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Nonlinear dynamics of a solid particle in an acoustically excited viscoelastic fluid. I.
Acoustic streaming
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An analytical theory is developed for acoustic streaming induced by an axisymmetric acoustic wave field
around an isotropic solid spherical particle in a compressible viscoelastic fluid. The particle is assumed to
undergo pulsation, translation, and shape deformations of all orders. The fluid motion is described by the
compressible Oldroyd-B model. No restrictions are imposed on the particle size with respect to the acoustic
wavelength and the viscous penetration depth. The obtained analytical solutions are used in numerical simula-
tions. It is shown that in the general case, the streaming velocity magnitude decreases with increasing polymer
viscosity. Increasing relaxation time (elasticity) of the polymer solution leads to increasing streaming velocity
magnitude as long as the relaxation time remains relatively small. It is also observed that the variation of the
polymer viscosity and the relaxation time can change the pattern of streamlines.
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I. INTRODUCTION

Many microfluidic applications involve handling fluids
with a complex microstructure, such as polymeric solu-
tions, blood, or protein solutions. The flow of such fluids is
characterized by non-Newtonian behavior and, in particular,
viscoelasticity [1]. Microchannel devices designed to focus,
concentrate, or separate particles suspended in viscoelastic
fluids are becoming common [2–4]. Recent progress in the
field is reviewed in Ref. [5]. It is well known that the elastic
part of the fluid response will increase, for example, the thick-
ness of the boundary layer for the first-order solutions and
therefore also influences the higher-order results of acoustic
streaming and acoustic radiation force. The viscoelastic be-
havior makes more complicated the modeling of processes
that occur in microfluidic systems. One of these processes,
rarely explored, is acoustic streaming that is generated around
a particle suspended in an acoustically excited viscoelastic
fluid. This fact has inspired the present study.

Acoustic streaming is a well-known phenomenon, which
has been the subject of much research [6–12]. However, all
available theoretical studies are devoted to Newtonian fluids.
Our study is an attempt to obtain analytical solutions for
acoustic streaming that develops around an isotropic solid
particle in a viscoelastic fluid. Our derivation is performed in
a maximally general form. We assume that the particle un-
dergoes oscillation modes of all orders (pulsation, translation,
shape deformations). Allowing for shape modes is important
because acoustic streaming is known to be produced by non-
spherical oscillations. A correct calculation of the acoustic
radiation force also requires taking account of higher oscil-
lation modes.

We do not impose any restrictions on the particle size with
respect to the acoustic wavelength and the viscous penetration
depth. In contrast to the universally accepted approach to

neglect the fluid compressibility when solving the equations
of acoustic streaming (Nyborg’s approximation [6]), we take
it into account. It is known that the fluid compressibility can
be ignored when acoustic microstreaming is calculated. How-
ever, the calculation of the primary acoustic radiation force
is impossible if the fluid compressibility is ignored. Since the
general theory developed in this paper (Part I) is then used in
Part II [13] to calculate the radiation force, we take account of
the fluid compressibility.

II. THEORY

A. Problem formulation

We consider a solid particle immersed in a viscoelastic
fluid, which is excited by an axisymmetric acoustic wave; see
Fig. 1. We assume that the particle is spherical at rest. In re-
sponse to acoustic excitation, the particle undergoes pulsation,
translation, and shape deformations of all orders.

Assuming that the elastic deformations experienced by the
particle are small, we describe the motion of the solid inside
the particle by the Navier equation [14],

∂2u
∂t2

= c2
2∇2u + (

c2
1 − c2

2

)∇(∇ · u), (1)

where u is the displacement vector, c1 is the primary wave
speed, calculated by

c1 =
√

E (1 − ν)

ρs(1 + ν)(1 − 2ν)
, (2)

and c2 is the secondary wave speed, calculated by

c2 =
√

E

2ρs(1 + ν)
. (3)
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FIG. 1. Geometry of the system under study. A solid particle is
immersed in a viscoelastic fluid subject to an axisymmetric acoustic
wave.

Here, ρs is the solid density, E is Young’s modulus, and ν

is Poisson’s ratio.
The motion of the fluid surrounding the particle is

described by the continuity equation and the momentum equa-
tion [15],

∂ρ

∂t
+ ∇ · (ρv) = 0, (4)

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σ, (5)

where ρ is the fluid density, v is the fluid velocity, σ is
the stress tensor with components σik , and the product ∇ · σ

means ∇kσik with summation over repeated indices.
The stress tensor σ is specified by the compressible

Oldroyd-B model [16],

σ = −pI + η f
[∇v + (∇v)T − 2

3 (∇ · v)I
]+ ζ f (∇ · v)I + τ,

(6)

where p is the hydrodynamic pressure; I is the identity tensor;
the superscript T denotes the transpose of a tensor; η f , ζ f are
the fluid (solvent) shear and volume viscosities; and τ is a
second-rank tensor that describes the polymer effect and is
defined by

τ + λM

[
∂τ

∂t
+ v · ∇τ − τ · ∇v − (∇v)T · τ

]

= ηp

[
∇v + (∇v)T − 2

3
(∇ · v)I

]
+ ζp(∇ · v)I, (7)

where λM is the Maxwell relaxation time and ηp, ζp are the
polymer contributions to the total shear and volume viscosi-
ties, respectively. It should be mentioned that the Oldroyd-B
model is often written in a different mathematical form, where

parameters called the total viscosity η0 = η f + ηp and the
retardation time λr = (η f /η0)λM are used [16].

It should be noted that, unfortunately, there is no single
model that describes all viscoelastic fluids similar to the
Navier-Stokes equations for Newtonian flows. The Oldroyd-
B model is considered in the literature as one of the most
popular models, which adequately describes a wide range of
polymer solutions and biological fluids. At the same time,
it is one of the simplest rheological models for fluids that
have some elastic effects and a viscous fluid as a limiting
case. Therefore, we have chosen this model. Its mathematical
derivation and detailed analysis are given in Ref. [16]. The
Oldroyd-B model can be regarded as an extension of the
upper-convected Maxwell model, which results in a combi-
nation of the viscoelastic stress and the Newtonian stress [16],
or as an extension of the linear Jeffreys model to nonlinear
flows [17]. All these models are used to study oscillatory flows
in viscoelastic fluids. Solutions to classical problems, such as
wave propagation in viscoelastic fluids and the behavior of
Stokes layers, can be found in Refs. [18–20]. Theoretical and
numerical investigations of bubble oscillations in viscoelas-
tic fluids have been performed by Shima et al. [21] using
the Oldroyd-B model and more recently by Allen and Roy
[22] employing the Jeffreys model. Hintermüller et al. [23]
used the upper-convected Maxwell model and a perturbation
approach in order to model acoustic streaming in a simple
rectangular geometry.

In the next subsections, we first solve Eq. (1) to obtain
deformations inside the particle. We then linearize Eqs. (4)–
(7) and solve them to obtain the first-order scattered velocity
field in the fluid. In the course of calculating the first-order
solutions, we use the boundary condition that the velocity and
the stress are continuous through the surface of the particle.
We also use the condition that the scattered field vanishes at
infinity. Then we write down Eqs. (4)–(7) up to second-order
terms and average them over time. As a result, we obtain
equations of acoustic streaming. Their solution is the ultimate
goal of our derivation. In the course of solving the equations
of acoustic streaming, we use the boundary condition of ad-
hesion of the fluid to the surface of the solid particle and the
condition that the streaming vanishes at infinity.

B. Solutions inside the particle

The displacement vector u is represented by the Helmholtz
decomposition:

u = ∇ϕs + ∇ × ψs. (8)

Substitution of Eq. (8) into Eq. (1) yields

∇2ϕs + k2
1ϕs = 0, (9)

∇2ψs + k2
2ψs = 0, (10)

where k1 = ω/c1 and k2 = ω/c2 are the wave numbers of the
primary and secondary waves, respectively.

In view of the axial symmetry of the problem, a solution to
Eq. (9) is given by

ϕs(r, θ, t ) = e−iωt
∞∑

n=0

�

an jn(k1r)Pn(μ), (11)
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while a solution to Eq. (10) is given by

ψs = ψseε, (12)

where eε is the unit azimuth vector and ψs is calculated by

ψs(r, θ, t ) = e−iωt
∞∑

n=1

�

bn jn(k2r)P1
n (μ). (13)

Here, jn is the spherical Bessel function; Pn is the Legen-
dre polynomial of degree n; μ = cos θ ; P1

n is the associated
Legendre polynomial of the first order and degree n; and
�

an,
�

bn are constant coefficients, which are calculated in
Appendix A.

The radial and tangential components of u are calculated
by

ur = e−iωt
∞∑

n=0

[
k1

�

an j′n(k1r) − n(n + 1)
�

bn
jn(k2r)

r

]
Pn(μ),

(14)

uθ = e−iωt

r

∞∑
n=1

{�

an jn(k1r) −
�

bn[ jn(k2r) + k2r j′n(k2r)]}P1
n (μ),

(15)

where the prime denotes the derivative with respect to an
argument in brackets.

C. First-order solutions in the fluid

Linearization of Eqs. (4)–(7) yields

∂ρ (1)

∂t
+ ρ0∇ · v(1) = 0, (16)

ρ0
∂v(1)

∂t
= − ∇p(1) + η f ∇2v(1)

+
(

ζ f + η f

3

)
∇(∇ · v(1) ) + ∇ · τ (1), (17)

τ (1) + λM
∂τ (1)

∂t
= ηp

[
∇v(1) + (∇v(1) )

T − 2

3
(∇ · v(1) )I

]

+ ζp(∇ · v(1) )I, (18)

where ρ0 is the equilibrium fluid density.
Providing the time dependence is exp(−iωt ), Eqs. (17) and

(18) are transformed to

ρ0
∂v(1)

∂t
= −∇p(1) + ηc∇2v(1) +

(
ζc + ηc

3

)
∇(∇ · v(1) ),

(19)

where ηc and ζc are complex viscosities defined by

ηc = η f + ηp

1 − iωλM
, ζc = ζ f + ζp

1 − iωλM
. (20)

Equations (16)–(20) are supplemented with the state equa-
tion,

p(1) − p0 = c2(ρ (1) − ρ0), (21)

where p0 is the equilibrium pressure in the fluid and c is the
speed of sound in the fluid.

Thus, the first-order fluid motion is described by Eqs. (16),
(19), and (21).

The first-order fluid velocity is represented by

v(1) = ∇ϕ(1) + ∇ × ψ(1). (22)

With Eq. (22), Eqs. (16), (19), and (21) are transformed to

∇2ϕ(1) + k2
f ϕ

(1) = 0, (23)

∇2ψ(1) + k2
vψ

(1) = 0, (24)

where the wave numbers k f and kv are given by

k f = ω

c

[
1 − iω

ρ0c2

(
ζc + 4ηc

3

)]− 1
2

, kv = (1 + i)
√

ρ0ω

2ηc
.

(25)

By analogy with a viscous fluid, we can introduce a viscous
boundary layer thickness δ and a viscous wavelength λv in
a viscoelastic fluid. Since the viscosity ηc is now complex
valued, these quantities are defined as δ = 1/Im{kv} and λv =
2π/Re{kv}. Note that in a viscous fluid, λv/δ = 2π . In a
viscoelastic fluid, this is no longer the case. See Sec. III for
more information.

In our case, the first-order fluid velocity is a sum of the
velocity of the driving acoustic wave, vac, and the velocity of
the scattered wave produced by the particle, v(1)

sc ,

v(1) = vac + v(1)
sc . (26)

We assume that the driving acoustic wave is irrotational
and hence its velocity can be represented by

vac = ∇ϕac, (27)

where, in view of axial symmetry, ϕac is calculated by [24]

ϕac(r, θ, t ) = e−iωt
∞∑

n=0

An jn(k f r)Pn(μ). (28)

For a plane traveling wave, An = A(2n + 1)in, and for a
plane standing wave, An = (A/2)(2n + 1)in[eik f d +
(−1)ne−ik f d ], where A is the amplitude of the velocity
potential and d is the distance between the equilibrium center
of the particle and the nearest velocity node of the standing
wave.

