
Moreover, just as in the discussion in Sec. IV C and Fig. 9,
the higher peak value and horizontal gradient in the air-liquid
system causes the horizontal component of the electric force
to change the direction near the interface, forming a shear
electric field force distribution. However, as shown in Fig. 16,
the shear electric force is absent in the single-phase system
since no notable transverse gradient of charge distribution
exists near the interface, which shows that the slip interface is
a necessary condition for the formation of shear electric force.

Overall, it can be inferred that the absence of viscous effect
at interface allows for a finite velocity there, which makes
it easier for the flow to develop and generate a larger flow
intensity, resulting in a smaller critical value than single-phase
system. The structure of the charge void region is also effected
by the stronger flow and the velocity at interface. The velocity
slip boundary condition at the interface is the reason for the
formation of shear electric field force near the interface, which
makes the interface prone to deformation.

FIG. 15. Comparison of charge void region in two-phase and single-phase system with U = 0.35. (a) Two-phase system. (b) Single-phase
system.
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FIG. 16. Comparison of tangential electric force in two-phase and single-phase system with U = 0.35. (a) Two-phase system. (b) Single-
phase system.

V. CONCLUDING REMARKS

In this paper, two-dimensional numerical simulation was
performed to study the EHD instability with a planar layer
of air-dielectric liquid subjected to unipolar injection. This
fundamental two-phase EHD problem has been investigated
with the linear stability tool, and this study presents direct
numerical results for the first time. A finite volume solver with
the electrostatic equations implemented in the open-source
platform OpenFOAM was developed, and the VOF model
was used to deal with the liquid-air interface. The solver was
first validated by the electrohydrostatic equilibrium solution.
Then numerical results with the onset of flow motion and flow
structure were presented. The numerically obtained critical
value for the linear stability matches well with the theoretical
values. Once the flow develops, the interface deformation
becomes irregular, and the resulting flow structure and charge
void region is chaotic.

One of the most important contributions of this study is
to give the differences between single-phase system and two-
phase system caused by the slip interface. On the one hand,
the lack of viscous effect at the free interface accounts for the
smaller instability threshold in two-phase system compared
with the single-phase case. The linear criterion is Uc = 0.107,
which agrees well with the analytical solution. Meanwhile, the
finite-amplitude criterion with the blocked deformation and
slip interface, corresponding to the stop of flow motion, was
obtained as Uf = 0.059. This discovery provides a possibility
to improve the flow intensity in some industrial applications.
For example, in electric field–enhanced heat transfer, using a
two-phase film instead of a single-phase liquid can reduce the
voltage threshold of flow, obtain higher flow intensity at the
same voltage, and thus obtain higher heat transfer efficiency.
On the other hand, the presence of interface also changes the
flow pattern. The slip interface enlarges the size of charge void
region and shifts its position closer to the interface. The dis-
tribution of tangential electric force near the interface and its
formation mechanism are described. It is considered that this
distribution will only occur with a slip boundary. This finding

can help us get a better understanding on some EHD flows in
presence of a free surface like Rose window instability where
the electric stress might have a vital role forming a beautiful
interface deformation pattern.

Though the present study and also previous stability anal-
ysis [48] are inspired by the Rose window instability, the
experimental condition of needle-plate electrode configura-
tion and much higher values of driving parameter bring some
inherent differences and challenges. The 3D simulation of
Rose window instability phenomenon can be a future work.
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FIG. 17. The pressure distribution in liquid layer with different
grids.
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TABLE III. The numerical result with different gridsa.

Grid A Grid B Grid C Grid D

J∗ 0.81696 0.81918 0.82017 0.82039
Relative error of J∗ – 0.27% 0.12% 0.03%
Relative error of p∗ – 1.96% 1.01% 0.32%
u∗

max × 103 3.08748 5.48995 6.77753 6.62854
Relative error of u∗

max – 77.81% 23.45% 2.20%

aThe relative error is defined as [(J∗, p∗,
∫

liquid p∗dy∗)c − (J∗, p∗,
∫

liquid p∗dy∗)r )]/(J∗, p∗,
∫

liquid p∗dy∗)r where the subscript “c” is the value of
the current grid and “r” is the value of the rougher grid.

APPENDIX: GRID INDEPENDENT STUDY

Four different orthogonal grids named (1) grid A (36 ×
50), (2) grid B (72 × 100), (3) grid C (144 × 200), and (4)
grid D (216 × 300) with mesh refinement at L/15 away from
the injection electrode are used to perform the simulations.
Dimensionless current density J∗ = K∗E∗ρ∗

e , dimensionless
pressure distribution under static solution with the drive pa-
rameter U = 0.10, as well as the maximum velocity in liquid

layer with U = 0.35 (the case of Fig. 15) are used as electric-
ity and mechanics evaluation indexes. The results are shown
in Fig. 17 and Table III.

With the increase of grid density, the current density and
pressure show few changes while the maximum velocity im-
proves a lot. When the grid is encrypted from grid C to grid D,
the result improvement is very limited. Considering both the
accuracy and the consumption of simulation resources, grid C
is chosen as the final grid for simulations.
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