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Magnetic-field- and thermal-radiation-induced entropy generation
in a multiphase nonisothermal plane Poiseuille flow
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The effect of radiative heat transfer on the entropy generation in a two-phase nonisothermal fluid flow between
two infinite horizontal parallel plates under the influence of a constant pressure gradient and transverse nonin-
vasive magnetic field have been explored. Both fluids are considered to be viscous, incompressible, immiscible,
Newtonian, and electrically conducting. The governing equations in Cartesian coordinates are solved analytically
with appropriate boundary conditions to obtain the velocity and temperature profile inside the channel. Applica-
tion of a transverse magnetic field is found to reduce the throughput and the temperature distribution of the fluids
in a pressure-driven flow. The temperature and fluid flow inside the channel can also be noninvasively altered
by tuning the magnetic field intensity, temperature difference between the channel walls and the fluids, and
several intrinsic fluid properties. The entropy generation due to the heat transfer, magnetic field, and fluid flow
irreversibilities can be controlled by altering the Hartmann number, radiation parameter, Brinkmann number,
filling ratio, and ratios of fluid viscosities and thermal and electrical conductivities. The surfaces of the channel
wall are found to act as a strong source of entropy generation and heat transfer irreversibility. The rate of heat
transfer at the channel walls can also be tweaked by the magnetic field intensity, temperature differences, and
fluid properties. The proposed strategies in the present study can be of significance in the design and development
of next-generation microscale reactors, micro-heat exchangers, and energy-harvesting devices.
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I. INTRODUCTION

Over the past few decades, scientific research related
to micro- or nanoscale transport phenomena has shown a
pathway to miniaturization with the rapid development of
microfluidic devices such as microelectromechanical systems
(MEMSs) [1,2], drug delivery systems [3], chemical separa-
tion devices [4], polymerase chain reactors [5–7], cell sort-
ing devices [8,9], microreactors [10,11], micromixers [12],
energy-harvesting devices [13,14], microscale biochemical
analyzers [15], μ-total analysis systems [16,17], and biomed-
ical instruments [18] to name a few. In these microfluidic
flow systems, the dimensionless Reynolds number (Re) is
almost always of a very small value, which defines that the
flow in such systems is always laminar in nature [19,20]. A
small value of Re is indicative of dominant viscous forces
present in these flow systems. Due to these stronger viscous
forces present, the laminar flow inside it can be effectively
be classified as a plane Poiseuille flow if the channel walls
are considered to be nonslipping and of negligible wall
roughness [21]. However, due to the severe confinement and
reduced length scales in such microfluidic devices, some unfa-
vorable attributes have appeared in these flow systems which
are driven by pressure actuation [22–26] in general, such as
friction-induced power losses, biological sample dispersion,
lack of precise control, and high flow-rate requirement.

In view of the aforementioned detrimental attributes, a
noninvasive handle in the form of an externally applied
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field can add more flexibility to actuate such pressure-driven
flows inside such microdomains. Recently, externally applied
electric [27–30], magnetic [2,31–33], photonic [34–36], or
acoustic [37,38] fields have been employed to disrupt the
regular pressure-driven flows to improve the transport prop-
erties in such small length scales. Such external triggers
help in effectively control of the balance between capil-
lary, viscous, and inertial forces in order to augment the
separation of flow features [9], improve surface-to-volume
ratio [39], increase throughput [40], and enable mixing [12].
Among these external field-driven systems, magnetohydro-
dynamic (MHD) and electromagnetohydrodynamic (EMHD)
micropumps and devices in general, driven by Lorentz
force, have engrossed the scientific community due to cer-
tain advantages such as (1) absence of any mechanical
moving parts, (2) in situ flow reversibility, and (3) higher
throughput [41–44].

Design and fabrication of such a device requires an energy
optimization that should address the various dissipative pro-
cesses existing in such microflows which directly or indirectly
affect their performance and efficacy. In fact, the nonintrusive
application of electromagnetic fields in these devices intro-
duces an additional energy dissipation that, along with fluid
friction and heat transfer irreversibilities, must be measured
carefully in order to provide the necessary power input to
perform a certain task. However, miniaturization of these mi-
crofluidic devices demands an optimal power input to perform
the desired tasks in order to achieve better overall efficiency
and performance compared to the macrocounterpart. In order
to reduce the overall energy utilization, some efficient mi-
crofluidic systems have been designed to reduce the amount
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of useless energy recently. Due to the impacts of energy dis-
sipation owing to heat transfer and fluid friction, these useless
energies can initiate the irreversibility of a fluidic system. In
this regard, the concept of entropy generation minimization
has engrossed much attention in fluid-thermal engineering,
and one can minimize the entropy generation by optimizing
the design parameters of such systems.

In view of this background, the detailed analysis of en-
tropy generation seems to be an appropriate tool to assess the
inherent irreversibilities in such microflows and to regulate
optimized operating conditions that ensures a minimum en-
ergy dissipation consistent with the other physical constraints
required by the system. Bejan introduced the analysis of en-
tropy generation [45,46], which has been employed to assess
the performance of various engineering applications such as
heat exchangers [47], two-phase flows [48], or fuel cells [49],
among many others. It has also been applied to ensure the
optimization of energy input and output in the case of MHD
flows in MHD pumps, electric generators [50–53], and fu-
sion reactors [54]. The prior art suggests that the analysis
of entropy generation in microchannels considering mainly
the effects of viscous and thermal irreversibilities [55,56] is
capable of uncovering the detailed physics associated with
such microflows.

EMHD-induced heat transfer and the associated entropy
generation play a major role in the field of heat and mo-
mentum transfer owing to multifarious applications in the
liquid metal flows in the metallurgical industry [57], microp-
umps [33] and in the chemical [10,11], biomedical [3], and
biological [8,9] sectors. Previous studies have also attempted
to decipher the temperature distribution and heat transfer char-
acteristics of EMHD flows, where the heat generation was due
to the inherent Joule heating [58] or the electrokinetic effects
associated with such flows [59]. However, these studies have
ignored the coupling of the interactions between electric and
magnetic fields in the energy equation. Jian et al. introduced
these coupling terms in the energy equation to investigate
the transient EMHD heat transfer and entropy generation in
a parallel plate microchannel [60]. Recently, the study of
entropy generation in a bilayer electroosmotic flow uncov-
ered the velocity and temperature distribution and analytically
evaluated the rate of entropy generation [60]. Apart from
these, the entropy generation in EMHD flows and thermal
transport characteristics of non-Newtonian fluids [61,62] and
nanofluids [63] have fascinated numerous researchers in the
recent past.

The literature reviewed above discusses the entropy gener-
ation analysis for a multitude of external field-induced fluid
flows in a narrow conduit. However, all of these past works
involve a single-phase fluid flow between two infinitely long
but narrow width plates. Also, the literature discussed does not
necessarily consider these type of bilayer EMHD flow under
the influence of both a magnetic field and radiative heat trans-
fer. The literature also does not provide a detailed parametric
analysis of the heat transfer through temperature variations
and the rate of heat transfer through the walls, describing the
functioning of a potential micropump under scenarios analo-
gous to the applications involving thermal management. The
literature discussed so far suggests that a detailed analysis of
the entropy generation in a multiphase nonisothermal plane

FIG. 1. Schematic diagram of a bilayer x-directional fluid flow
under the combined influence of a transverse uniform magnetic field
and radiative heat transfer from the parallel plates (not to scale). The
distance between the parallel plates is d , and the thickness of the
lower layer of fluid (i = 2, cyan region) is h. The temperatures of
both parallel plates are constant and denoted by Tw . The strength of
the uniform magnetic field is B0.

Poiseuille bilayer fluid flow due to the combined effect of
a transverse magnetic field and thermal radiation is yet to
make an appearance. More specifically, in order to utilize the
potential of relatively new technologies of EMHD devices, it
is of vital importance to study the associated thermal char-
acteristics within a more generic framework consisting of a
bilayer flow and by considering all the essential aspects of the
microscale physics.

Herein we analytically explore the characteristics of the
entropy generation in a two-phase, bilayer, nonisothermal
plane Poiseuille flow under the influence of a noninvasively
applied transverse magnetic field and considering the effect
of radiative heat transfer. The schematic diagram in Fig. 1
shows the typical geometry chosen for the analytical model.
Employing a fully developed, steady, laminar Poiseuille flow
model on a pair of electrically conducting, incompressible,
nonisothermal, and immiscible fluids under the influence of
a magnetic field and radiative heat transfer, an exact solu-
tion of governing equations for both fluid regions has been
obtained in closed form. Contributions to the total entropy
generation in the system due to heat transfer, magnetic field,
and radiation are also evaluated analytically. The velocity and
temperature distribution inside the channel and entropy gen-
eration are found to be dependent on various fluid properties
such as viscosity and thermal and electrical conductivities,
as well as on a number of external field parameters, namely,
magnetic field intensity and conductive and radiative heat
transfer parameters. A detailed parametric study has been
carried out to see the effect of these pertinent parameters on
the flow field, temperature field, and the entropy generation
characteristics. We have also uncovered the contribution of
heat transfer, magnetic field, and fluid flow irreversibilities
to the total entropy generation for such a system, which
provides an idea of the input energy budget for such a
flow.