According to Eq. (22), the scattered velocity is written as

v(1)
sc = ∇ϕ(1)

sc + ∇ × ψ(1)
sc , (29)

where, as follows from Eqs. (23) and (24), in view of axial
symmetry, ϕ(1)

sc is calculated by

ϕ(1)
sc (r, θ, t ) = e−iωt

∞∑
n=0

anh(1)
n (k f r)Pn(μ), (30)

while ψ(1)
sc is given by

ψ(1)
sc = ψ (1)

sc eε, (31)

where ψ (1)
sc is calculated by

ψ (1)
sc (r, θ, t ) = e−iωt

∞∑
n=1

bnh(1)
n (kvr)P1

n (μ). (32)

Here, h(1)
n is the spherical Hankel function of the first kind

and an, bn are constant coefficients, commonly called linear
scattering coefficients, which are calculated in Appendix A.
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FIG. 2. The magnitude of the linear scattering coefficients at increasing values of the mode number n in pure water and in a water solution
of polyethylene oxide (PEO) with ηp = 0.009 Pa s and λM = 10−6 s. The driving is a 100 kHz, 10 kPa plane traveling wave. The particle
radius is R0 = 50 μm.

It follows from Eq. (22) that the radial and tangential com-
ponents of the total first-order fluid velocity are calculated by

v(1)
r = ∂ϕ(1)

∂r
+ 1

r sin θ

∂

∂θ

(
sin θψ (1)

sc

)

= e−iωt
∞∑

n=0

Vrn(r)Pn(μ), (33)

v
(1)
θ = 1

r

∂ϕ(1)

∂θ
− 1

r

∂

∂r

(
rψ (1)

sc

) = e−iωt
∞∑

n=1

Vθn(r)P1
n (μ),

(34)

where

Vrn(r) = Ank f j′n(k f r) + ank f h(1)′
n (k f r) − n(n + 1)bn

h(1)
n (kvr)

r
,

(35)

Vθn(r) = 1

r

{
An jn(k f r) + anh(1)

n (k f r)

− bn
[
h(1)

n (kvr) + kvrh(1)′
n (kvr)

]}
. (36)

Note that Eqs. (33) and (34) include oscillation modes of
all orders.

D. Acoustic streaming

Taking Eqs. (4)–(7) up to second-order terms and averag-
ing over time, one obtains

∇ · 〈v(2)〉 = − 1

ρ0
∇ · 〈ρ (1)v(1)〉, (37)

(η f +ηp)∇2〈v(2)〉 +
(

ζ f +ζp+η f +ηp

3

)
∇(∇ · 〈v(2)〉)−∇〈p(2)〉

= ρ0〈v(1)∇ · v(1) + v(1) · ∇v(1)〉 + λM〈∇ · T〉, (38)

where 〈· · · 〉 means the time average and T is a second-rank
tensor that is defined by

T = v(1) · ∇τ (1) − τ (1) · ∇v(1) − (∇v(1) )T · τ (1), (39)

where, as follows from Eq. (18), τ (1) is calculated by

τ (1) = ηp

1 − iωλM

[
∇v(1) + (∇v(1) )

T − 2

3
(∇ · v(1) )I

]

+ ζp

1 − iωλM
(∇ · v(1) )I. (40)

Equations (37) and (38) describe acoustic streaming and
their solution, 〈v(2)〉, is the Eulerian velocity of the acoustic
streaming.

FIG. 3. Streamline patterns for modes with n = 1, 2, 3. The driving is a 100 kHz, 10 kPa plane traveling wave. The fluid is a water
solution of PEO with ηp = 0.009 Pa s and λM = 10−6 s. The particle radius is R0 = 50 μm.
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FIG. 4. The r dependence of the components of the Eulerian streaming velocity at different values of ηp for modes with n = 1, 2, 3. The
other parameters are as in Fig. 3. The values of ηp have been chosen so as to get round numbers for the total shear viscosity.

The streaming velocity 〈v(2)〉 is sought as

〈v(2)〉 = ∇� + ∇ × �, (41)

where, in view of axial symmetry, � = �(r, θ ) and � =
�(r, θ )eε.

Substitution of Eq. (41) into Eq. (37) yields

∇2� = − 1

ρ0
∇ · 〈ρ (1)v(1)〉. (42)

With the help of Eqs. (16) and (23), Eq. (42) is transformed
to

∇2� = − 1

ω
∇ · 〈ik2

f ϕ
(1)v(1)〉, (43)

where ϕ(1) = ϕac + ϕ(1)
sc .

Substituting Eq. (41) into Eq. (38) and calculating the curl
of the resulting equation [6,25], one obtains

∇4� = − ρ0

η f + ηp
∇ × 〈v(1)∇ · v(1) + v(1) · ∇v(1)〉

− λM

η f + ηp
∇ × 〈∇ · T〉. (44)

Equations (43) and (44) are solved in Appendixes B and C,
respectively. The solutions are given by

� =
∞∑

l=0

�l (r)Pl (μ), (45)

� = eε

∞∑
l=1

�l (r)P1
l (μ), (46)
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FIG. 5. The r dependence of the components of the Eulerian streaming velocity at different values of λM for modes with n = 1, 2, 3. The
other parameters are as in Fig. 3.

where �l (r) and �l (r) are calculated by Eqs. (B12) and
(C18), respectively.

Substituting Eqs. (45) and (46) into Eq. (41) gives the
components of the Eulerian streaming velocity,

VEr (r, θ ) = 〈
v(2)

r

〉 = ∞∑
l=1

VErl (r)Pl (μ), (47)

VEθ (r, θ ) = 〈
v

(2)
θ

〉 = ∞∑
l=1

VEθ l (r)P1
l (μ), (48)

where

VErl (r) = �′
l (r) − l (l + 1)

r
�l (r), (49)

VEθ l (r) = �l (r) − �l (r)

r
− � ′

l (r). (50)

According to Eqs. (B12) and (C18), �′
l (r) and � ′

l (r) are
calculated by

�′
l (r) = − (l + 1)C1l (r)

rl+2
+ lrl−1C2l (r), (51)

� ′
l (r) = − (l − 1)C3l (r)

rl
− (l + 1)C4l (r)

rl+2

+ lrl−1C5l (r) + (l + 2)rl+1C6l (r), (52)

where the functions C1l (r)–C6l (r) are given by Eqs. (B13),
(B14), and (C20)–(C23).

Note that in Eq. (47), we have dropped the term with
l = 0. This term is a function of r alone and hence it can
be represented as the gradient of some function. The curl of
the gradient is zero, which means that such a term cannot
produce vorticity and hence it does not contribute to acoustic
streaming, which is known to be a vortex circulatory flow.
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FIG. 6. Streamline patterns at (a) ηp = 0.029 Pa s, λM = 10−6 s; (b) ηp = 0.009 Pa s, λM = 10−5 s. The driving is a 100 kHz, 10 kPa
plane traveling wave. The particle radius is R0 = 50 μm.

The components of the Lagrangian streaming velocity,
which determine the velocity of fluid particles, are calculated
by

VLr (r, θ ) = VEr (r, θ ) + VSr (r, θ ), (53)

VLθ (r, θ ) = VEθ (r, θ ) + VSθ (r, θ ), (54)

where VSr (r, θ ) and VSθ (r, θ ) denote the components of the
Stokes drift velocity [26], which are calculated in Appendix F
and are given by Eqs. (F6) and (F7).

The driving wave generates a stationary flow even if the
particle is absent. If it is necessary to eliminate this flow from
the Eulerian streaming, C1l (r)–C6l (r) should be calculated
as said at the end of Appendix E. In order to eliminate a
similar part from the Stokes drift velocity, one should follow
guidelines given at the end of Appendix F. As a result, we get
a part of acoustic streaming that is generated by the particle
and absent if the particle is absent. It is just this streaming that
is of interest to us in the present study.

III. SIMULATIONS

Figure 2 shows the magnitude of the linear scattering
coefficients an and bn, which are given by the equations
derived in Appendix A. The coefficients were calculated
for a polystyrene particle [27] with the equilibrium radius
R0 = 50 μm, excited by a plane traveling wave with a fre-
quency of 100 kHz and an acoustic pressure amplitude of
10 kPa. Two surrounding fluids were considered: pure wa-
ter (shown by circles) and a water solution of polyethylene
oxide (PEO) [28–32] (shown by triangles). Note that such
polymer solutions are also known as polyethylene glycol
(PEG).

We use the PEO solution in our simulations because such
solutions are widely used in microfluidics [33,34]. Viscomet-
ric properties of aqueous solutions of PEO vary in a wide
range depending on the concentration of PEO in water and the
molecular mass and/or chain length of the used type of PEO
[28–32]. In microfluidic applications, these properties are

changed depending on the aim of an application. According
to the literature, the relaxation time can be from nanoseconds
to milliseconds and more. For example, in experiments of Tian
et al. [33] on the separation of microparticles, the relaxation
time of a PEO solution used was estimated to be 0.078–0.619
ms. The viscosity of concentrated aqueous solutions of PEO
(10–50 mass %) with high molecular masses (∼8000) can
reach 1 Pa s [30]. However, in most microfluidic applications,
such high concentrations and molecular masses, and hence
such high viscosities, are not used. The viscosity is usually
varied from several mPa s to several tens mPa s. These data
have determined the choice of the parameters in our simula-
tions.

The calculations were carried out at the following mate-
rial parameters: ρs = 1050 kg/m3, E = 0.32 × 1010 Pa, ν =
0.35, ρ0 = 1000 kg/m3, c = 1500 m/s, η f = 0.001 Pa s,
ζ f = 0, ηp = 0.009 Pa s (the total shear viscosity is 0.01
Pa s), λM = 10−6 s, and ζp = 0 (we set this parameter equal to
zero because currently there is no information in the literature
about its value).

As follows from Fig. 2, the addition of PEO in water does
not practically change the values of an, whereas the values
of bn become considerably smaller. It is also seen that for
both pure water and the PEO solution, the coefficients rapidly
decrease with increasing n. In particular, a4/a3 ∼ 10−5 and
b4/b3 ∼ 10−3. This result is a consequence of the general
physical law that the intensity of scattering decreases with
increasing the order of scattering. Note also that in microflu-
idic applications, we deal with solid particles whose size is
small compared to the acoustic wavelength, which means
the absence of resonance effects. This fact suggests that the
infinite sums, which appear in the solutions for the acoustic
streaming, can be truncated at, for example, n = 3 without
a noticeable loss of accuracy. This approximation is used in
further simulations. The images of different vibration modes
can be found in Refs. [35–38].

Results presented in this section illustrate the acoustic
streaming produced by the particle, which is defined as the
total streaming minus the streaming produced by the driving
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FIG. 7. The r dependence of the components of the Eulerian streaming velocity at different values of ηp for modes with n = 1, 2, 3. The
driving is a 100 kHz, 10 kPa plane standing wave. The particle is located halfway between the velocity node and the velocity antinode. The
other parameters are as in the traveling wave.

wave in the absence of the particle; see the last paragraph of
Sec. II D.

Equations (47) and (48) show that the acoustic streaming
is the sum of modes with different angular dependence. In
what follows, we consider the first three modes since they are
dominant.

Figure 3 demonstrates streamlines of the Lagrangian
streaming produced by the particle in a plane traveling wave.
The simulations were made for the PEO solution with the
parameters indicated above.

Figures 4 and 5 illustrate the behavior of the components
of the Eulerian streaming velocity at different values of ηp

and λM , the other parameters being the same as in Fig. 3. For
comparison, results at λM = ηp = 0, which correspond to the
solvent Newtonian fluid (water), are also presented. As one
can see, with increasing ηp, the magnitude of the velocity
peak decreases, the peak is shifted to larger r, and its width

becomes broader. In other words, one can say that the spatial
domain occupied by the streaming expands. The result that
the streaming velocity magnitude decreases with increasing
polymer viscosity may look strange, since one expects that
increasing viscosity should result in a larger momentum trans-
ferred to the fluid. Note, however, that, as pointed out by
Lighthill [7], the presence of viscosity in a fluid does lead to
velocity gradients that drive streaming. However, at the same
time, the viscosity adds resistance to the streaming motion of
the fluid. Therefore, a higher viscosity does not always mean
faster streaming.