The remainder of the paper is organized in the following
manner. In Sec. II the details of the theory and the prob-
lem formulation are discussed. It also contains the details
of the dimensional and nondimensional governing equations,
boundary conditions, and expressions for the distribution of
velocity, temperature, and entropy generation. The results are
discussed in detail in Sec. III, before conclusions are drawn in
Sec. IV.
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II. THEORETICAL FORMULATION

A. Problem formulation

We consider fully developed, steady, laminar Poiseuille
flow of a pair of electrically conducting, incompressible, and
immiscible fluids (i = 1 and 2) in a channel bounded by two
plates under the effect of a transverse magnetic field B0, which
is applied normal to the flow direction. Both parallel plates
are impermeable and maintained at a uniform temperature Tw.
The x-axis is considered to be in the direction of fluid flow
along the length of the channel, whereas the y-axis is taken
normal to the lower plate along the width of the channel. The
parallel plates are considered to be infinitely long, and the
distance between them is d . The thickness of the lower layer
of fluid (i = 2) is h. A representative schematic diagram of
the problem under consideration is shown in Fig. 1. For the
ith fluid, the notations ui(ui, vi ), ti, ρi, ηi, σi, and ki denote the
velocity vector (velocity components), temperature, density,
viscosity, electrical conductivity, and thermal conductivity,
respectively. The magnetic Reynolds number is assumed to
be small, so that the induced magnetic field can be neglected
and the Hall effect of MHD is assumed to be negligible.

B. Dimensional governing equations and boundary conditions

The dynamics of the steady-state fully developed laminar
Poiseuille flow of both fluids (i = 1 and 2) in a channel is
governed by the equations of motions and continuity equation,
which can be expressed as

−∇pi + ∇ · [
ηi

(∇ui + ∇uT
i

)] + FM = 0, (1)

∇ · ui = 0. (2)

The additional body force FM in Eq. (1), also termed Lorentz
force, is added due to the imposed uniform magnetic field
B0 along the y-direction. Also, it is assumed that the associ-
ated electric field due to the application of uniform magnetic
field is zero, i.e., E0 = ∇V = 0. Therefore, from Ohm’s law,
we can express the current density J as Ji = σi(−∇Vi +
ui × B0) = σi(ui × B0). The Lorentz force FM in Eq. (1)
then can be evaluated as FM = Ji × B0 = σi(ui × B0) × B0 =
−σiuiB2

0x̂, where x̂ is the unit vector along the x-direction.
Since the fluid flow in the channel is considered to be only
x-directional, therefore, applying the assumptions, the di-
mensional governing equations for both the fluids can be
expressed as follows.

For i = 1, (h � y � d), the x-momentum balance equation
can be written as

η1
d2u1

dy2
− σ1u1B2

0 = d p

dx
, (3)

the y-momentum balance equation can be written as

d p

dy
= 0, (4)

the continuity equation can be expressed as

du1

dx
= 0, (5)

and the energy balance equation can be expressed as

k1
d2t1
dy2

+ η1

(
du1

dy

)2

+ σ1u2
1B2

0 − dqr
1

dy
= 0. (6)

For i = 2, (0 � y � h), the x-momentum balance equation can
be written as

η2
d2u2

dy2
− σ2u2B2

0 = d p

dx
, (7)

the y-momentum balance equation can be written as

d p

dy
= 0, (8)

the continuity equation can be expressed as

du2

dx
= 0, (9)

and the energy balance equation can be expressed as

k2
d2t2
dy2

+ η2

(
du2

dy

)2

+ σ2u2
2B2

0 − dqr
2

dy
= 0. (10)

The y-momentum balance and the continuity equation for both
the fluids essentially signify that p �= f (y) and ui �= f (x).

The dimensional boundary conditions can be stated as

at y = 0, u2 = 0, t2 = Tw, (11)

at y = h, u1 = u2, η2

(
du2

dy

)
= η1

(
du1

dy

)
, (12)

at y = h, t1 = t2, k2

(
dt2
dy

)
= k1

(
dt1
dy

)
, (13)

and at y = d, u1 = 0, t1 = Tw. (14)

Here B0 is the magnetic field intensity, dqr
i is the radiative

heat flux, and d p
dx is the applied pressure gradient. Furthermore,

we neglected the effect of interface curvature at the fluid-fluid
boundary in order to neglect the effect of interfacial tension
and the additional Maxwell stresses along the interface [64].
The no-slip boundary conditions for the fluid flow near the
wall mentioned in Eqs. (11) and (14) of the mathematical
formulation are consistent with the typical microchannel flows
or ultrathin film flows [28,30,33,39,65,66].

Following the equilibrium model of Cogley et al. [67], the
expression for the radiative heat flux (dqr

i ) in Eqs. (6) and (10)
can be expressed as

dqr
i

dy
= 4(ti − Tw )

∫ ∞

0
Kλw

(
∂ebλ

∂T

)
w

dλ = 4I∗(ti − Tw ),

(15)
where I∗ = ∫ ∞

0 Kλw( ∂ebλ
∂T )wdλ, Kλw is the absorption coeffi-

cient at the plate and ebλ is Planck’s constant.
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C. Nondimensional governing equations and
boundary conditions

The equations are reduced to dimensionless forms using
the following scheme:

ū1 = u1

u0
, ū2 = u2

u0
, ȳ = y

d
, a = h

d
, η̄ = η2

η1
, k̄ = k2

k1
,

σ̄ = σ2

σ1
, θ1 = t1 − Tw

Tw

, θ2 = t2 − Tw

Tw

, Ha2
1 = σ1B2

0d2

η1
,

Br1 = η1u2
0

k1Tw

, Ha2
2 = σ2B2

0d2

η2
= Ha2

1

(
σ̄

η̄

)
,

Br2 = η2u2
0

k2Tw

= Br1

( η̄

k̄

)
, F1 = 4I∗d2

k1
, and

F2 = 4I∗d2

k2
= F1

(
1

k̄

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)
Here u0 = − d2

η1

d p
dx is the reference velocity, a is the filling ra-

tio, η̄ is the viscosity ratio, k̄ is the thermal conductivity ratio,
σ̄ is the electrical conductivity ratio, Hai (i = 1, 2) are the
Hartmann numbers, Bri (i = 1, 2) are the Brinkman numbers,
and Fi (i = 1, 2) are the radiation parameters. The Hartman
numbers Hai indicate the strength of the Lorentz forces com-
pared to the viscous forces; the Brinkman numbers Bri signify
the ratio between heat produced by viscous dissipation and
heat transported by molecular conduction; and the radiation
parameters Fi measure the relative dominance of radiative to
conductive heat transfer within the system.

Employing the nondimensional parameters, the dimen-
sionless governing equations for fluid flow and temperature
distribution can be expressed as follows.

For i = 1, (a � ȳ � 1), the x-momentum balance equation
can be written as

d2ū1

dȳ2
− Ha2

1ū1 + 1 = 0, (17)

and the energy balance equation can be expressed as

d2θ1

dȳ2
+ Br1

(
dū1

dȳ

)2

+ Ha2
1Br1ū2

1 − F1θ1 = 0. (18)

For i = 2, (0 � ȳ � a), the x-momentum balance equation can
be written as

d2ū2

dȳ2
− Ha2

1

η̄
ū2 + 1

η̄
= 0, (19)

and the energy balance equation can be expressed as

d2θ2

dȳ2
+ Br2

(
dū2

dȳ

)2

+ Ha2
2Br2ū2

2 − F2θ2 = 0. (20)

The corresponding dimensionless boundary conditions can be
expressed as

at ȳ = 0, ū2 = 0, θ2 = 0, (21)

at ȳ = a, ū1 = ū2, η̄

(
dū2

dȳ

)
=

(
dū1

dȳ

)
, (22)

at ȳ = a, θ1 = θ2, k̄

(
dθ2

dȳ

)
=

(
dθ1

dȳ

)
, (23)

and at ȳ = 1, ū1 = 0, θ1 = 0. (24)

The mathematical description of the system is nondimen-
sionalized in the present study so that the applicability of
the model becomes independent of the length scale of the
problem. This in particular allows the nondimensional math-
ematical model to be well poised to describe the momentum
and heat transfer mechanisms and the associated entropy gen-
eration characteristics of a low Re microchannel flow in the
case where the channel walls are nonslipping and of negligi-
ble roughness [21]. Therefore, in a sense, the dimensionless
description of the plane Poiseuille flow presented in this study
can also be employed to properly describe the physics of a
typical microchannel flow if the wall properties remain the
same [68].