The effect of increasing λM , Fig. 5, which corresponds
to increasing elasticity, is less unambiguous. When λM is
changed from 10–9 to 10–5 s, the magnitude of the veloc-
ity peak increases, the peak is shifted to smaller r, and
its width becomes narrower. For greater λM , the curves for
the PEO solution approach those for pure water, which is
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FIG. 8. The r dependence of the components of the Eulerian streaming velocity at different values of λM for modes with n = 1, 2, 3. The
driving is a 100 kHz, 10 kPa plane standing wave. The particle is located halfway between the velocity node and the velocity antinode. The
other parameters are as in the traveling wave.

expectable in view of Eq. (20). Note that the intensity of
the acoustic streaming decreases rapidly with the distance
from the particle. Therefore, it makes sense to consider the
streaming only in the close proximity of the particle. As
follows from our figures, a distance of one particle radius is
quite adequate.

The variation of ηp and λM can change the pattern of
streamlines. Figure 6 provides examples. Figure 6(a) shows
that increasing ηp results in the development of strong near-
surface vortices in mode 2; cf. Fig. 3(b). Figure 6(b) reveals
that increasing λM induces near-surface vortices in mode 3;
cf. Fig. 3(c).

Figures 7 and 8 illustrate the behavior of the components
of the Eulerian streaming velocity produced by the particle in
a plane standing wave. The particle is assumed to be located
halfway between the velocity node and the velocity antinode,
d = c/(8 f ). The other parameters are as in the traveling wave

considered above. As for the plane traveling wave, the magni-
tude of the velocity peak decreases while the width of the peak
increases with increasing ηp, which means that the streaming
begins to occupy a greater spatial domain. The reaction of the
streaming velocity to changing λM is also similar to that in the
traveling wave. Streamline patterns of the Lagrangian stream-
ing produced by the particle in the standing wave appear as
those in the traveling wave; see Fig. 3.

Figure 9 illustrates the behavior of the first-order scattered
wave and acoustic streaming at different values of λM f . This
product characterizes the ratio of the relaxation time of the
polymer solution to the period of the driving wave acoustic
field. The driving field is a 100 kHz, 10 kPa plane standing
wave. The particle is located halfway between the velocity
node and the velocity antinode. The particle radius is R0 =
50 μm and its material parameters are as above. In order to
extend the viscous boundary layer, we set ηp = 1 Pa s. Three
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FIG. 9. The first-order scattered wave (left column) and acoustic streaming (right column) at different values of λM f : (a,b) λM f = 104;
(c,d) λM f = 10; (e,f) λM f = 0.01. The driving is a 100 kHz, 10 kPa plane standing wave. The particle is located halfway between the velocity
node and the velocity antinode. The particle radius is R0 = 50 μm, ηp = 1 Pa s, and the other parameters are as above. The boundary layer
thickness is shown by a dashed line and the viscous wavelength is shown by a solid line.

values of the relaxation time are used: λM = 10−1, 10−4, and
10−7 s. The boundary layer thickness is shown by a dashed
line, while the viscous wavelength is shown by a solid line.
Note that the streamline patterns in Fig. 9 show the total
acoustic streaming, i.e., the sum of the streaming modes.

For λM f = 104, Figs. 9(a) and 9(b), the complex viscosity
is approximately equal to the small solvent viscosity ηc ≈
η f = 0.001 Pa s. The viscous boundary layer thickness δ is
thus small and the near-surface streaming vortices are con-
fined to a narrow area at the particle surface. In the opposite
case, λM f = 0.01, shown in Figs. 9(e) and 9(f), when stresses
in the fluid relax fast as compared to the period of the driving
wave, ηc ≈ η f + ηp. Due to the larger total viscosity, the
boundary layer and the streaming vortices spread over a wider

region. Finally, for λM f = 10, Figs. 9(c) and 9(d), the fluid
elasticity plays an important role. As opposed for the mostly
viscous behavior in the two preceding cases, the boundary
layer becomes much larger than the viscous wavelength and
viscous waves become visible in the fluid as they are damped
out much more slowly, Fig. 9(c). Also, multiple streaming
vortices rotating in opposite directions are observed in close
proximity of the particle, Fig. 9(d).

IV. CONCLUSIONS

In the present paper, an analytical theory has been de-
veloped to model acoustic streaming that is induced by an
axisymmetric acoustic wave field around an isotropic solid
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particle suspended in a compressible viscoelastic fluid. The
particle was assumed to undergo pulsation, translation, and
shape deformations of all orders. The fluid motion was de-
scribed by the compressible Oldroyd-B model. No restrictions
were imposed on the particle size with respect to the acoustic
wavelength and the viscous penetration depth. The obtained
analytical solutions were used to carry out numerical simula-
tions for the acoustic streaming produced by the particle in a
plane traveling wave and a plane standing wave.

APPENDIX A: CALCULATION OF THE COEFFICIENTS
OF THE FIRST-ORDER SOLUTIONS

In order to calculate the coefficients an, bn,
�

an, and
�

bn, we
apply boundary conditions at the surface of the particle, which
are given by

v(1)
r = ∂ur

∂t
at r = R0, (A1)

v
(1)
θ = ∂uθ

∂t
at r = R0, (A2)

s(1)
f = ss at r = R0, (A3)

τ
(1)
f = τs at r = R0, (A4)

where R0 is the equilibrium radius of the particle; ur , uθ , v(1)
r ,

and v
(1)
θ are given by Eqs. (14), (15), (33), and (34); ss and

τs are the normal and tangential stresses in the solid; and s(1)
f

and τ
(1)
f are the first-order normal and tangential stresses in

the fluid.
The normal stress in the solid is calculated by [14]

ss = Eν

(1 − 2ν)(1 + ν)
∇ · u + E

1 + ν

∂ur

∂r
. (A5)

On substitution of Eqs. (8), (9), (11), and (14) into
Eq. (A5), one obtains

ss = Ee−iωt

(1 + ν)r2

∞∑
n=0

{
�

ank2
1r2

[
j′′n (k1r) + ν jn(k1r)

2ν − 1

]

−n(n + 1)
�

bn[k2r j′n(k2r) − jn(k2r)]

}
Pn(μ). (A6)

The tangential stress in the solid is calculated by

τs = E

2(1 + ν)

(
1

r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

)
. (A7)

Substituting Eqs. (14) and (15) into Eq. (A7) yields

τs = Ee−iωt

2(1 + ν)r2

∞∑
n=1

{
2

�

an[k1r j′n(k1r) − jn(k1r)]

+
�

bn
[
(2 − n2 − n) jn(k2r) − k2

2r2 j′′n (k2r)
]}

P1
n (μ).

(A8)

From Eqs. (6) and (18), one obtains that the first-order stress in the fluid is defined by

σ (1) = −p(1)I + ηc
[∇v(1) + (∇v(1) )

T − 2
3 (∇ · v(1) )I

]+ ζc(∇ · v(1) )I, (A9)

whence it follows that the first-order normal stress is calculated by

s(1)
f = −p(1) + 2ηc

∂v(1)
r

∂r
+
(

ζc − 2ηc

3

)
∇ · v(1), (A10)

where, according to Eqs. (16), (21), and (23),

p(1) = iρ0c2k2
f

ω

(
ϕac + ϕ(1)

sc

)
. (A11)

Substitution of Eqs. (28), (30), (33), (35), and (A11) into Eq. (A10) yields

s(1)
f = e−iωt

r2

∞∑
n=0

Pn(μ)

{
Ank2

f r2

[(
2ηc

3
− ζc − iρ0c2

ω

)
jn(k f r) + 2ηc j′′n (k f r)

]
+ ank2

f r2

[(
2ηc

3
− ζc − iρ0c2

ω

)

× h(1)
n (k f r) + 2ηch(1)′′

n (k f r)
]+ 2n(n + 1)bnηc

[
h(1)

n (kvr) − kvrh(1)′
n (kvr)

]}
. (A12)

From Eq. (A9) it follows that the first-order tangential stress in the fluid is calculated by

τ
(1)
f = ηc

(
1

r

∂v(1)
r

∂θ
+ ∂v

(1)
θ

∂r
− v

(1)
θ

r

)
, (A13)

which, on substitution of Eqs. (33)–(36), gives

τ
(1)
f = ηce−iωt

r2

∞∑
n=1

P1
n (μ)

{
2An[k f r j′n(k f r) − jn(k f r)] + 2an

[
k f rh(1)′

n (k f r) − h(1)
n (k f r)

]
+ bn

[
(2 − n2 − n)h(1)

n (kvr) − k2
vr2h(1)′′

n (kvr)
]}

. (A14)
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On substitution of Eqs. (14), (15), (33)–(36), (A6), (A8), (A12), and (A14) into Eqs. (A1)–(A4), one obtains for the
coefficients a0 and

�

a0,

a0 = A0

D0

{
Ek f x2

1 j1(x f )

1 + ν

[
j′′0 (x1) − ν j0(x1)

1 − 2ν

]
+ iωk1x2

f j1(x1)

[
2ηc j′′0 (x f ) −

(
iρ0c2

ω
+ ζc − 2ηc

3

)
j0(x f )

]}
, (A15)

�

a0 = A0k f x2
f

D0

{
h(1)

1 (x f )

[(
iρ0c2

ω
+ ζc − 2ηc

3

)
j0(x f ) − 2ηc j′′0 (x f )

]

+ j1(x f )

[
2ηch(1)′′

0 (x f ) −
(

iρ0c2

ω
+ ζc − 2ηc

3

)
h(1)

0 (x f )

]}
, (A16)

where x f = k f R0, x1 = k1R0, and D0 is given by

D0 = Ek f x2
1h(1)

1 (x f )

1 + ν

[
ν j0(x1)

1 − 2ν
− j′′0 (x1)

]
+ iωk1x2

f j1(x1)

[(
iρ0c2

ω
+ ζc − 2ηc

3

)
h(1)

0 (x f ) − 2ηch(1)′′
0 (x f )

]
. (A17)

The coefficients with n � 1 are calculated by

an = Det[M1]

Det[M]
, bn = Det[M2]

Det[M]
,

�

an = Det[M3]

Det[M]
,

�

bn = Det[M4]

Det[M]
, (A18)

where M is the square matrix with elements given by Eqs. (A19)–(A22), Mm is the matrix M in which the mth column is replaced
with the terms given by Eq. (A23), and Det[M] denotes the determinant of the matrix M.

m11 = x f h(1)′
n (x f ), m12 = −n(n + 1)h(1)

n (xv ), m13 = iωx1 j′n(x1), m14 = −iωn(n + 1) jn(x2), (A19)

m21 = h(1)
n (x f ), m22 = −h(1)

n (xv ) − xvh(1)′
n (xv ), m23 = iω jn(x1), m24 = −iω[ jn(x2) + x2 j′n(x2)], (A20)

m31 = x2
f

[
2ηch(1)′′

n (x f ) −
(

iρ0c2

ω
+ ζc − 2ηc

3

)
h(1)

n (x f )

]
, m32 = 2n(n + 1)ηc

[
h(1)

n (xv ) − xvh(1)′
n (xv )

]
,

m33 = Ex2
1

1 + ν

[
ν jn(x1)

1 − 2ν
− j′′n (x1)

]
, m34 = n(n + 1)E

1 + ν
[x2 j′n(x2) − jn(x2)], (A21)

m41 = 2ηc
[
x f h(1)′

n (x f ) − h(1)
n (x f )

]
, m42 = ηc

[
(2 − n2 − n)h(1)

n (xv ) − x2
vh(1)′′

n (xv )
]
,

m43 = E

1 + ν
[ jn(x1) − x1 j′n(x1)], m44 = E

2(1 + ν)

[
x2

2 j′′n (x2) − (2 − n2 − n) jn(x2)
]
, (A22)

n1 = −Anx f j′n(x f ), n2 = −An jn(x f ), n3 = Anx2
f

[(
iρ0c2

ω
+ ζc − 2ηc

3

)
jn(x f ) − 2ηc j′′n (x f )

]
,

n4 = 2Anηc[ jn(x f ) − x f j′n(x f )]. (A23)

Here, xv = kvR0 and x2 = k2R0.

APPENDIX B: CALCULATION OF �

� obeys Eq. (43), which can be written as

∇2� = 1

2ω
Re∇ · (ik2∗

f ϕ(1)∗v(1)
) = 1

2ω
Re

{
ik2∗

f

[
1

r2

∂

∂r

(
r2ϕ(1)∗v(1)

r

)+ 1

r sin θ

∂

∂θ

(
ϕ(1)∗v(1)

θ sin θ
)]}

, (B1)

where “Re” means “the real part of” and the asterisk denotes the complex conjugate.
From Eqs. (28) and (30), it follows that ϕ(1) = ϕac + ϕ(1)

sc is given by

ϕ(1) = e−iωt
∞∑

n=0

ϕn(r)Pn(μ), (B2)

where

ϕn(r) = An jn(k f r) + anh(1)
n (k f r). (B3)
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Substitution of Eqs. (33), (34), and (B2) into Eq. (B1) yields

∇2� = 1

2ω
Re

{ ∞∑
n,m=0

[Fnm(r) − m(m + 1)Gnm(r)]Pn(μ)Pm(μ) +
∞∑

n,m=1

m(m + 1)

2m + 1
Gnm(r)

×
[(n+1)/2]∑

k=1

(2n − 4k + 3)[Pm−1(μ)Pn−2k+1(μ) − Pm+1(μ)Pn−2k+1(μ)]

}
, (B4)

where [· · · ] in the upper bound of the sum means the integer part of an expression inside the brackets and

Fnm(r) = ik2∗
f

r
[2ϕ∗

n (r)Vrm(r) + rϕ∗′
n (r)Vrm(r) + rϕ∗

n (r)V ′
rm(r)], (B5)

Gnm(r) = ik2∗
f

r
ϕ∗

n (r)Vθm(r). (B6)

In order to obtain the present form of Eq. (B4), Eqs. (G1)–(G6) have been used to transform expressions with Legendre
polynomials.

The right-hand side of Eq. (B4) can be expanded as follows:

∇2� =
∞∑

l=0

αl (r)Pl (μ), (B7)

where the expansion coefficients αl (r) are calculated by

αl (r) = 2l + 1

2

∫ 1

−1
f (r, μ)Pl (μ)dμ, (B8)

with f (r, μ) denoting the function on the right-hand side of Eq. (B4). The calculation of αl (r) yields

αl (r) = 2l + 1

2ω
Re

{ ∞∑
n=0

l+n∑
m=|l−n|

(
Cm0

l0n0

)2

2m + 1
[Fnm(r) − m(m + 1)Gnm(r)] +

∞∑
n=1

[(n+1)/2]∑
m=1

l+n−2m+1∑
k=|l−(n−2m+1)|

(2n − 4m + 3)
(
Ck0

l0(n−2m+1)0

)2

2k + 1

×
[

(k + 1)(k + 2)

2k + 3
Gn(k+1)(r) − k(k − 1)

2k − 1
Gn(k−1)(r)

]}
, (B9)

where CLM
l1m1l2m2

are the Clebsch-Gordan coefficients [39,40]. To obtain Eq. (B9), we have used Eqs. (G17)–(G19), and the
properties of the Clebsch-Gordan coefficients [40], which state that CLM

l1m1l2m2
is nonzero only if the following conditions are met:

m1 + m2 = M, l1 + l2 − L � 0, l1 − l2 + L � 0, −l1 + l2 + L � 0.
Equation (B7) suggests that � should be sought as

� =
∞∑

l=0

�l (r)Pl (μ). (B10)

Substitution of Eq. (B10) into Eq. (B7) yields

d2�l

dr2
+ 2

r

d�l

dr
− l (l + 1)

r2
�l = αl (r). (B11)

Equation (B11) is solved by the method of variation of constants [41], which gives

�l (r) = C1l (r)

rl+1
+ C2l (r)rl . (B12)

According to the above method, C1l (r) and C2l (r) are calculated by

C1l (r) = C1l0 − 1

2l + 1

∫ r

R0

sl+2αl (s)ds, (B13)

C2l (r) = C2l0 + 1

2l + 1

∫ r

R0

s1−lαl (s)ds, (B14)

where C1l0 and C2l0 are constants, which are calculated in Appendix E.
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APPENDIX C: CALCULATION OF �

� obeys Eq. (44). Let us transform the right-hand side of this equation.
We begin with the expression 〈v(1)∇ · v(1) + v(1) · ∇v(1)〉. The radial and tangential components of this expression are given

by

〈v(1)∇ · v(1) + v(1) · ∇v(1)〉r = 1

2
Re

{
v(1)

r

∂v(1)∗
r

∂r
+ v

(1)
θ

r

∂v(1)∗
r

∂θ
− v

(1)
θ v

(1)∗
θ

r
− v(1)

r k2∗
f ϕ(1)∗

}
, (C1)

〈v(1)∇ · v(1) + v(1) · ∇v(1)〉θ = 1

2
Re

{
v(1)

r

∂v
(1)∗
θ

∂r
+ v

(1)
θ

r

∂v
(1)∗
θ

∂θ
+ v

(1)
θ v(1)∗

r

r
− v

(1)
θ k2∗

f ϕ(1)∗
}
. (C2)

Substituting Eqs. (33), (34), and (B2) into Eq. (C1) and using Eq. (G8), one obtains

〈v(1)∇ · v(1) + v(1) · ∇v(1)〉r = 1

2
Re

{ ∞∑
n,m=0

Vrn(r)
[
V ′∗

rm(r) − k2∗
f ϕ∗

m(r)
]
Pn(μ)Pm(μ) +

∞∑
n,m=1

m(m + 1)

2m + 1

Vθn(r)[V ∗
rm(r) − V ∗

θm(r)]

r

×
[(n+1)2]∑

k=1

(2n − 4k + 3)[Pm−1(μ)Pn−2k+1(μ) − Pm+1(μ)Pn−2k+1(μ)]

}
, (C3)

where [· · · ] in the upper bound of the sum means the integer part of an expression inside the brackets.
The right-hand side of Eq. (C3) can be expanded as follows:

〈v(1)∇ · v(1) + v(1) · ∇v(1)〉r =
∞∑

l=0

βl (r)Pl (μ), (C4)

where, as in Eq. (B8), we use Eqs. (G17)–(G19) in order to calculate the expansion coefficients βl (r),

βl (r) = 2l + 1

2
Re

( ∞∑
n=0

l+n∑
m=|l−n|

(
Cm0

l0n0

)2

2m + 1
Vrn(r)

[
V ′∗

rm(r) − k2∗
f ϕ∗

m(r)
]

+
∞∑

n=1

Vθn(r)

r

[(n+1)/2]∑
m=1

l+n−2m+1∑
k=|l−(n−2m+1)|

(2n − 4m + 3)
(
Ck0

l0(n−2m+1)0

)2

2k + 1

×
{

(k + 1)(k + 2)

2k + 3
[V ∗

r(k+1)(r) − V ∗
θ (k+1)(r)] − k(k − 1)

2k − 1
[V ∗

r(k−1)(r) − V ∗
θ (k−1)(r)]

})
. (C5)

Substituting Eqs. (33), (34), and (B2) into Eq. (C2) and using Eq. (G9), one obtains

〈v(1)∇ · v(1) + v(1) · ∇v(1)〉θ = 1

2
Re

⎛
⎜⎝ ∞∑

n=0
m=1

{
Vrn(r)V ′∗

θm(r) + Vθm(r)[V ∗
rn(r) − n2V ∗

θn(r)]

r
− k2∗

f Vθm(r)ϕ∗
n (r)

}
Pn(μ)P1

m(μ)

+
∞∑

n=2
m=1

[n/2]∑
k=1

(2n − 4k + 1)
V ∗

θn(r)Vθm(r)

r
Pn−2k (μ)P1

m(μ)

⎞
⎟⎠. (C6)

The right-hand side of Eq. (C6) can be expanded as follows:

〈v(1)∇ · v(1) + v(1) · ∇v(1)〉θ =
∞∑

l=1

γl (r)P1
l (μ), (C7)

where the expansion coefficients γl (r) are calculated by

γl = 2l + 1

2l (l + 1)

∫ 1

−1
f (r, μ)P1

l (μ)dμ, (C8)
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with f (r, μ) denoting the function on the right-hand side of Eq. (C6). With the help of Eqs. (G22) and (G23), the calculation of
γl (r) yields

γl (r) = 2l + 1

2
√

l (l + 1)
Re

⎛
⎜⎜⎝

∞∑
n=0

n+l∑
m=|n−l|
m�1

√
m(m + 1)Cm0

n0l0C
m1
n0l1

2m + 1

{
Vrn(r)V ′∗

θm(r) + Vθm(r)

[
V ∗

rn(r) − n2V ∗
θn(r)

r
− k2∗

f ϕ∗
n (r)

]}

+
∞∑

n=2

V ∗
θn(r)

r

[n/2]∑
m=1

n−2m+l∑
k=|n−2m−l|
k�1

(2n − 4m + 1)
√

k(k + 1)Ck0
(n−2m)0l0Ck1

(n−2m)0l1

2k + 1
Vθk (r)

⎞
⎟⎟⎠. (C9)

Thus, according to Eqs. (C4) and (C7),

〈v(1)∇ · v(1) + v(1) · ∇v(1)〉 = er

∞∑
l=0

βl (r)Pl (μ) + eθ

∞∑
l=1

γl (r)P1
l (μ). (C10)

From Eq. (C10), one obtains

∇ × 〈v(1)∇ · v(1) + v(1) · ∇v(1)〉 = eε

r

∞∑
l=1

[γl (r) + rγ ′
l (r) − βl (r)]P1

l (μ). (C11)

Let now us consider the term 〈∇ · T〉 of Eq. (44). Since the calculation of 〈∇ · T〉 is very cumbersome, it is carried out in
Appendix D. The final result is

〈∇ · T〉 = er

∞∑
l=0

D(r)
l (r)Pl (μ) + eθ

∞∑
l=1

D(θ )
l (r)P1

l (μ), (C12)

where D(r)
l (r) and D(θ )

l (r) are defined by Eqs. (D42) and (D47).
From Eq. (C12), one obtains

∇ × 〈∇ · T〉 = eε

r

∞∑
l=1

[
D(θ )

l (r) + rD(θ )′
l (r) − D(r)

l (r)
]
P1

l (μ). (C13)

Substitution of Eqs. (C11) and (C13) into Eq. (44) yields

∇4� = − eε

(η f + ηp)r

∞∑
l=1

{
ρ0[γl (r) + rγ ′

l (r) − βl (r)] + λM
[
D(θ )

l (r) + rD(θ )′
l (r) − D(r)

l (r)
]}

P1
l (μ). (C14)

A solution to Eq. (C14) is sought as

� = eε

∞∑
l=1

�l (r)P1
l (μ). (C15)

Substituting Eq. (C15) into Eq. (C14) gives the following equation for �l (r):

�IV
l + 4

r
� ′′′

l − 2l (l + 1)

r2
� ′′

l + l (l + 1)(l2 + l − 2)

r4
�l = El (r), (C16)

where

El (r) = − 1

(η f + ηp)r

{
ρ0[γl (r) + rγ ′

l (r) − βl (r)] + λM
[
D(θ )

l (r) + rD(θ )′
l (r) − D(r)

l (r)
]}

. (C17)

Equation (C16) is solved by the method of variation of constants [32]. As a result, one obtains

�l (r) = C3l (r)

rl−1
+ C4l (r)

rl+1
+ rlC5l (r) + rl+2C6l (r), (C18)

where the functions C3l (r)–C6l (r) obey the following set of equations:

r−(l−1)C′
3l + r−(l+1)C′

4l + rlC′
5l + rl+2C′

6l = 0,

(l − 1)r−lC′
3l + (l + 1)r−(l+2)C′

4l − lrl−1C′
5l − (l + 2)rl+1C′

6l = 0,

l (l − 1)r−(l+1)C′
3l + (l + 1)(l + 2)r−(l+3)C′

4l + l (l − 1)rl−2C′
5l + (l + 1)(l + 2)rlC′

6l = 0,

l (l2 − 1)r−(l+2)C′
3l + (l + 1)(l + 2)(l + 3)r−(l+4)C′

4l − l (l − 1)(l − 2)rl−3C′
5l − l (l + 1)(l + 2)rl−1C′

6l = −El (r). (C19)
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It follows from system (C19) that

C3l (r) = C3l0 + 1

2(2l − 1)(2l + 1)

∫ r

R0

sl+2El (s)ds, (C20)

C4l (r) = C4l0 − 1

2(2l + 1)(2l + 3)

∫ r

R0

sl+4El (s)ds, (C21)

C5l (r) = C5l0 − 1

2(2l − 1)(2l + 1)

∫ r

R0

s3−lEl (s)ds, (C22)

C6l (r) = C6l0 + 1

2(2l + 1)(2l + 3)

∫ r

R0

s1−lEl (s)ds, (C23)

where C3l0–C6l0 are constants, which are calculated in Appendix E.