D. Expressions for velocity and temperature distribution

The nondimensional governing equations (17)–(20) are
solved employing the corresponding boundary condi-
tions (21)–(24), and after dropping the overbars for conve-
nience, the solved expressions for velocity (ui) profiles can
be given by

u1 = A1 cosh (Ha1y) + A2 sinh (Ha1y) + 1

Ha2
1

, (25)

u2 = A3 cosh (My) + A4 sinh (My) + 1

ηM2
. (26)

The coefficients in Eqs. (25) and (26) are given by

Ha2
1 = ηM2, A1 = −A2Ha2

1 sinh (Ha1) + 1

Ha2
1 cosh (Ha1)

,

A2 = (1/Ha1)α + (1/M )β

ηMγ + Ha1δ
, A3 = − 1

ηM2
,

A4 = A1λ + A2φ + (
1/Ha2

1

) + A3(1 − ψ )

ω
,

α = ωφ, β = cosh (Ha1) − λψ,

γ = ψ sinh[Ha1(1 − a)],
δ = ω cosh[Ha1(1 − a)],
λ = cosh (Ha1a), φ = sinh (Ha1a),
ψ = cosh (Ma) and ω = sinh (Ma).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)

The solved expressions for the temperature θi profiles can be
expressed as

θ1 = P(cosh R − sinh R), (28)

θ2 = Q(cosh S − sinh S), (29)

where R = 2y(
√

F1 + Ha1) and S = 2y(
√

F2 + M ).
The complex expressions of the coefficients P and Q in

Eqs. (28) and (29) are calculated using Mathematica. The
mathematical expressions of these coefficients are given in
Appendix A.

E. Entropy generation

The thermodynamic irreversibility within the system con-
sidered can be characterized by the existence of entropy in
the system. Therefore, the calculation of entropy generation
can be a convenient tool to quantitatively measure of irre-
versibility associated with the process. The local volumetric
rate of entropy generation [(S′′′)i ,∀i = 1, 2] in the presence
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of a magnetic field for both fluids can be calculated as fol-
lows [69,70]:

For i = 1 (h � y � d),

(S′′′)1 = k1

Tw

(
dt1
dy

)2

+ 1

Tw

[
η1

(
du1

dy

)2

+ σ1B2
0u2

1

]
, (30)

and for i = 2 (0 � y � h),

(S′′′)2 = k2

Tw

(
dt2
dy

)2

+ 1

Tw

[
η2

(
du2

dy

)2

+ σ2B2
0u2

2

]
. (31)

The nondimensional form of the entropy generation number
(SN

i ) in both regions can be expressed as, for i = 1 (a � y �
1),

SN
1 = (S′′′)1

(S′′′)0
=

(
dθ1

dy

)2

+ Br1

[(
du1

dy

)2

+ Ha2
1u2

1

]
, (32)

and for i = 2 (0 � y � a),

SN
2 = (S′′′)2

(S′′′)0
= k

(
dθ2

dy

)2

+ kBr2

[(
du2

dy

)2

+ Ha2
2u2

2

]
.

(33)
In expressions (32) and (33), (S′′′)0 = k1

d2 is the reference
volumetric entropy generation, the heat transfer irreversibility
(HTI) in the fluid 1 (i = 1) is HTI1 = ( dθ1

dy )2, the fluid friction

irreversibility (FFI) in the fluid 1 (i = 1) is FFI1 = Br1( du1
dy )2,

the magnetic field irreversibility (MFI) in the fluid 1 (i = 1)
is MFI1 = Br1Ha2

1u2
1, the heat transfer irreversibility (HTI)

in the fluid 2 (i = 2) is HTI2 = k( dθ2
dy )2, the fluid friction

irreversibility in the fluid 2 (i = 2) is FFI2 = kBr2( du2
dy )2,

and the magnetic field irreversibility in the fluid 2 (i = 2) is
MFI2 = kBr2Ha2

2u2
2. These irreversibilities can be evaluated

by using the following dimensionless numbers, termed Bejan
numbers (Bei, i = 1, 2), magnetic field irreversibility param-
eters (Ii, i = 1, 2), and fluid flow irreversibility parameters
(Ji, i = 1, 2). The mathematical expressions of these dimen-
sionless numbers (Bei, Ii, and Ji, i = 1, 2) can be given by

Bei = HTIi

SN
i

= (dθi/dy)2

(dθi/dy)2 + Bri
[
(dui/dy)2 + Ha2

i u2
i

] ,

(34)

Ii = MFIi

SN
i

= Ha2
i Briu2

i

(dθi/dy)2 + Bri
[
(dui/dy)2 + Ha2

i u2
i

] , (35)

Ji = FFIi

SN
i

= Bri(dui/dy)2

(dθi/dy)2 + Bri
[
(dui/dy)2 + Ha2

i u2
i

] . (36)

III. RESULTS AND DISCUSSION

The study of fully developed, steady, laminar Poiseuille
flow of a pair of electrically conducting, incompressible flu-
ids (i =1 and 2) in a channel bounded by two plates under
the effect of a transverse magnetic field and nonisothermal
temperature field can be entirely characterized by six funda-
mental physical properties, namely, the viscosities, thermal,
and electrical conductivities. Since we are considering the
fluid flow to be in a Stokes flow regime, the effect of the fluid
densities ρi is negligible. Apart from these, the dynamics of
the problem depends on the filling ratio a, applied magnetic

field intensity B0, and temperature differences θi of both the
fluids and the channel walls. Since all ten parameters involve
three fundamental units (mass, time, and length), the problem
can be characterized with seven independent dimensionless
parameters. We can select these independent dimensionless
parameters as a, η, k, σ , Ha1, Br1, and F1. The physical
significance of these dimensionless quantities was described
in Sec. II C.

It may be noted here that the dimensionless numbers Ha2,
Br2, and F2 for fluid 2 can be expressed in terms of Ha1, Br1,
and F1 as shown in Eq. (16). To understand the effect of these
seven dimensionless parameters on the fluid flow or the veloc-
ity distribution, temperature distribution, and by extension the
entropy generation within the channel, a systematic study has
been carried out over a range of a, η, k, σ , Ha1, Br1, and F1.

A. Effect of filling ratio a

Figures 2(a)–2(d) show the variation of velocity u along
the width y of the channel with increasing filling ratios a.
Figures 2(a)–2(d) show that with increase in a from 0.1 to
0.8, the maximum as well as the average velocity of the fluids
inside the channel decreases. The viscosity ratio η in these
cases is kept constant at 2. With the increase in a, the channel
gets filled with the more viscous fluid 2, which ensures that
fluid 2 as well as fluid 1 (because of the laminar nature of the
flow) flows slowly inside the channel.

Figures 2(e)–2(h) show the variation of temperature θ

along the width y of the channel with increasing filling ratios
a. Figures 2(e)–2(g) show that with an increase in a from 0.1
to 0.6, the maximum as well as average temperature of the
fluids inside the channel increases. The slowly flowing fluids
due to the increase in filling ratio retains more heat with them,
which in turn increases the temperature distribution inside the
channel. However, with a further increase in filling ratio (a =
0.8), the temperature of the fluids decreases considerably as
shown in Fig. 2(h).

The expressions for ui and θi [Eqs. (25)–(26) and (28)–
(29)] show that the velocity ui of the fluids inside the channel
essentially depends on a, η, and Ha1 only, whereas the tem-
perature θ distribution depends on the combined effect of all
the seven dimensionless parameters as well as the velocity u
profile inside the channel. For low filling ratios (a = 0.1–0.6),
the temperature distribution essentially depends on the veloc-
ity u profile of the fluids inside rather than the combined effect
of the other dimensionless parameters such as k, σ , Br1, and
F1. However, for higher filling ratios, such as in the case of a
= 0.8 [Fig. 2(h)], the effect of these dimensionless parameters
(k, σ , Br1, and F1) dictates the temperature distribution inside
the channel rather than the velocity profile of the fluids alone.
This is the reason behind the apparent decrease in maximum
as well as average temperature inside the channel with the
filling ratio, a = 0.8 in Fig. 2(h).