APPENDIX D: CALCULATION OF 〈∇ · T〉
The tensor T, which is defined by Eq. (39), can be represented as

Tik = v
(1)
j ∇ jτ

(1)
ik − 2τ

(1)
i j v

(1)
jk , (D1)

where, according to Eq. (40), the tensor τ
(1)
ik is given by

τ
(1)
ik = 2ηp

1 − iωλM
v

(1)
ik + ζp − 2ηp/3

1 − iωλM
(∇ · v(1) )δik, (D2)

v
(1)
ik is the rate-of-strain tensor [14], δik is the Kronecker delta, and summation over repeated indices is implied.

In the case of axial symmetry, the nonzero components of v
(1)
ik in spherical coordinates are given by [14]

v(1)
rr = ∂v(1)

r

∂r
, v

(1)
θθ = 1

r

(
v(1)

r + ∂v
(1)
θ

∂θ

)
, v(1)

εε = v(1)
r + v

(1)
θ cot θ

r
, v

(1)
rθ = 1

2

(
1

r

∂v(1)
r

∂θ
+ ∂v

(1)
θ

∂r
− v

(1)
θ

r

)
, (D3)

whence it follows that the nonzero components of τ
(1)
ik are given by

τ (1)
rr = 2ηp

1 − iωλM

∂v(1)
r

∂r
+ ζp − 2ηp/3

1 − iωλM
(∇ · v(1) ), (D4)

τ
(1)
θθ = 2ηp

1 − iωλM

(
v(1)

r

r
+ 1

r

∂v
(1)
θ

∂θ

)
+ ζp − 2ηp/3

1 − iωλM
(∇ · v(1) ), (D5)

τ (1)
εε = 2ηp

1 − iωλM

(
v(1)

r

r
+ v

(1)
θ cot θ

r

)
+ ζp − 2ηp/3

1 − iωλM
(∇ · v(1) ), (D6)

τ
(1)
rθ = ηp

1 − iωλM

(
1

r

∂v(1)
r

∂θ
+ ∂v

(1)
θ

∂r
− v

(1)
θ

r

)
. (D7)

As a first step, we calculate the tensor 〈Tik〉, which is defined by

〈Tik〉 = 1
2 Re

{
v

(1)∗
j ∇ jτ

(1)
ik − 2τ

(1)
i j v

(1)∗
jk

}
. (D8)

Let us begin with the calculation of the term τ
(1)
i j v

(1)∗
jk . Substitution of v

(1)∗
jk in Eq. (D2) yields

τ
(1)
i j v

(1)∗
jk = 2ηp

1 − iωλM
v

(1)
i j v

(1)∗
jk + ζp − 2ηp/3

1 − iωλM
(∇ · v(1) )v(1)∗

ik . (D9)

Substituting Eqs. (D3)–(D7) into Eq. (D9), one obtains that the nonzero components of τ
(1)
i j v

(1)∗
jk in spherical coordinates are

given by

[
τ

(1)
i j v

(1)∗
jk

]
rr

= 2ηp

1 − iωλM

[∣∣∣∣∂v(1)
r

∂r

∣∣∣∣
2

+ 1

4

∣∣∣∣1r ∂v(1)
r

∂θ
+ ∂v

(1)
θ

∂r
− v

(1)
θ

r

∣∣∣∣
2]

+ ζp − 2ηp/3

1 − iωλM
(∇ · v(1) )

∂v(1)∗
r

∂r
, (D10)

[
τ

(1)
i j v

(1)∗
jk

]
θθ

= 2ηp

1 − iωλM

[∣∣∣∣v(1)
r

r
+ 1

r

∂v
(1)
θ

∂θ

∣∣∣∣
2

+ 1

4

∣∣∣∣1r ∂v(1)
r

∂θ
+ ∂v

(1)
θ

∂r
− v

(1)
θ

r

∣∣∣∣
2]

+ ζp − 2ηp/3

1 − iωλM
(∇ · v(1) )

(
v(1)∗

r

r
+ 1

r

∂v
(1)∗
θ

∂θ

)
,

(D11)
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[
τ

(1)
i j v

(1)∗
jk

]
εε

= 2ηp

1 − iωλM

∣∣∣∣v(1)
r

r
+ v

(1)
θ cot θ

r

∣∣∣∣
2

+ ζp − 2ηp/3

1 − iωλM
(∇ · v(1) )

(
v(1)∗

r

r
+ v

(1)∗
θ cot θ

r

)
, (D12)

[
τ

(1)
i j v

(1)∗
jk

]
rθ

= ηp

1 − iωλM

[
∂v(1)

r

∂r

(
1

r

∂v(1)∗
r

∂θ
+ ∂v

(1)∗
θ

∂r
− v

(1)∗
θ

r

)
+
(

1

r

∂v(1)
r

∂θ
+ ∂v

(1)
θ

∂r
− v

(1)
θ

r

)(
v(1)∗

r

r
+ 1

r

∂v
(1)∗
θ

∂θ

)]

+ ζp − 2ηp/3

2(1 − iωλM )
(∇ · v(1) )

(
1

r

∂v(1)∗
r

∂θ
+ ∂v

(1)∗
θ

∂r
− v

(1)∗
θ

r

)
. (D13)

We proceed to the calculation of the term v
(1)∗
j ∇ jτ

(1)
ik ,

v
(1)∗
j ∇ jτ

(1)
ik = 2ηp

1 − iωλM
v

(1)∗
j ∇ jv

(1)
ik + ζp − 2ηp/3

1 − iωλM
δik (v(1)∗ · ∇)(∇ · v(1) ). (D14)

To calculate Eq. (D14), we use tensor analysis in orthogonal curvilinear coordinates; see, for example, Ref. [42]. According
to the above branch of science, ∇ jv

(1)
ik is calculated by

∇ jv
(1)
ik = ∂v

(1)
ik

∂x j
− v

(1)
lk �l

i j − v
(1)
il �l

k j . (D15)

where x j denotes the contravariant coordinates of the position vector r and �l
i j stands for the Christoffel symbols.

In the case of spherical coordinates and axial symmetry, Eq. (D15) has the following nonzero components:

[∇1v
(1)
11

]
rrr = ∂v(1)

rr

∂r
,

[∇1v
(1)
22

]
rθθ

= ∂v
(1)
θθ

∂r
,

[∇1v
(1)
33

]
rεε = ∂v(1)

εε

∂r
,

[∇1v
(1)
12

]
rrθ = ∂v

(1)
rθ

∂r
, (D16)

[∇2v
(1)
11

]
θrr = 1

r

∂v(1)
rr

∂θ
− 2v

(1)
rθ

r
,

[∇2v
(1)
22

]
θθθ

= 1

r

∂v
(1)
θθ

∂θ
+ 2v

(1)
rθ

r
, (D17)

[∇2v
(1)
33

]
θεε

= 1

r

∂v(1)
εε

∂θ
,

[∇2v
(1)
12

]
θrθ = 1

r

∂v
(1)
rθ

∂θ
+ v(1)

rr − v
(1)
θθ

r
. (D18)

It follows from Eqs. (D16)–(D18) that the tensor v
(1)∗
j ∇ jv

(1)
ik has the following components:

[
v

(1)∗
j ∇ jv

(1)
ik

]
rr

= v(1)∗
r

∂2v(1)
r

∂r2
+ v

(1)∗
θ

r

(
∂2v(1)

r

∂r∂θ
− 1

r

∂v(1)
r

∂θ
− ∂v

(1)
θ

∂r
+ v

(1)
θ

r

)
, (D19)

[
v

(1)∗
j ∇ jv

(1)
ik

]
θθ

= v(1)∗
r

r

(
∂2v

(1)
θ

∂r∂θ
+ ∂v(1)

r

∂r
− 1

r

∂v
(1)
θ

∂θ
− v(1)

r

r

)
+ v

(1)∗
θ

r

(
1

r

∂2v
(1)
θ

∂θ2
+ 2

r

∂v(1)
r

∂θ
+ ∂v

(1)
θ

∂r
− v

(1)
θ

r

)
, (D20)

[
v

(1)∗
j ∇ jv

(1)
ik

]
εε

= v(1)∗
r

r

(
∂v(1)

r

∂r
+ cot θ

∂v
(1)
θ

∂r
− v(1)

r + v
(1)
θ cot θ

r

)
+ v

(1)∗
θ

r2

(
∂v(1)

r

∂θ
+ cot θ

∂v
(1)
θ

∂θ
− v

(1)
θ

sin2θ

)
, (D21)

[
v

(1)∗
j ∇ jv

(1)
ik

]
rθ

= v(1)∗
r

2

(
1

r

∂2v(1)
r

∂r∂θ
+ ∂2v

(1)
θ

∂r2
− 1

r2

∂v(1)
r

∂θ
− 1

r

∂v
(1)
θ

∂r
+ v

(1)
θ

r2

)

+ v
(1)∗
θ

2r

(
1

r

∂2v(1)
r

∂θ2
+ ∂2v

(1)
θ

∂r∂θ
+ 2

∂v(1)
r

∂r
− 3

r

∂v
(1)
θ

∂θ
− 2v(1)

r

r

)
. (D22)

Substitution of Eqs. (D10)–(D13) and (D19)–(D22) into Eq. (D8) gives nonzero components of the tensor 〈Tik〉,

〈Trr〉 = 1

2
Re

{
2ηp

1 − iωλM

[
v(1)∗

r

∂2v(1)
r

∂r2
+ v

(1)∗
θ

r

(
∂2v(1)

r

∂r∂θ
− 1

r

∂v(1)
r

∂θ
− ∂v

(1)
θ

∂r
+ v

(1)
θ

r

)

− 2

∣∣∣∣∂v(1)
r

∂r

∣∣∣∣
2

− 1

2

∣∣∣∣1r ∂v(1)
r

∂θ
+ ∂v

(1)
θ

∂r
− v

(1)
θ

r

∣∣∣∣
2]

+ ζp − 2ηp/3

1 − iωλM

[
(v(1)∗ · ∇)(∇ · v(1) ) − 2(∇ · v(1) )

∂v(1)∗
r

∂r

]}
, (D23)

〈Tθθ 〉 = 1

2
Re

{
2ηp

1 − iωλM

[
v(1)∗

r

r

(
∂2v

(1)
θ

∂r∂θ
+ ∂v(1)

r

∂r
− 1

r

∂v
(1)
θ

∂θ
− v(1)

r

r

)

+ v
(1)∗
θ

r

(
1

r

∂2v
(1)
θ

∂θ2
+ 2

r

∂v(1)
r

∂θ
+ ∂v

(1)
θ

∂r
− v

(1)
θ

r

)
− 2

∣∣∣∣v(1)
r

r
+ 1

r

∂v
(1)
θ

∂θ

∣∣∣∣
2

− 1

2

∣∣∣∣1r ∂v(1)
r

∂θ
+ ∂v

(1)
θ

∂r
− v

(1)
θ

r

∣∣∣∣
2]

+ ζp − 2ηp/3

1 − iωλM

[
(v(1)∗ · ∇)(∇ · v(1) ) − 2(∇ · v(1) )

(
v(1)∗

r

r
+ 1

r

∂v
(1)∗
θ

∂θ

)]}
, (D24)

065107-17



DOINIKOV, FANKHAUSER, AND DUAL PHYSICAL REVIEW E 104, 065107 (2021)

〈Tεε〉 = 1

2
Re

{
2ηp

1 − iωλM

[
v(1)∗

r

r

(
∂v(1)

r

∂r
+ cot θ

∂v
(1)
θ

∂r
− v(1)

r + v
(1)
θ cot θ

r

)

+ v
(1)∗
θ

r2

(
∂v(1)

r

∂θ
+ cot θ

∂v
(1)
θ

∂θ
− v

(1)
θ

sin2θ

)
− 2

∣∣∣∣v(1)
r

r
+ v

(1)
θ cot θ

r

∣∣∣∣
2]