Figures 3(a)–3(d), 3(e)–3(h), and 3(i)–3(l) show the vari-
ation of Bejan number Be, magnetic field irreversibility
parameter I, and fluid flow irreversibility parameter J across
the width y of the channel for different filling ratios a, re-
spectively. Figures 3(a)–3(d) show that with an increase in
filling ratio a, Be across the channel width y increases. Fig-
ure 3(a) shows that, for a = 0.1, the contribution in the entropy
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FIG. 2. Plots (a)–(d) and (e)–(h) show the velocity u and temperature θ distribution across the width y of the channel for different filling
ratios a, respectively. The other parameters are η = 2.0, Ha1 = 3.0, k = 1.5, σ = 1.0, Br1 = 2.0, and F1 = 2.0.

generation due to HTI or Be throughout the midsection of the
channel (0.1 � y � 0.9) is negligible. With the increase in a,
Be across the channel width y increases; however, there exists
some minima across the width where the contribution in the
entropy generation due to HTI is zero, such as for Fig. 3(b)
y ∼ 0.1, ∼0.3, and ∼0.8, for Fig. 3(c) y ∼ 0.5, and for
Fig. 3(d) y ∼ 0.6.

Figures 3(e)–3(h) show that with an increase in filling ratio
a, I, or the entropy generation due to MFI across the channel

width y decreases as an average; however, Imax (∼0.8–1.0)
remains similar. The locations of this maximum entropy gen-
eration due to MFI (Imax) are the same as the locations of the
minima in the case of HTI in Figs. 3(a)–3(d), which signifies
that the across the channel width y there are some zones where
the entropy generation due to HTI (MFI) is highest (lowest)
and vice versa.

Figures 3(i)–3(l) show that the entropy generation due to
the FFI (or the dimensionless number J) decreases with the

FIG. 3. Plots (a)–(d), (e)–(h), and (i)–(l) show the variation of Bejan number Be, magnetic field irreversibility parameter I, and fluid flow
irreversibility parameter J across the width y of the channel for different filling ratios a, respectively. The other parameters are η = 2.0,
Ha1 = 3.0, k = 1.5, σ = 1.0, Br1 = 2.0, and F1 = 2.0.
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FIG. 4. Plots (a) and (b) show the variation of velocity u and
temperature θ across the width y of the channel for different viscosity
ratios η, respectively. The other parameters are a = 0.4, Ha1 = 3.0,
k = 1.5, σ = 1.0, Br1 = 5.0, and F1 = 2.0.

increase in filling ratio a across the width y of the channel
because of the less fluid flow as shown in Figs. 2(a)–2(d).
However, it is interesting to note that, when the filling ratio
a is comparatively lower (= 0.1) in Fig. 3(i), the contribution
in maximum entropy generation due to FFI (∼1.0) near the in-
terface is entirely due to the relatively unhindered fluid flow in
the channel. Although with the increase in a, the contribution
to entropy generation due to the FFI (or J) near the fluid-fluid
interface decreases [∼0.6 for a = 0.3 in Fig. 3(j) and ∼0.0 for
a = 0.6 and 0.8 in Figs. 3(k) and 3(l)] and is predominantly
determined by the contribution from HTI (or Be).

B. Effect of viscosity ratio η

Figures 4(a) and 4(b) display the variation of velocity u and
temperature θ along the width (y) of the channel with increas-
ing viscosity ratios η, respectively. First, when η = 1.0, the
red line in Fig. 4(a) shows that the velocity profile is parabolic
and consistent with the plane Poiseuille flow. Figure 4(a) also
shows that, initially up to y ∼ 0.3, with the increase in η, the
velocity of fluid 2 is decreasing. However, beyond that the ve-
locity of the fluids increases with an increase in η. Increasing
the ratio η also decreases the dimensionless number Ha2 (as
Ha2 ∝ 1/

√
η), which augments the flow of fluid 2 inside the

channel. In order to maintain the flow rate inside the channel
due to the mass balance arising from the continuity equations
[Eqs. (5) and (9)], the velocity of fluid 1 increases with the
increase in η. At the fluid-fluid interface, the high velocity of
fluid 1 essentially increases the velocity of fluid 2 due to the
laminar nature of the flow.

With the increase in viscosity ratio η, the temperature of
both fluids decreases as shown in Fig. 4(b). We have already
discussed in Fig. 2 that, for low filling ratios (a = 0.1–0.6), the
temperature distribution essentially depends on the velocity
u profile of the fluids inside rather than the combined effect
of the other heat-transfer-related dimensionless parameters. In
the case of Fig. 4(b), since a = 0.4, the temperature profile of
the fluids mainly depends on the velocity profile.

Figure 4(a) shows that the velocity of fluid 1 is increasing
with the increase in η, whereas the velocity of fluid 2 is
slightly decreasing, which is why the temperature of fluids 1
and 2 decreases with the increase in η. It is noteworthy that the
velocity profile in Fig. 4(a) shows that the maximum velocity
inside the channel is near the midline (y = 0.4–0.6), whereas
the temperature profile shows that the maximum temperature
is near y = 0.8, which is near the upper wall of the channel.
The maximum temperature inside the channel is dictated by
the heat transfer mechanisms, which are directly correlated
to the combined effect of the dimensionless parameters, k, σ ,
Br1, and F1.

Figure 5(a) shows that, with the increase η, the contribution
in the entropy generation due to HTI or Be increases across the
channel width y. Since an increase in η from 1 to 2 reduces the
flow of fluid 2 inside the channel, the entropy generation due
to HTI in fluid 2 quadruples as shown in Fig. 5(a). However,
the minima in Fig. 5(a) near y = 0.8 shows that the entropy
generation due to HTI (or Be) at that location is negligible. It
is noteworthy that this is the same location where the temper-
ature inside the channel is maximum as shown in Fig. 4(b).

Figure 5(b) shows that, for a particular η, the entropy
generation due to MFI (or I) initially decreases, goes through
a minimum near y = 0.2, then increases, and goes through
a maximum near y = 0.8. It is also interesting to note that
I is always less than 0.5 throughout the channel width y
for all the viscosity ratios η, which signifies that Be + J > I
or HTI + FFI > MFI. This also represents that changing the
viscosity ratio essentially changes the velocity and the tem-
perature profile inside the fluids, which in turn dictates the
HTI and the FFI. However, the entropy generation due to the
magnetic field (MFI) is not directly dependent on η; rather it
depends mainly on the flow and temperature profile change
inside the channel due to the change in η.

Figure 5(c) depicts that J decreases with the increase in η

across the channel width (y). It can be seen from Fig. 5(c)
that, when η is lower, the maximum contribution to entropy

FIG. 5. Plots (a), (b), and (c) show the variation of Bejan number Be, magnetic field irreversibility parameter I, and fluid flow irreversibility
parameter J across the width y of the channel for different viscosity ratios η, respectively. The other parameters are a = 0.4, Ha1 = 3.0, k = 1.5,
σ = 1.0, Br1 = 5.0, and F1 = 2.0.
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FIG. 6. The temperature θ distribution across the width y of the
channel for different thermal conductivity ratios k, respectively. The
other parameters are a = 0.4, Ha1 = 3.0, η = 2.0, σ = 1.0, Br1 =
2.0, and F1 = 2.0.

generation inside fluid 2 is due to the FFI compared to HTI
and MFI. This is because the lesser value of η enhances the
fluid flow inside the channel, which in turn increases the
entropy generation due to fluid flow. FFI goes through a max-
imum near y = 0.2 in Fig. 5(c) for η = 1 or 1.25. Figure 5(c)
also shows a second local maxima near y = 0.8 (fluid 1),
where J ∼ 0.5 or more, which is the same location where I also
goes through a local maximum as shown in Fig. 5(b). This
signifies that, in the fluid 1 region near y = 0.8, the entropy
generation is mainly dictated by the combined effect from the
magnetic field (MFI) and the fluid flow (FFI) rather than the
heat transfer component (HTI).

Figure 5 shows that the entropy generation inside the chan-
nel can be varied by altering the ratio η and the mechanism
of entropy generation for both fluids differ accordingly. The
entropy generation due to FFI plays a major role for both
fluids (contribution � 50%); however, MFI (HTI) contributes
less in the case of fluid 2 (fluid 1) in the overall entropy
generation inside the channel with the increase in the viscosity
ratio.

C. Effect of thermal conductivity ratio k

Figure 6 shows the temperature profile across the width y
of the channel for different thermal conductivity ratios k. The

heat transfer due to conduction inside the channel increases
due to the increase in k, which decreases the temperature θ of
the fluids as shown in Fig. 6. The thermal conductivity ratio k
in our case is evaluated as the ratio of thermal conductivity of
fluid 2 with fluid 1 (k = k2/k1). This ensures that at higher
k, the temperature of fluid 2 (cyan region) decreases more
rapidly than in fluid 1 (white region). Also, the maximum
temperature of fluid 1 is more than fluid 2 because of the fluid
flow conditions maintained by the flow parameters, η = 2.0,
and Ha1 = 3.0. The maximum temperature of fluid 1 actually
is near y = 0.8, which is near the upper wall of the channel
and similar to Fig. 4(b) due to the similar flow and thermal
parameters.

Figure 7(a) shows that, with the increase k, the contribu-
tion in the entropy generation due to HTI or Be decreases
across the channel width y. Since an increase in k reduces
the temperature distribution inside the channel, the entropy
generation due to HTI in fluid 2 declines significantly as
shown in Fig. 7(a). Although the value of Be for fluid 1 always
remains lower (Be1 � 0.3) than that of fluid 2 (Be2 � 0.3),
there is a stark contrast between the variation of Be1 and
Be2. It can be interpreted from Fig. 7(a) that, other than the
global minima near y = 0.8, Be1 always increases with the
increase in k, although Be2 decreases with the increase in k.
However, the minima in Fig. 7(a) near y = 0.8 shows that
the entropy generation due to HTI (or Be) at that location
is almost negligible. It is interesting to note that this is the
same location where the temperature inside the channel is
maximum as shown in Fig. 6.

Figure 7(b) shows that, for a particular k, the entropy
generation due to MFI (or I) initially decreases, goes through
a minimum near y = 0.2, then increases, and goes through
a maximum near y = 0.8. It is important to note that I is
always less than 0.5 throughout the channel width for all
thermal conductivity ratios k, which signifies that Be + J > I
or HTI + FFI > MFI. This also represents that changing k
essentially changes the temperature profile inside the fluids,
which in turn dictates the HTI and the FFI. However, the en-
tropy generation due to the magnetic field (MFI) is not directly
dependent on k; rather it depends mainly on the flow and tem-
perature profile change inside the channel due to the change in
k. Furthermore, the entropy generation due to MFI (or I) near
the fluid-fluid interface suddenly increases greater than ∼10%
from fluid 2 (I2 < 0.1) to fluid 1 (I1 > 0.2) irrespective of the
value to k, which is also an important factor in considering the

FIG. 7. Plots (a), (b), and (c) show the variation of Bejan number Be, magnetic field irreversibility parameter I, and fluid flow irreversibility
parameter J across the width y of the channel for different thermal conductivity ratios k, respectively. The other parameters are a = 0.4,
Ha1 = 3.0, η = 2.0, σ = 1.0, Br1 = 2.0, and F1 = 2.0.
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FIG. 8. The temperature θ distribution across the width y of the
channel for different electrical conductivity ratios σ , respectively.
The other parameters are a = 0.4, Ha1 = 3.0, η = 2.0, k = 1.5,
Br1 = 2.0, and F1 = 2.0.

irreversibility due to the presence of a fluid-fluid interface in
Fig. 7(b). Figure 7(b) also shows that, other than the global
minima (maxima) near y = 0.2(0.8), I1(I2) always decreases
(increases) with the increase in k, as shown clearly in the inset
of Fig. 7(b).

Figure 7(c) depicts that J1(J2) always decreases (increases)
with the increase in k, across the channel width. It can be seen
from Fig. 7(c) that, when k is lower (1, for example), the max-
imum contribution to entropy generation inside fluid 2 is due
to HTI (contribution ∼70%) compared to FFI (contribution
∼20%) and MFI (contribution ∼10%). This is because the
lesser value of k enhances the temperatures of the fluids inside
the channel, which in turn increases the entropy generation
due to HTI. Figure 7(c) also shows that irrespective of the
fluids, the contribution to the total entropy generation inside
the channel due to FFI is always within 20%–60%. This sig-
nifies that even though the thermal conductivity ratio does not
necessarily change the fluid flow inside the channel as such, a
significant portion of the total entropy generation due to fluid
flow can be controlled by controlling k.

In summary, Fig. 7 shows that, due to the change in k, the
entropy generation inside the channel can be varied; also, the
mechanism of entropy generation for both the fluids differs
significantly. The entropy generation due to HTI plays a major

role for fluid 2 (contribution � 40%); however, in the case of
fluid 1 the overall entropy generation mainly is dictated by
FFI (contribution � 40%).

D. Effect of electrical conductivity ratio σ

Figure 8 shows the temperature profile across the width y
of the channel for different electrical conductivity ratios σ .
Increasing the ratio σ increases the dimensionless number
Ha2 (as Hai ∝ √

σi), which hinders the flow of fluid 2 inside
the channel. When the velocity of fluid 2 decreases inside
the channel, the heat transfer via radiative mode increases.
Figure 8 shows that this low fluid velocity facilitates the con-
siderable temperature drop (from θ

avg
2 ∼ 0.3 to θ

avg
2 ∼ 0.1,

�θ
avg
2 ∼ 0.2) in fluid 2, whereas the drop in the fluid 1 tem-

perature is considerably lower (�θ
avg
2 � 0.1).

Figure 9(a) shows that, with the increase in σ , the contri-
bution in the entropy generation due to HTI or Be decreases
in fluid 2. Since an increase in σ reduces the temperature
distribution inside the channel, the entropy generation due to
HTI in fluid 2 declines significantly as shown in Fig. 9(a).
Although the value of Be for fluid 1 (Be1) always remains
lower (�0.25) than that of fluid 2 (Be2 � 0.35) for most of
the cases (σ � 5.0), but there is a significant contrast between
the variation of Be1 and Be2 with the variation in σ . It can be
interpreted from Fig. 9(a) that, other than the global minima
near y = 0.8, the variation of Be1 always remains similar with
the increase in σ , although Be2 decreases with the increase in
σ . The global minima in Fig. 9(a) near y = 0.8 shows that
the entropy generation due to HTI (or Be) at that location
is almost negligible. It is important to note that this is the
same location where the temperature inside the channel is
maximum as shown in Fig. 8.

Another interesting observation from Fig. 9(a) is that, in
fluid 2, Be2 initially decreases with the increase in y, and
eventually increases with further increase in y. Also, with the
increase in σ , the rate of decrease or increase (minimum Be2,
Bemin

2 ) of Be2 in fluid 2 increases (decreases) as shown in
Fig. 9(a). For example, Bemin

2 ∼ 0.4 at y = 0.3 for σ = 4.0 in
fluid 2 gets shifted to Bemin

2 ∼ 0.05 at y = 0.2 for σ = 10.0.
Figure 9(b) shows that, for all σ (= 1–10), the entropy

generation due to MFI in fluid 1 (or I1) initially increases, goes
through a maximum near y = 0.8, then decreases, although
the magnitude of I1 varies minimally across the width of the
channel (a � y � 1) for increasing σ . However, increasing σ

FIG. 9. Plots (a), (b), and (c) show the variation of Bejan number Be, magnetic field irreversibility parameter I, and fluid flow irreversibility
parameter J across the width y of the channel for different electrical conductivity ratios σ , respectively. The other parameters are a = 0.4,
Ha1 = 3.0, η = 2.0, k = 1.5, Br1 = 2.0, and F1 = 2.0.
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changes the distribution of I2 across the width of the channel
(0 � y � a) for fluid 2. For almost all σ (= 1–5), I2 initially
decreases with increase in y, then goes through a minimum
near y = 0.2, and then increases with further increase in y till
y � a.

Figure 9(b) shows that, near the wall (y = 0) and the in-
terface of fluids 1 and 2 (y = a), the magnitude of I2 remains
maximum, and this maximum magnitude increases with the
increase in σ . This distribution implies that, with the increase
in electrical conductivity of fluid 2, the entropy generation due
to MFI increases near the wall and the interface. However,
with further increase in σ (= 10) the variation I2 changes
significantly across fluid 2 (0 � y � a). The variation of I2

for σ = 10 in Fig. 9(b) shows that, near the lower wall (y =
0) and the fluid-fluid interface (y = a), the magnitude of I2

briefly goes through a pair of local maximums at y = 0.05
and y = 0.35. This apparent shift of local maximums from
the wall (y = 0) and the interface (y = a) towards the inner
regions of fluid 2 (y = 0.05 and y = 0.35) implies that, with
the increase in orders of magnitude of σ (1 to 10) the entropy
generation due to MFI shifts towards the bulk of the fluid
2. It is also interesting to note that I is always less than
0.5 throughout the channel width for all σ (= 1–10), which
signifies that Be+J > I, or HTI+FFI > MFI.

Figure 9(c) illustrates that J1 always remains similar with
the increase in σ , although J2 varies significantly with the
increase in σ . It can be seen from Fig. 9(c) that, for σ = 1,
J2 increases monotonically with the increase in y up to y � a,
whereas, for σ = 2 − 10, J2 initially increases monotonically
with the increase in y up to a certain value and then decreases
with further increase in y up to y � a. This distribution en-
sures that near the wall (y = 0) and the fluid-fluid interface
(y = a) the entropy generation due to FFI (or J2) actually
decreases with the increase in σ . Also, Fig. 9(c) shows that
the maximum J2(Jmax

2 ) shifts minutely from y > a/2 towards
y ∼ a/2 with the increase σ from 2 to 10.