+ ζp − 2ηp/3

1 − iωλM

[
(v(1)∗ · ∇)(∇ · v(1) ) − 2(∇ · v(1) )

(
v(1)∗

r

r
+ v

(1)∗
θ cot θ

r

)]}
, (D25)

〈Trθ 〉 = 1

2
Re

{
2ηp

1 − iωλM

[
v(1)∗

r

2

(
1

r

∂2v(1)
r

∂r∂θ
+ ∂2v

(1)
θ

∂r2
− 1

r2

∂v(1)
r

∂θ
− 1

r

∂v
(1)
θ

∂r
+ v

(1)
θ

r2

)

+ v
(1)∗
θ

2r

(
1

r

∂2v(1)
r

∂θ2
+ ∂2v

(1)
θ

∂r∂θ
+ 2

∂v(1)
r

∂r
− 3

r

∂v
(1)
θ

∂θ
− 2v(1)

r

r

)
− ∂v(1)

r

∂r

(
1

r

∂v(1)∗
r

∂θ
+ ∂v

(1)∗
θ

∂r
− v

(1)∗
θ

r

)

−
(

1

r

∂v(1)
r

∂θ
+ ∂v

(1)
θ

∂r
− v

(1)
θ

r

)(
v(1)∗

r

r
+ 1

r

∂v
(1)∗
θ

∂θ

)]
− ζp − 2ηp/3

1 − iωλM
(∇ · v(1) )

(
1

r

∂v(1)∗
r

∂θ
+ ∂v

(1)∗
θ

∂r
− v

(1)∗
θ

r

)}
. (D26)

Substitution of Eqs. (33), (34), and (B2) into Eqs. (D23)–(D26) results in

〈Trr〉 = Re

[ ∞∑
n,m=0

Pn(μ)Pm(μ)

{
ηp

1 − iωλM
[V ∗

rn(r)V ′′
rm(r) − 2V ′∗

rn (r)V ′
rm(r)] + k2

f (ζp − 2ηp/3)

2(1 − iωλM )
[2ϕn(r)V ′∗

rm(r) − ϕ′
n(r)V ∗

rm(r)]

}

+
∞∑

n,m=1

P1
n (μ)P1

m(μ)

(
ηp

1 − iωλM

{
V ∗

θn(r)

r

[
V ′

rm(r) − V ′
θm(r) + Vθm(r) − Vrm(r)

r

]

−1

2

[
V ′

θn(r) + Vrn(r) − Vθn(r)

r

][
V ′∗

θm(r) + V ∗
rm(r) − V ∗

θm(r)

r

]}
− k2

f (ζp − 2ηp/3)

2(1 − iωλM )

ϕn(r)V ∗
θm(r)

r

)]
, (D27)

〈Tθθ 〉 = Re

[ ∞∑
n,m=0

Pn(μ)Pm(μ)

(
ηp

1 − iωλM

{
V ∗

rn(r)V ′
rm(r)

r
− 3V ∗

rn(r)Vrm(r)

r2

+ m2

[
3V ∗

rn(r)Vθm(r) + 2Vrn(r)V ∗
θm(r)

r2
− V ∗

rn(r)V ′
θm(r)

r

]
+ nm(1 − m − 2nm)

V ∗
θn(r)Vθm(r)

r2

}

+ k2
f (ζp − 2ηp/3)

2(1 − iωλM )

{
2ϕn(r)

r

[
V ∗

rm(r) − m2V ∗
θm(r)

]− ϕ′
n(r)V ∗

rm(r)

})

+
∞∑

n,m=1

P1
n (μ)P1

m(μ)

(
ηp

1 − iωλM

{
V ∗

θn(r)V ′
θm(r)

r
+ 2V ∗

θn(r)Vrm(r) − (m2 + m + 1)V ∗
θn(r)Vθm(r)

r2

− 1

2

[
V ′

θn(r) + Vrn(r) − Vθn(r)

r

][
V ′∗

θm(r) + V ∗
rm(r) − V ∗

θm(r)

r

]}
− k2

f (ζp − 2ηp/3)

2(1 − iωλM )

ϕn(r)V ∗
θm(r)

r

)

+
∞∑

n=2
m=0

[n/2]∑
k=1

Pm(μ)Pn−2k (μ)(2n − 4k + 1)

(
ηp

1 − iωλM

{
V ∗

rm(r)V ′
θn(r)

r
− 3V ∗

rm(r)Vθn(r) + 2Vrm(r)V ∗
θn(r)

r2

+ m(m + 1)[2Vθn(r)V ∗
θm(r) + V ∗

θn(r)Vθm(r)]

r2

}
+ k2

f (ζp − 2ηp/3)

1 − iωλM

ϕm(r)V ∗
θn(r)

r

)

+ ηp

1 − iωλM

∞∑
n=2
m=1

[n/2]∑
k=1

[Pm−1(μ)Pn−2k (μ) − Pm+1(μ)Pn−2k (μ)](2n − 4k + 1)
m(m + 1)

2m + 1

V ∗
θm(r)Vθ (n−1)(r)

r2

⎤
⎥⎦, (D28)

〈Tεε〉 = Re

[ ∞∑
n,m=0

Pn(μ)Pm(μ)

(
ηp

1 − iωλM

{
V ∗

rn(r)[V ′
rm(r) − mV ′

θm(r)]

r

+ 2Vrn(r)[mV ∗
θm(r) − V ∗

rm(r)] + V ∗
rn(r)[3mVθm(r) − Vrm(r)] + nm(m − 2)V ∗

θn(r)Vθm(r)

r2

}
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+ k2
f (ζp − 2ηp/3)

2(1 − iωλM )

{
2ϕn(r)[V ∗

rm(r) − mV ∗
θm(r)]

r
− ϕ′

n(r)V ∗
rm(r)

})

+
∞∑

n,m=1

P1
n (μ)P1

m(μ)

[
ηp

1 − iωλM

V ∗
θn(r)Vrm(r)

r2
− k2

f (ζp − 2ηp/3)

2(1 − iωλM )

ϕn(r)V ∗
θm(r)

r

]

+
∞∑

n=2
m=0

[n/2]∑
k=1

Pn−2k (μ)Pm(μ)(2n − 4k + 1)

(
ηp

1 − iωλM

{
V ∗

θn(r)[2Vrm(r) + m(m − 2)Vθm(r)]

r2

+3Vθn(r)[V ∗
rm(r) − mV ∗

θm(r)]

r2
− V ∗

rm(r)V ′
θn(r)

r

}
− k2

f (ζp − 2ηp/3)

2(1 − iωλM )

2ϕm(r)V ∗
θn(r)

r

)

− ηp

1 − iωλM

∞∑
n,m=2

[n/2]∑
k=1

[m/2]∑
s=1

Pn−2k (μ)Pm−2s(μ)(2n − 4k + 1)(2m − 4s + 1)
3V ∗

θn(r)Vθm(r) + V ∗
θ (n−1)(r)Vθ (m−1)(r)

r2

]
,

(D29)

〈Trθ 〉 = Re

⎡
⎢⎣ ∞∑

n=0
m=1

Pn(μ)P1
m(μ)

(
ηp

1 − iωλM

{
V ∗

rn(r)V ′′
θm(r)

2
− V ′

rn(r)V ∗′
θm(r)

+ V ∗
rn(r)[V ′

rm(r) − 3V ′
θm(r)] + 2V ′

rn(r)[2V ∗
θm(r) − V ∗

rm(r)] + n2[2V ∗
θn(r)V ′

θm(r) − V ∗
θm(r)V ′

θn(r)]

2r

+ [Vrm(r) − Vθm(r)][2n2V ∗
θn(r) − 3V ∗

rn(r)] + V ∗
θm(r)[3n2Vθn(r) − (n2 + 2)Vrn(r)]

2r2

}

+ k2
f (ζp − 2ηp/3)

2(1 − iωλM )
ϕn(r)

[
V ∗′

θm(r) + V ∗
rm(r) − V ∗

θm(r)

r

])
−

∞∑
n=2
m=1

[n/2]∑
k=1

Pn−2k (μ)P1
m(μ)(2n − 4k + 1)

ηp

1 − iωλM

×
[

2V ∗
θn(r)[Vrm(r) − Vθm(r)] + V ∗

θm(r)[3Vθn(r) − Vrn(r)]

2r2
+ 2V ∗

θn(r)V ′
θm(r) − V ∗

θm(r)V ′
θn(r)

2r

]]
. (D30)

In Eqs. (D27)–(D30), the transformation of expressions with Legendre polynomials has been carried out by using Eqs. (G1)–
(G14).

The right-hand sides of Eqs. (D27)–(D29) can be expanded in Pl (μ) and the right-hand side of Eq. (D30) can be expanded in
P1

l (μ). Doing so with the help of Eqs. (G15)–(G23), one obtains

〈Trr〉 =
∞∑

l=0

T (rr)
l (r)Pl (μ), (D31)

〈Tθθ 〉 =
∞∑

l=0

T (θθ )
l (r)Pl (μ), (D32)

〈Tεε〉 =
∞∑

l=0

T (εε)
l (r)Pl (μ), (D33)

〈Trθ 〉 =
∞∑

l=1

T (rθ )
l (r)P1

l (μ), (D34)

where the r-dependent functions are calculated by

T (rr)
l (r) = (2l + 1)Re

∞∑
n=0

l+n∑
m=|l−n|

(Cm0
l0n0)2

2m + 1

{
ηp

1 − iωλM
[V ∗

rn(r)V ′′
rm(r) − 2V ′∗

rn (r)V ′
rm(r)]

+ k2
f (ζp − 2ηp/3)

2(1 − iωλM )
[2ϕn(r)V ′∗

rm(r) − ϕ′
n(r)V ∗

rm(r)]

}

+ (2l + 1)Re
∞∑

n=1

[(n+1)/2]∑
m=1

(2n − 4m + 3)
l+n−2m+1∑

k=|l−(n−2m+1)|

(
Ck0

l0(n−2m+1)0

)2

2k + 1

065107-19



DOINIKOV, FANKHAUSER, AND DUAL PHYSICAL REVIEW E 104, 065107 (2021)

×
[

(k + 1)(k + 2)

2k + 3

(
ηp

1 − iωλM

{
V ∗

θn(r)

r

[
V ′

r(k+1)(r) − V ′
θ (k+1)(r) + Vθ (k+1)(r) − Vr(k+1)(r)

r

]

− 1

2

[
Vrn(r) − Vθn(r)

r
+ V ′

θn(r)

][
V ∗

r(k+1)(r) − V ∗
θ (k+1)(r)

r
+ V ′∗

θ (k+1)(r)

]}
−k2

f (ζp − 2ηp/3)

2(1 − iωλM )

ϕn(r)V ∗
θ (k+1)(r)

r

)

− k(k − 1)

2k − 1

(
ηp

1 − iωλM

{
V ∗

θn(r)

r

[
V ′

r(k−1)(r) − V ′
θ (k−1)(r) + Vθ (k−1)(r) − Vr(k−1)(r)

r

]

− 1

2

[
V ′

θn(r) + Vrn(r) − Vθn(r)

r

][
V ′∗

θ (k−1)(r) + V ∗
r(k−1)(r) − V ∗

θ (k−1)(r)

r

]}
− k2

f (ζp − 2ηp/3)

2(1 − iωλM )

ϕn(r)V ∗
θ (k−1)(r)

r

)]
,

(D35)

T (θθ )
l (r) = (2l + 1)Re

∞∑
n=0

l+n∑
m=|l−n|

(
Cm0

l0n0

)2

2m + 1

(
ηp

1 − iωλM

{
V ∗

rn(r)V ′
rm(r)

r
− 3V ∗

rn(r)Vrm(r)

r2

+ m2

[
3V ∗

rn(r)Vθm(r) + 2Vrn(r)V ∗
θm(r)

r2
− V ∗

rn(r)V ′
θm(r)

r

]
+ nm(1 − m − 2nm)

V ∗
θn(r)Vθm(r)

r2

}

+ k2
f (ζp − 2ηp/3)

2(1 − iωλM )

{
2ϕn(r)[V ∗

rm(r) − m2V ∗
θm(r)]

r
− ϕ′

n(r)V ∗
rm(r)