In short, Fig. 9 shows that the magnitudes and mechanisms
of entropy generation inside the channel can be altered by
changing σ for both the fluids. For most of the cases, the
entropy generation due to FFI and HTI plays a major role for
fluid 2 (total contribution �70%); however, in the case of fluid
1 the overall entropy generation is mainly dictated by FFI and
MFI (total contribution �70%).

E. Effect of Hartmann number Ha1

Figures 10(a) and 10(b) show the variation of velocity u
and temperature θ along the width y of the channel with
increasing Hartmann numbers Ha1, respectively. An increase
in Ha1 increases the effect of the Lorentz force inside the
channel, which acts as a resistance to the flow. Therefore, it
is observed that the velocity in the channel decreases with
the increase in the value of Ha1. Duwairi et al. showed in
a previous study that for a single fluid under the influence
of a transverse magnetic field, the magnitudes of velocity
and temperature distribution decrease with the increase in
Ha [58]. This means that the electrical conductivity of the
fluid dictates the velocity and the temperature profiles. We
have also modified the present mathematical formulation to
asymptotically match the governing equations of Duwairi

FIG. 10. Plots (a) and (b) show the variation of velocity u and
temperature θ distribution across the width y of the channel for
different Hartmann numbers Ha1, respectively. The other parameters
are a = 0.4, η = 2.0, k = 1.5, σ = 1.0, Br1 = 5.0, and F1 = 2.0.

et al. by employing the same fluid properties for both fluids
in order to mimic a single-fluid system [58]. The results from
this asymptotic study show a good match with the results of
Duwairi et al. [58]. The comparison of these results is shown
in Fig. 17 of Appendix B. Even in bilayer flows, the similar
trend of reducing velocity and temperature upon increasing
Ha is observed in the present study as shown in Fig. 10.

Another important thing to note is that, for Ha1 = 5.0, the
velocity of the fluids at the interface becomes ui � 0, and
this signifies that for Ha1 > 5.0 the velocity of the fluids near
the interfacial region can theoretically become negative. The
negative velocity of the fluids near the interfacial region for
Ha1 > 5.0 signifies that the fluids in that region may back-
flow inside the channel upon further increase in Ha1. This
back-flow near the fluid-fluid interface may induce circulatory
motion of the fluids near the interfacial region. With the in-
crease in Ha1, the temperature of the fluids inside the channel
decreases as shown in Fig. 10(b). The temperature of the fluids
declines because of the increase in radiative heat transfer due
to the slow-moving fluids inside the channel as a result of
increased Ha1.

Figure 11(a) shows that, in general, Be increases across
the width of the channel with the increase in Ha1. For fluid
2, an increase in Ha1 from 3 to 5 increases Be2 up to 1,
which signifies that the contribution of HTI to the total entropy
generation in fluid 2 is essentially 100%. Although an increase
in Ha1 from 3 to 5 increases Be1 too, the minima in Fig. 11(a)
near y = 0.8 shows that the entropy generation due to HTI (or
Be1) at that location is negligible for fluid 1. This is because
the temperature and the velocity of fluids inside the channel is
maximum at this same location as shown in Fig. 10.

Figure 11(b) shows that magnetic field irreversibility pa-
rameter I2 in fluid 2 decreases and reaches almost zero with
the increase in Ha1. Across the width of the channel (0 � y �
a), I2 initially decreases, goes through a minimum near y =
0.2, and then eventually increases near the fluid-fluid interface
near y = a. However, the magnitude of I2 is so insignificant
(�0.02) in fluid 2 that its contribution to entropy generation
can be ignored. In the case of fluid 1, I1 also decreases with the
increase in Ha1; however, for a particular Ha1 and across the
width of the channel (a � y � 1) it initially increases, goes
through a maxima near y = 0.8, and then eventually decreases
near the channel wall.

Interestingly, the peak of I1 in Fig. 11(b) shows that the
contribution to the entropy generation due to MFI near y =
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FIG. 11. Plots (a), (b), and (c) show the variation of Bejan number Be, magnetic field irreversibility parameter I, and fluid flow irreversibility
parameter J across the width y of the channel for different Hartmann numbers Ha1, respectively. The other parameters are a = 0.4, η = 2.0,
k = 1.5, σ = 1.0, Br1 = 5.0, and F1 = 2.0.

0.8 can be as high as ∼50%, whereas Fig. 11(a) shows that
the contribution to the entropy generation due to HTI near
y = 0.8 can be as low as ∼0%. This is because an increase
in Ha1 increases the effect of the Lorentz force inside the
channel, which acts as a resistance to the flow. The increase
in radiative heat transfer due to the slow-moving fluids inside
the channel as a result of increased Ha1 ensures that the HTI
plays a significantly major role in entropy generation inside
the channel for the most part. The highest temperature of flu-
ids near y = 0.8 guarantees that, at that location, the entropy
generation is dictated by the other two irreversibilities (MFI
and FFI).

Figure 11(c) shows that J decreases across the width of the
channel with the increase in Ha1, as the velocity of the fluids
inside the channel decreases due to the hinderance from the
increased Lorentz force. With the increase in Ha1 from 3 to
5, average J2(Javg

2 ) decreases from ∼0.2 to zero. Interestingly,
the peak of J1(Jmax

1 ) in Fig. 11(c) shows that the contribution
to the entropy generation due to FFI near y = 0.8 can be as
high as ∼50%.

Moreover, Fig. 11 shows that change in Ha1 significantly
alters the magnitude of the entropy generation inside the chan-
nel as well as the mechanism of entropy generation for both
the fluids. The majority of entropy generation inside the region
of fluid 2 is dictated by the HTI (∼80%–100%) with the
increase in Ha1. However, the contribution to the total entropy
generation due to the three irreversibilities is shared for fluid 1
for the most part, except near the upper wall (y = 0.8), where
entropy generation due to HTI is negligible. At this location,
the entropy generation is almost equally shared by both MFI
(contribution ∼ 50%) and FFI (contribution ∼ 50%).

F. Effect of Brinkman number Br1

Figure 12 illustrates the temperature profile across the
width y of the channel for increasing Brinkman numbers Br1.
Brinkman numbers (Bri, i = 1, 2) signify the ratio between
heat produced by viscous dissipation and heat transported
by molecular conduction. With the increase in Br1, the heat
produced inside the channel by viscous dissipation increases
compared to the heat transferred due to conduction, which
facilitates the increase in temperature or both fluids inside the
channel as shown in Fig. 12.

Figure 13(a) shows that, with the increase in Br1, the con-
tribution in the entropy generation due to HTI or Be increases
across the channel width y. Since an increase in Br1 increases

the temperature distribution inside the channel, the entropy
generation due to HTI in fluid 2 significantly increases as
shown in Fig. 13(a). Although the value of Be for fluid 1
(Be1) always remains lower (0 � Be1 � 0.4) than that of the
fluid 2 (0.4 � Be2 � 0.85), but there is a visible contrast
between the variation of Be1 and Be2. Across the channel
width (0 � y � a), Be2 always decreases with the increase in
y, whereas Be1 across the channel width (a � y � 1) initially
decreases, goes through a minima y = 0.8, then eventually
increases near the channel upper wall with the increase in y. It
can be interpreted from Fig. 13(a) that, other than the global
minima near y = 0.8, Be1 always increase with the increase
in Br1. However, the minima in Fig. 13(a) near y = 0.8 shows
that the entropy generation due to HTI (or Be) at that location
is almost negligible. It is interesting to note that this is the
same location where the temperature inside the channel is
maximum as shown in Fig. 12.

Figure 13(b) shows that, for a particular Br1, the entropy
generation due to MFI (or I) initially decreases, goes through
a minimum near y = 0.2, then increases, and goes through
a maximum near y = 0.8. It is also interesting to note that
I is always less than 0.5 throughout the channel width for
all Br1, which signifies that Be+J > I or HTI+FFI > MFI.
This also represents that varying Br1 essentially changes the

FIG. 12. The temperature θ distribution across the width y of the
channel for different Brinkman numbers Br1, respectively. The other
parameters are a = 0.4, η = 2.0, k = 1.5, σ = 1.0, Ha1 = 5.0, and
F1 = 2.0.
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FIG. 13. Plots (a), (b), and (c) show the variation of Bejan number Be, magnetic field irreversibility parameter I, and fluid flow irreversibility
parameter J across the width y of the channel for different Brinkman numbers Br1, respectively. The other parameters are a = 0.4, η = 2.0,
k = 1.5, σ = 1.0, Ha1 = 5.0, and F1 = 2.0.

temperature profile inside the fluids, which in turn dictates
the HTI and the FFI. However, the entropy generation due
to the magnetic field (MFI) is not directly dependent on Br1;
rather it depends mainly on the flow and temperature profile
change inside the channel due to the change in Br1. Also,
the entropy generation due to MFI (or I) near the fluid-fluid
interface suddenly increases greater than ∼15% from fluid 2
(I2 < 0.05) to fluid 1 (I1 > 0.2) irrespective of the value of
Br1, which is also an important factor to consider in Fig. 13(b).
Figure 13(b) also shows that, other than the global minima
(maxima) near y = 0.2 (0.8), both I1 and I2 always decrease
with the increase in Br1, as shown clearly in Fig. 13(b).

Figure 13(c) depicts that both J1 and J2 always decrease
with the increase in Br1 across the channel width. It can be
seen from Fig. 13(c) that, when Br1 is lower (2, for example),
the maximum contribution to entropy generation inside fluid 2
is due to HTI (contribution ∼ 70%) compared to FFI (contri-
bution ∼ 25%) and MFI (contribution ∼ 5%). This is because
the lesser value of Br1 enhances the molecular conduction
inside the channel, which in turn increases the entropy gen-
eration due to HTI. Figure 13(c) also shows that irrespective
of the fluids the contribution to the total entropy generation
inside the channel due to FFI is always within 15%–60%. This
signifies that, even though Br1 does not necessarily change the
fluid flow inside the channel as such, a significant portion of
the total entropy generation which is due to the FFI can be
controlled by monitoring Br1.

In summary, Fig. 13 shows that, due to the change in Br1,
the entropy generation inside the channel can be tuned by
altering the mechanism of entropy generation for both fluids.
The entropy generation due to HTI plays a major role for fluid
2 (contribution �50%), but in the case of fluid 1, the overall
entropy generation is dictated by all the three irreversibilities
(HTI ∼ 0%–40%, MFI ∼ 20%–45%, and FFI ∼ 35%–55%).

G. Effect of radiation parameter F1

Figure 14 illustrates the temperature profile across the
width y of the channel for increasing radiation parameters F1.
Radiation parameters (Fi, i = 1, 2) signify the ratio between
the radiative and conductive heat transfer. With the increase
in F1, the heat depletion from the fluids inside the channel
by radiation increases compared to the heat transferred due to
conduction, which facilitates the sharp decrease in tempera-
ture for both fluids inside the channel as shown in Fig. 14.

Figure 15(a) shows that, in general, Be2 decreases with the
increase in F1. Moreover, across the width (0 � y � a) of the
channel, it also decreases for a particular F1. At the interface
of the two fluids the magnitude of Be plummets significantly
(around ∼10%–30%) for a particular F1. For fluid 1, the figure
shows that, for a particular F1, Be1 decreases initially with
the increase in y, goes through a minimum near y = 0.8,
and then increases near the upper wall. However, it can be
interpreted from Fig. 15(a) that, other than the global minima
near y = 0.8, Be1 always decreases with the increase in F1.
An increase in radiation parameter F1 signifies the increase in
the ratio between the radiative and conductive heat transfer,
which facilitates significant temperature drops in both fluids
thus ensuring the decrease in entropy generation due to the
HTI (or Be).

Figure 15(b) shows that, for a particular F1, magnetic field
irreversibility parameter I initially decreases, goes through a
minimum near y = 0.2, then increases, and goes through a
maximum near y = 0.8. The presence of the fluid-fluid in-
terface increases the magnitude of I by a considerably large
amount (around ∼ 10%–30%). It is also interesting to note
that I is always less than 0.5 throughout the channel width for
all F1, which signifies that Be+J > I, or HTI+FFI > MFI.
This also represents that varying F1 essentially changes the

FIG. 14. The temperature θ distribution across the width y of the
channel for different radiation parameters F1, respectively. The other
parameters are a = 0.4, η = 2.0, k = 1.5, σ = 1.0, Ha1 = 3.0, and
Br1 = 2.0.
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FIG. 15. Plots (a), (b), and (c) show the variation of Bejan number Be, magnetic field irreversibility parameter I, and fluid flow irreversibility
parameter J across the width y of the channel for different radiation parameters F1, respectively. The other parameters are a = 0.4, η = 2.0,
k = 1.5, σ = 1.0, Ha1 = 3.0, and Br1 = 2.0.

temperature profile inside the fluids, which in turn dictates the
HTI and the FFI. However, Fig. 15(b) confirms that the en-
tropy generation due to the magnetic field (MFI) is indirectly
dependent on F1. Figure 15(b) also shows that, other than the
global minima (maxima) near y = 0.2 (0.8), both I1 and I2

always increase with the increase in F1, as shown clearly in
the inset of Fig. 15(b).

Figure 15(c) illustrates that both J1 and J2 always increase
with the increase in F1, across the channel width. It can be seen
from Fig. 15(c) that, when F1 is higher (for example, F1 =
5.0), the maximum contribution to entropy generation inside
fluid 2 is due to FFI (contribution ∼ 60%) compared to HTI
(contribution ∼ 35%) and MFI (contribution ∼ 5%). This is
because the lesser value of F1 reduces the temperatures of the
fluids inside the channel, which in turn decreases the entropy
generation due to HTI, so that the significant portion of the
entropy generation is due to the fluid flow. However, for fluid
1, Fig. 15(c) shows that the changes in the magnitude of J1

due to the variation of F1 are negligible across the width of the
channel (a � y � 1). Figure 15(c) also shows that irrespective
of the fluids the contribution to the total entropy generation

inside the channel due to FFI is always within 20%–70%. This
signifies that even though F1 does not necessarily change the
fluid flow inside the channel as such, a significant portion of
the total entropy generation which is due to the FFI can be
controlled by tuning F1.

In summary, Fig. 15 shows that, due to the change in F1,
the entropy generation inside the channel can be tuned by
changing the mechanism of entropy generation for both fluids.
The entropy generation due to HTI and FFI both contribute
equally in the total entropy generation for fluid 2 (contribution
∼ 40% each); however, in the case of fluid 1, the overall
entropy generation is dictated mainly by MFI (∼ 30%–50%),
and FFI (∼ 50%–60%).

We have also asymptotically truncated the radiative flux
part from the governing equations of the present mathematical
formulation to match the results of Haddad et al. [55]. For a
very low Knudsen number (Kn), the results from the present
truncated formulation show a close match with the results of
Haddad et al. [55]. The comparative plots of spatial variation
of (a) velocity u, temperature θ , and (b) local Be profile are
shown in Fig. 18 of Appendix B.

FIG. 16. Plots (a)–(f) show the variation of heat transfers, h1 (red symbols, left side of y-axis) and h2 (blue symbols, right side of y-axis)
at the wall plates y = 1 and y = 0 for different viscosity ratios η, thermal conductivity ratios k, and electrical conductivity ratios σ , Hartmann
numbers Ha1, Brinkman numbers Br1, and radiation parameters F1, respectively. The other parameters are a = 0.4 for (a)–(f), η = 2.0 for
(b)–(f), k = 1.5 for (a) and (c)–(f), σ = 10.0 for (a) and (f), σ = 1.0 for (b), (d), and (e), Ha1 = 3.0 for (a)–(c) and (e)–(f), Br1 = 2.0 for
(a)–(d) and (f), and F1 = 2.0 for (a)–(e).
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FIG. 17. Comparison of present study (circular symbols: red,
black, and blue) and the analytical results (continuous lines: red,
black, and blue) of Duwairi et al. [58]. Plots show the spatial vari-
ation of (a) velocity u and (b) temperature θ profile for increasing
Hartmann numbers Ha.

H. Rate of heat transfer

The rate of heat transfer (h1 and h2) per unit area at the
plates y = 1 and y = 0 can be obtained from,h1 = dθ1

dy |y=1

and h2 = dθ2
dy |y=0, whereas θ1 and θ2 can be evaluated using

expressions (28) and (29). Figures 16(a)–16(f) show the varia-
tion of dimensionless heat transfers, h1 (red symbols, left side
of y-axis) and h2 (blue symbols, right side of y-axis) at the wall
plates y = 1 and y = 0 for different viscosity ratio η, thermal
conductivity ratio k, electrical conductivity ratio σ , Hartmann
number Ha1, Brinkman number Br1, and radiation parameter
F1, respectively. Figures 16(a), 16(d) and 16(e) show that
the dimensionless heat transfer h1 (h2) decreases (increases)
with the increase in η, Ha1, and Br1, respectively, whereas
Figs. 16(b) and 16(f) show that the dimensionless heat transfer
h1 (h2) increases (decreases) with the increase in k and F1,
respectively. However, Fig. 16(c) shows that, with the increase
in σ , both dimensional heat transfer rates (h1 and h2) increase.
The dimensionless heat transfer rates, h1 and h2, essentially
depend on the slope of the temperature profile of the fluids
near the lower (y = 0) and the upper (y = 1) walls.