})

+ (2l + 1)Re
∞∑

n=1

[(n+1)/2]∑
m=1

(2n − 4m + 3)
l+n−2m+1∑

k=|l−(n−2m+1)|

(
Ck0

l0(n−2m+1)0

)2

2k + 1

×
[

(k + 1)(k + 2)

2k + 3

(
ηp

1 − iωλM

{
2V ∗

θn(r)Vr(k+1)(r)

r2
+ V ∗

θn(r)V ′
θ (k+1)(r)

r
− [1 + (k + 1)(k + 2)]V ∗

θn(r)Vθ (k+1)(r)

r2

− 1

2

[
V ′

θn(r) + Vrn(r) − Vθn(r)

r

][
V ′∗

θ (k+1)(r) + V ∗
r(k+1)(r) − V ∗

θ (k+1)(r)

r

]}
−k2

f (ζp − 2ηp/3)

2(1 − iωλM )

ϕn(r)V ∗
θ (k+1)(r)

r

)

− k(k − 1)

2k − 1

(
ηp

1 − iωλM

{
V ∗

θn(r)V ′
θ (k−1)(r)

r
+ 2V ∗

θn(r)Vr(k−1)(r) − (k2 − k + 1)V ∗
θn(r)Vθ (k−1)(r)

r2

− 1

2

[
V ′

θn(r) + Vrn(r) − Vθn(r)

r

][
V ′∗

θ (k−1)(r) + V ∗
r(k−1)(r) − V ∗

θ (k−1)(r)

r

]}
− k2

f (ζp − 2ηp/3)

2(1 − iωλM )

ϕn(r)V ∗
θ (k−1)(r)

r

)]

+ (2l + 1)Re
∞∑

n=2

[n/2]∑
m=1

(2n − 4m + 1)
l+n−2m∑

k=|l−(n−2m)|

(
Ck0

l0(n−2m)0

)2

2k + 1

×
(

ηp

1 − iωλM

{
V ∗

rk (r)V ′
θn(r)

r
− 3V ∗

rk (r)Vθn(r) + 2Vrk (r)V ∗
θn(r)

r2

+ k(k + 1)[2Vθn(r)V ∗
θk (r) + V ∗

θn(r)Vθk (r)]

r2
+ (k + 1)(k + 2)

2k + 3

V ∗
θ (k+1)(r)Vθ (n−1)(r)

r2

− k(k − 1)

2k − 1

V ∗
θ (k−1)(r)Vθ (n−1)(r)

r2

}
+ k2

f (ζp − 2ηp/3)

1 − iωλM

ϕk (r)V ∗
θn(r)

r

)
, (D36)

T (εε)
l (r) = (2l + 1)Re

∞∑
n=0

l+n∑
m=|l−n|

(
Cm0

l0n0

)2

2m + 1

(
ηp

1 − iωλM

{
V ∗

rn(r)[V ′
rm(r) − mV ′

θm(r)]

r

+ 2Vrn(r)[mV ∗
θm(r) − V ∗

rm(r)] + V ∗
rn(r)[3mVθm(r) − Vrm(r)] + nm(m − 2)V ∗

θn(r)Vθm(r)

r2

}

+ k2
f (ζp − 2ηp/3)

2(1 − iωλM )

{
2ϕn(r)[V ∗

rm(r) − mV ∗
θm(r)]

r
− ϕ′

n(r)V ∗
rm(r)

})

+ (2l + 1)Re
∞∑

n=1

[(n+1)/2]∑
m=1

(2n − 4m + 3)
l+n−2m+1∑

k=|l−(n−2m+1)|

(
Ck0

l0(n−2m+1)0

)2

2k + 1
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×
{

(k + 1)(k + 2)

2k + 3

[
ηp

1 − iωλM

V ∗
θn(r)Vr(k+1)(r)

r2
− k2

f (ζp − 2ηp/3)

2(1 − iωλM )

ϕn(r)V ∗
θ (k+1)(r)

r

]

− k(k − 1)

2k − 1

[
ηp

1 − iωλM

V ∗
θn(r)Vr(k−1)(r)

r2
− k2

f (ζp − 2ηp/3)

2(1 − iωλM )

ϕn(r)V ∗
θ (k−1)(r)

r

]}

+ (2l + 1)Re
∞∑

n=2

[n/2]∑
m=1

(2n − 4m + 1)
l+n−2m∑

k=|l−(n−2m)|

(
Ck0

l0(n−2m)0

)2

2k + 1

×
(

ηp

1 − iωλM

{
V ∗

θn(r)[2Vrk (r) + k(k − 2)Vθk (r)] + 3Vθn(r)[V ∗
rk (r) − kV ∗

θk (r)]

r2
− V ∗

rk (r)V ′
θn(r)

r

}

− k2
f (ζp − 2ηp/3)

2(1 − iωλM )

2ϕk (r)V ∗
θn(r)

r

)
− (2l + 1)Re

[
ηp

1 − iωλM

∞∑
n=2

[n/2]∑
m=1

(2n − 4m + 1)
l+n−2m∑

k=|l−(n−2m)|

(
Ck0

l0(n−2m)0

)2

×
∞∑

q=2+k

3V ∗
θn(r)Vθq(r) + V ∗

θ (n−1)(r)Vθ (q−1)(r)

r2

[q/2]∑
s=1

δk(q−2s)

⎤
⎦, (D37)

T (rθ )
l (r) = 2l + 1√

l (l + 1)
Re

∞∑
n=0

n+l∑
m=|n−l|
m�1

√
m(m + 1)Cm0

n0l0C
m1
n0l1

2m + 1

(
ηp

1 − iωλM

{
V ∗

rn(r)V ′′
θm(r)

2
− V ′

rn(r)V ∗′
θm(r)

+ V ∗
rn(r)[V ′

rm(r) − 3V ′
θm(r)] + 2V ′

rn[2V ∗
θm(r) − V ∗

rm(r)] + n2[2V ∗
θn(r)V ′

θm(r) − V ∗
θm(r)V ′

θn(r)]

2r

+ [Vrm(r) − Vθm(r)][2n2V ∗
θn(r) − 3V ∗

rn(r)] + V ∗
θm(r)[3n2Vθn(r) − (n2 + 2)Vrn(r)]

2r2

}

+ k2
f (ζp − 2ηp/3)

2(1 − iωλM )
ϕn(r)

[
V ∗′

θm(r) + V ∗
rm(r) − V ∗

θm(r)

r

])

− 2l + 1√
l (l + 1)

Re

⎛
⎜⎜⎝ ηp

1 − iωλM

∞∑
n=2

[n/2]∑
m=1

(2n − 4m + 1)
n−2m+l∑

k=|n−2m−l|
k�1

√
k(k + 1)Ck0

(n−2m)0l0Ck1
(n−2m)0l1

2k + 1

{
2V ∗

θn(r)[Vrk (r) − Vθk (r)] + V ∗
θk (r)[3Vθn(r) − Vrn(r)]

2r2
+ 2V ∗

θn(r)V ′
θk (r) − V ∗

θk (r)V ′
θn(r)

2r

})
. (D38)

The components of 〈∇ · T〉 are calculated by [43]

〈∇ · T〉r = ∂〈Trr〉
∂r

+ 1

r

∂〈Trθ 〉
∂θ

+ 1

r
(2〈Trr〉 + 〈Trθ 〉 cot θ − 〈Tθθ 〉 − 〈Tεε〉), (D39)

〈∇ · T〉θ = ∂〈Trθ 〉
∂r

+ 1

r

∂〈Tθθ 〉
∂θ

+ 1

r
[3〈Trθ 〉 + (〈Tθθ 〉 − 〈Tεε〉) cot θ ]. (D40)

Substitution of Eqs. (D31)–(D34) into Eq. (D39) yields

〈∇ · T〉r =
∞∑

l=0

D(r)
l (r)Pl (μ), (D41)

where

D(r)
l (r) = T (rr)′

l (r) + 2T (rr)
l (r) − T (θθ )

l (r) − T (εε)
l (r) − l (l + 1)T (rθ )

l (r)

r
. (D42)

Substitution of Eqs. (D31)–(D34) into Eq. (D40) yields

〈∇ · T〉θ =
∞∑

l=1

[
T (rθ )′

l (r) + 3T (rθ )
l (r) + T (θθ )

l (r)

r

]
P1

l (μ) +
∞∑

l=0

T (θθ )
l (r) − T (εε)

l (r)

r

μPl (μ)√
1 − μ2

. (D43)
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We use the following expansion:

μPl (μ)√
1 − μ2

=
∞∑

n=1

alnP1
n (μ). (D44)

The calculation of the coefficients aln gives

aln = − δnl

n + 1
− 2n + 1

n(n + 1)

[n/2]∑
k=1

δ(n−2k)l . (D45)

On substitution of Eqs. (D44) and (D45), Eq. (D43) takes the following form:

〈∇ · T〉θ =
∞∑

l=1

D(θ )
l (r)P1

l (μ), (D46)

where

D(θ )
l (r) = T (rθ )′

l (r) + 3(l + 1)T (rθ )
l (r) + lT (θθ )

l (r) + T (εε)
l (r)

(l + 1)r
− 2l + 1

l (l + 1)

[l/2]∑
k=1

T (θθ )
l−2k (r) − T (εε)

l−2k (r)

r
. (D47)

APPENDIX E: CALCULATION OF THE CONSTANTS C1l0–C6l0

The term C1l0/rl+1 in the equation for �l , Eq. (B12), gives the same contribution to the velocity field as the term C4l0/rl+1 in
the equation for �l , Eq. (C18), in view of the identity

∇ × [
eεP1

l (μ)r−(l+1)] = −l∇[Pl (μ)r−(l+1)]. (E1)

Therefore, in order to remove this doubling, we set

C1l0 = 0. (E2)

This operation is valid because we do not consider the term with l = 0, which does not contribute to acoustic streaming.
In order to calculate the constants C2l0, C5l0, and C6l0, we use the behavior of the Eulerian streaming velocity, V E , at r → ∞.

A part of V E that is caused by the presence of the particle, i.e., a part that results from the interaction of the first-order scattered
wave with itself and with the driving acoustic wave, must tend to zero for r → ∞. From this condition, substituting Eqs. (51),
(52), (B12), and (C18) into Eqs. (49) and (50), one obtains

C(sc)
2l (r) − (l + 1)C(sc)

5l (r) − (l + 1)r2C(sc)
6l (r) = 0 for r → ∞, (E3)

C(sc)
2l (r) − (l + 1)C(sc)

5l (r) − (l + 3)r2C(sc)
6l (r) = 0 for r → ∞, (E4)

where the superscript (sc) denotes that only terms with the scattered wave are kept.
Substituting Eqs. (B14), (C22), and (C23) into Eqs. (E3) and (E4) and keeping only terms with the scattered wave, one obtains

C2l0 = − 1

2l + 1

∫ ∞

R0

s1−l
[
αl (s) − α

(ac)
l (s)

]
ds, (E5)

C5l0 = 1

2(2l − 1)(2l + 1)

∫ ∞

R0

s3−l
[
El (s) − E (ac)

l (s)
]
ds, (E6)

C6l0 = − 1

2(2l + 1)(2l + 3)

∫ ∞

R0

s1−l
[
El (s) − E (ac)

l (s)
]
ds, (E7)

where the superscript (ac) denotes that α
(ac)
l (s) and E (ac)

l (s) are calculated by Eqs. (B9) and (C17) in which only terms with AnA∗
n

are kept. In other words, when α
(ac)
l (s) and E (ac)

l (s) are calculated, we drop terms with an and bn in Eqs. (35), (36), and (B3) and
set

Vrn(r) = Ank f j′n(k f r), Vθn(r) = An jn(k f r)/r, ϕn(r) = An jn(k f r). (E8)

In order to calculate the constants C3l0 and C4l0, boundary conditions at the particle surface are applied, which are specified
by

VLr = VLθ = 0 at r = R0. (E9)

Substitution of Eqs. (47), (48), (F6), and (F7) into Eq. (E9) yields

lR2
0C3l0 + lC4l0 = Rl+2

0

l + 1
VSrl (R0) + lR2l+1

0

l + 1
C2l0 − lR2l+1

0 C5l0 − lR2l+3
0 C6l0, (E10)
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(l − 2)R2
0C3l0 + lC4l0 = (l + 1)R2l+1

0 C5l0 + (l + 3)R2l+3
0 C6l0 − R2l+1

0 C2l0 − Rl+2
0 VSθ l (R0), (E11)

whence it follows that

C3l0 = 1

2

{
Rl

0

[
VSrl (R0)

l + 1
+ VSθ l (R0)

]
+ (2l + 1)R2l−1

0

(
C2l0

l + 1
− C5l0

)
− (2l + 3)R2l+1

0 C6l0

}
, (E12)

C4l0 = 1

2

{
Rl+2

0

[
(2 − l )VSrl (R0)

l (l + 1)
− VSθ l (R0)

]
− (2l − 1)R2l+1

0

(
C2l0

l + 1
− C5l0

)
+ (2l + 1)R2l+3

0 C6l0

}
. (E13)

A comment should be made. The functions C1l (r)–C6l (r) are calculated by Eqs. (B13), (B14), and (C20)–(C23). If these
equations are applied as they are, we get the total Eulerian streaming. If it is necessary to eliminate the Eulerian streaming that
arises in the driving wave when the particle is absent, αl (r) and El (r) in Eqs. (B13), (B14), and (C20)–(C23) should be replaced
by αl (r) − α

(ac)
l (r) and El (r) − E (ac)

l (r).