Figure 16 shows that the fluid properties, like viscosity
and thermal and electrical conductivity, as well as Hartmann
number (magnetic field intensity), Brinkman number (temper-
ature gradient between the fluids and the channel wall), and

FIG. 18. Comparison of present study (discontinuous symbols:
red, blue, and black) and the analytical (continuous lines: red, blue,
and black) results of Haddad et al. [55]. Plots show the spatial vari-
ation of (a) velocity (u, blue circular symbols and continuous line,
left y-axis) and temperature (θ , red square symbols and continuous
line, right y-axis) and (b) distribution of the local Bejan number (Be:
black circular symbol and continuous line) profile for Kn = 0.001.

radiation parameters can effectively control the rate of heat
transfer from the fluids to the channel walls.

IV. CONCLUSIONS

In summary, we identify that the radiative heat transfer and
transversely applied magnetic field can significantly alter the
fluid flow and the heat transfer characteristics in a two-phase
nonisothermal fluid flow between two infinite horizontal par-
allel plates under the influence of a constant pressure gradient.
The velocity profile and the temperature distribution of both
fluids can be tweaked with precision by altering the external
magnetic field intensity as well as the temperature gradient
between the fluids and the channel wall. Application of the
transversely applied magnetic field is found to reduce the
throughput and the temperature distribution of the fluids in a
pressure-driven flow. Furthermore, the study also shows that,
apart from the external handles, the inherent fluid properties,
such as viscosity and thermal and electrical conductivities, can
alter the velocity and temperature distribution significantly. In
addition, the study confirms that the filling ratio of both fluids
can vary the velocity and temperature distribution inside the
channel. The rate of heat transfer at the channel walls can
also be tweaked by the magnetic field intensity, temperature
gradient, and fluid properties.

The study also shed light on the minute details of the en-
tropy production due to the presence of a fluid-fluid interface.
The present research addresses some of the key aspects, such
as the presence of two different fluids, fluid property ratios,
channel filling ratio, and relative strength of the external fields
altering the flow, heat transfer, and magnetic field irreversibil-
ity within a microchannel flow. Evaluation of the entropy
generation due to the heat transfer, magnetic field, and fluid
flow irreversibilities reveals that the total entropy generation
can be reduced to a minimum amount by efficiently control-
ling the Hartmann number, radiation parameter, Brinkmann
number, filling ratio, and fluid properties. The discontinuity
in the analysis of heat transfer, magnetic field, and fluid flow
irreversibilities across the interface either enhances or reduces
the amount of unretractable work associated with the system.
The study also predicts the amount of the entropy production
due to the three different irreversibilities and their relative
contribution to the total entropy generation. This information
can be a key factor in designing such flow systems because
the study sheds light on the optimal design parameters needed
to be maintained in order to minimize or at least reduce the
overall entropy production.

The results described here can be utilized as a preliminary
blueprint for developing more sophisticated MEMS devices
for applications involving thermal transport. Furthermore, the
present model itself can be implemented for analyzing a
wide spectrum of existing EMHD transport processes across
different length scales by judiciously tuning the involved
nondimensional key parameters. The entropy generation, fluid
flow, and heat transfer characteristics of such a confined flow
can be particularly useful in the design and fabrication of a
microfluidic device, which can be integrated to any state-of-
the art micro-emulsifiers, mixers, reactors, flow cytometers,
bioanalysis tools, and drug delivery devices for improved
efficiency of existing technology.
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APPENDIX A: MATHEMATICAL EXPRESSIONS

The expressions for the coefficients P and Q in Eqs. (28)
and (29) are given by

P = p1(B1 + B2a1) + p2 p3

c1F1
, (A1)

Q = q1 + q2 + q3 + q4 − q5(B3 + B4b7)

ηM2d1F2
, (A2)

where p j ( j = 1 − 3), qm (m = 1 − 5), an (n = 1 − 7), bl

(l = 1 − 12), cr (r = 1 − 8), and ds (s = 1 − 11) can be ex-
pressed by the following expressions:

p1 = c1F1(a2 + a3),

p2 = Br1a1, and

p3 = c2 + c3a4 + c4a5 + c5a6 − c1c6a7,

⎫⎪⎬
⎪⎭ (A3)

q1 = −ηM4d2(b1 + b2) + ηM2d3d6(b3 + b4),

q2 = b5d1d11(b9 + b10),

q3 = −ηM4d4(b10 + b11)(d5 + d6b12),

q4 = b2
5d7d8, and

q5 = b5b6d7d9,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A4)

a1 = cosh(2y
√

F1) + sinh(2y
√

F1),

a2 = cosh[(
√

F1 + 2Ha1)y],

a3 = sinh[(
√

F1 + 2Ha1)y],

a4 = cosh(3Ha1y) + sinh(3Ha1y),

a5 = cosh(Ha1y) + sinh(Ha1y),

a6 = cosh(4Ha1y) + sinh(4Ha1y),

a7 = cosh(2Ha1y) + sinh(2Ha1y),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A5)

b1 = cosh[(2
√

F2 + 4M )y},
b2 = sinh[(2

√
F2 + 4M )y],

b3 = cosh[(2
√

F2 + M )y],

b4 = sinh[(2
√

F2 + M )y],

b5 = cosh(y
√

F2) + sinh(y
√

F2),

b6 = cosh(2My) + sinh(2My),

b7 = cosh(2y
√

F2) + sinh(2y
√

F2),

b8 = cosh[(
√

F2 + 2M )y],

b9 = sinh[(
√

F2 + 2M )y],

b10 = cosh[(2
√

F2 + 2M )y],

b11 = sinh[(2
√

F2 + 2M )y], and

b12 = cosh(2My) + sinh(2My),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A6)

c1 = F 2
1 − 5F1Ha1 + 4Ha4

1, c2 = A2
2F1Ha2

1c7,

c3 = A1F1Ha2
1c8, c4 = A2F1Ha2

1c8,

c5 = A2
1F1Ha2

1c7, c6 = 2A1A2Ha2
1 − 1,

c7 = F1 − Ha2
1, and c8 = F1 − 4Ha2

1,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A7)

d1 = 4M4 − 5F2M2 + F 2
2 , d2 = A2

3F2Br2d10,

d3 = −A4Br2d9, d4 = A3Br2d9,

d5 = 2A4M2d10, d6 = F2Ha2
2,

d7 = −ηM2F2d10, d8 = M2A2
4Br2,

d9 = 4M2 − F2, d10 = M2 − F2, and

d11 = Br2Ha2
2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A8)

The coefficients B1, B2, B3, and B4 in expressions (A1)
and (A2) are quite cumbersome and evaluated employing the
boundary conditions in the Mathematica code.

APPENDIX B: VALIDATION

We have modified the governing equations mentioned in
the Secs. II B and II C to asymptotically match the governing
equations of Duwairi et al. [58]. For this, we have taken
the properties of both fluids to be the same in the present
framework so that it can be assumed that a single fluid is
flowing through the microchannel, which is the case for the
case study of Duwairi et al. [58]. Figure 17 shows the effect
of Hartmann number (Ha) on the dimensionless (a) velocity u
and (b) temperature θ profiles, respectively, from the present
study (discrete circular symbols: red, black, and blue) and
the analytical (continuous lines: red, black, and blue) coun-
terpart mentioned in Duwairi et al. [58]. Figure 17 shows
that with the increase in Ha, the velocity u and temperature
θ of the fluid decrease, which means that the electrical con-
ductivity dictates the velocity and the temperature profiles.
These findings are similar to the present study, wherein Fig. 10
shows that with the increase in Ha both the velocity and the
temperature distribution decrease significantly for a bilayer
flow.

The set of governing equations have also been modified to
match the system considered in the study of Haddad et al. [55].
Employing the same approach of the present study to nondi-
mensionalize the governing equations, we arrive at a similar
conclusion with the previous results from an analytical ap-
proach [55]. Figure 18 shows the spatial distribution of (a)
velocity u, temperature θ , and (b) local Bejan number Be pro-
file for a very low Knudsen number (Kn = 0.001). The very
low value of the Knudsen number confirms that the length
scale of the mean-free path of the molecules is significantly
less compared to the physical length scale of the system,
so essentially the fluid flow is in the continuum domain.
The analytical results from the present study in Figs. 18(a)
and 18(b) show a close match with the analytical results of
the previous study [55]. In short, Figs. 17 and 18 asymp-
totically validate the results from the present formulation
with the results from the previous theoretical and numerical
studies.
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