APPENDIX F: CALCULATION OF THE STOKES DRIFT VELOCITY

The Stokes drift velocity is defined by [26]

V S =
〈(∫

v(1)dt · ∇
)

v(1)

〉
= 1

2ω
Re{iv(1) · ∇v(1)∗}. (F1)

From Eq. (F1), one obtains

VSr = 1

2ω
Re

{
iv(1)

r

∂v(1)∗
r

∂r
+ iv(1)

θ

r

∂v(1)∗
r

∂θ

}
, (F2)

VSθ = 1

2ω
Re

{
iv(1)

r

∂v
(1)∗
θ

∂r
+ iv(1)∗

r v
(1)
θ

r
+ iv(1)

θ

r

∂v
(1)∗
θ

∂θ

}
. (F3)

Substitution of Eqs. (33) and (34) into Eqs. (F2) and (F3) yields

VSr (r, θ ) = 1

2ω
Re

{
i

∞∑
n,m=0

Vrn(r)V ′∗
rm(r)Pn(μ)Pm(μ) + i

∞∑
n,m=1

Vθn(r)V ∗
rm(r)

r

m(m + 1)

2m + 1

×
[(n+1)/2]∑

k=1

(2n − 4k + 3)[Pm−1(μ)Pn−2k+1(μ) − Pm+1(μ)Pn−2k+1(μ)]

}
, (F4)

VSθ (r, θ ) = 1

2ω
Re

⎛
⎜⎝i

∞∑
n=0
m=1

{
Vrn(r)V ′∗

θm(r) + Vθm(r)[V ∗
rn(r) − n2V ∗

θn(r)]

r

}
Pn(μ)P1

m(μ)

+ i
∞∑

n,m=1

Vθm(r)V ∗
θn(r)

r

[n/2]∑
k=1

(2n − 4k + 1)Pn−2k (μ)P1
m(μ)

)
. (F5)

Equations (F4) and (F5) are expanded as follows:

VSr (r, θ ) =
∞∑

l=0

VSrl (r)Pl (μ), (F6)

VSθ (r, θ ) =
∞∑

l=1

VSθ l (r)P1
l (μ). (F7)

Calculation of the expansion coefficients, with the use of Eqs. (G11)–(G13), (G15), and (G16), yields

VSrl (r) = 2l + 1

2ω
Re

{
i

∞∑
n=0

Vrn(r)
l+n∑

m=|l−n|

(Cm0
l0n0)2

2m + 1
V ′∗

rm(r) + i
∞∑

n=1

[(n+1)/2]∑
m=1

(2n − 4m + 3)
Vθn(r)

r

×
l+n−2m+1∑

k=|l−(n−2m+1)|

(
Ck0

l0(n−2m+1)0

)2

2k + 1

[
(k + 1)(k + 2)

2k + 3
V ∗

r(k+1)(r) − k(k − 1)

2k − 1
V ∗

r(k−1)(r)

]}
, (F8)
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VSθ l (r) = 2l + 1

2ω
√

l (l + 1)
Re

⎛
⎜⎜⎝i

∞∑
n=0

n+l∑
m=|n−l|
m�1

√
m(m + 1)Cm0

n0l0C
m1
n0l1

2m + 1

{
Vrn(r)V ′∗

θm(r) + Vθm(r)[V ∗
rn(r) − n2V ∗

θn(r)]

r

}

+ i
∞∑

n=2

V ∗
θn(r)

r

[n/2]∑
m=1

(2n − 4m + 1)
n−2m+l∑

k=|n−2m−l|
k�1

√
k(k + 1)Ck0

(n−2m)0l0Ck1
(n−2m)0l1

2k + 1
Vθk (r)

⎞
⎟⎟⎠. (F9)

Equations (F6) and (F7) contain a part that is produced in the driving wave when the particle is absent. If it is necessary to
eliminate this part, VSrl (r) and VSθ l (r) should be replaced by VSrl (r) − V (ac)

Srl (r) and VSθ l (r) − V (ac)
Sθ l (r), where V (ac)

Srl and V (ac)
Sθ l (r)

are calculated by Eqs. (F8) and (F9) using the expressions for Vrn(r) and Vθn(r) from Eq. (E8).

APPENDIX G: MATHEMATICAL FORMULAS USED IN CALCULATIONS

Here, auxiliary mathematical formulas are provided that are used in the principal calculations. In the equations that follow,
the prime denotes the derivative with respect to an argument in brackets, [· · · ] in the upper bounds of sums means the integer
part of an expression in brackets, CLM

l1m1l2m2
are the Clebsch-Gordan coefficients, and δnm is the Kronecker delta.

We use the following formulas for Pn(μ) and P1
n (μ) [44]:

P1
n (μ) = −

√
1 − μ2P′

n(μ), (G1)√
1 − μ2P1′

n (μ) + μP′
n(μ) = n(n + 1)Pn(μ), (G2)

(1 − μ2)P′
n(μ) = n(n + 1)

2n + 1
[Pn−1(μ) − Pn+1(μ)], (G3)

P′
n(μ) =

[(n+1)/2]∑
k=1

(2n − 4k + 3)Pn−2k+1(μ), n � 1, (G4)

μP′
n(μ) = nPn(μ) + P′

n−1(μ), (G5)

(1 − μ2)P1′′
n (μ) − 2μP1′

n (μ) =
[

1

1 − μ2
− n(n + 1)

]
P1

n (μ). (G6)

With the help of these formulas, the following identities are derived:

1

sin θ

d

dθ

[
sin θPn(μ)P1

m(μ)
] = −m(m + 1)Pn(μ)Pm(μ) + m(m + 1)

2m + 1

[(n+1)/2]∑
k=1

(2n − 4k + 3)[Pm−1(μ)Pn−2k+1(μ)

− Pm+1(μ)Pn−2k+1(μ)], (G7)

P1
n (μ)P1

m(μ) = m(m + 1)

2m + 1

[(n+1)/2]∑
k=1

(2n − 4k + 3)[Pm−1(μ)Pn−2k+1(μ) − Pm+1(μ)Pn−2k+1(μ)], (G8)

√
1 − μ2P1′

n (μ)P1
m(μ) =

[
n2Pn(μ) −

[n/2]∑
k=1

(2n − 4k + 1)Pn−2k (μ)

]
P1

m(μ), (G9)

(1 − μ2)
[
P1

n (μ)P1′′
m (μ) − 2P1′

n (μ)P1′
m (μ)

]− μP1
n (μ)P1′

m (μ)

= nm[1 − m(2n + 1)]Pn(μ)Pm(μ) − m(m + 1)P1
n (μ)P1

m(μ) + 2n(n + 1)
[m2]∑
k=1

(2m − 4k + 1)Pn(μ)Pm−2k (μ)

+ m(m + 1)
[n/2]∑
k=1

(2n − 4k + 1)Pn−2k (μ)Pm(μ)

+ n(n + 1)

2n + 1
[Pn−1(μ) − Pn+1(μ)]

[(m+1)/2]∑
k=1

(2m − 4k + 3)Pm−2k+1(μ), (G10)
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μPn(μ)P′
m(μ) = mPn(μ)Pm(μ) +

[m/2]∑
k=1

(2m − 4k + 1)Pm−2k (μ)Pn(μ), (G11)

μP1
n (μ)P1′

m (μ) = −nm2Pn(μ)Pm(μ) +
[m/2]∑
k=1

n(2m − 4k + 1)Pm−2k (μ)Pn(μ) −
[n/2]∑
k=1

m2(2n − 4k + 1)Pn−2k (μ)Pm(μ)

+
[n/2]∑
k=1

[m/2]∑
s=1

(2n − 4k + 1)(2m − 4s + 1)Pn−2k (μ)Pm−2s(μ), (G12)

P′
n(μ)P′

m(μ) =
[(n+1)/2]∑

k=1

[(m+1)/2]∑
s=1

(2n − 4k + 3)(2m − 4s + 3)Pn−2k+1(μ)Pm−2s+1(μ), (G13)

μ2P′
n(μ)P′

m(μ) = nmPn(μ)Pm(μ) +
[m/2]∑
k=1

n(2m − 4k + 1)Pm−2k (μ)Pn(μ)

+
[n/2]∑
k=1

m(2n − 4k + 1)Pn−2k (μ)Pm(μ) +
[n/2]∑
k=1

[m/2]∑
s=1

(2n − 4k + 1)(2m − 4s + 1)Pn−2k (μ)Pm−2s(μ). (G14)

To calculate integrals with products of Pn(μ) and P1
n (μ), we use the following identity:

Pm1
l1

(μ)Pm2
l2

(μ) =
√

(l1 + m1)!(l2 + m2)!

(l1 − m1)!(l2 − m2)!

l1+l2∑
l=|l1−l2|

√
(l − m1 − m2)!

(l + m1 + m2)!
Cl0

l10l20C
l (m1+m2 )
l1m1l2m2

Pm1+m2
l (μ). (G15)

This identity follows from Eq. (9) of Sec. 5.6 of Ref. [39].
Making use of Eq. (G15) along with the orthogonality condition for Pn(μ),∫ 1

−1
Pn(μ)Pm(μ)dμ = 2

2n + 1
δnm, (G16)

one obtains the following integrals:

∫ 1

−1
Pl (μ)Pn(μ)Pm(μ)dμ =

l+n∑
m=|l−n|

2

2m + 1

(
Cm0

l0n0

)2
, (G17)

∫ 1

−1
Pl (μ)Pm−1(μ)Pn−2k+1(μ)dμ =

l+n−2k+1∑
m−1=|l−(n−2k+1)|

2

2m − 1

(
C(m−1)0

l0(n−2k+1)0

)2
, (G18)

∫ 1

−1
Pl (μ)Pm+1(μ)Pn−2k+1(μ)dμ =

l+n−2k+1∑
m+1=|l−(n−2k+1)|

2

2m + 3

(
C(m+1)0

l0(n−2k+1)0

)2
, (G19)

∫ 1

−1
Pl (μ)Pn−2k (μ)Pm−2s(μ)dμ =

l+n−2k∑
q=|l−(n−2k)|

(
Cq0

l0(n−2k)0

)2 2

2q + 1
δq(m−2s). (G20)

From Eq. (G15) and the orthogonality condition for P1
n (μ),∫ 1

−1
P1

n (μ)P1
m(μ)dμ = 2n(n + 1)

2n + 1
δnm, (G21)

one obtains

∫ 1

−1
Pn(μ)P1

m(μ)P1
l (μ)dμ = 2

√
l (l + 1)

n+l∑
m=|n−l|
m�1

√
m(m + 1)Cm0

n0l0C
m1
n0l1

2m + 1
, (G22)

∫ 1

−1
Pn−2k (μ)P1

m(μ)P1
l (μ)dμ = 2

√
l (l + 1)

n−2k+l∑
m=|n−2k−l|
m�1

√
m(m + 1)Cm0

(n−2k)0l0Cm1
(n−2k)0l1

2m + 1
. (G23)
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