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Magnetically induced interfacial instabilities in a ferrofluid annulus
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We investigate the flow of a viscous ferrofluid annulus surrounded by two nonmagnetic fluids in a Hele-Shaw
cell when subjected to an external radial magnetic field. The interfacial pattern formation dynamics of the system
is determined by the interplay of magnetic and surface tension forces acting on the inner and outer boundaries
of the annulus, favoring the coupling of the disjoint interfaces. Mode-coupling analysis is employed to examine
both linear and weakly nonlinear stages of the flow. Linear stability analysis indicates that the trailing and
leading annular boundaries are coupled already at the linear regime, revealing that perturbations arising in the
outer interface may induce the emergence of deformed structures in the inner boundary. Moreover, second-order
weakly nonlinear analysis is utilized to identify key nonlinear morphological features of the ferrofluid annulus.
Our theoretical results show that linear, n-fold symmetric annular patterns having rounded edges are replaced by
nonlinear polygonal-like shapes, presenting fairly sharp fingers. It is found that, as opposed to the linear patterns,
the nonlinear peaky structures reach a stationary state, characterized by a growth saturation process induced by
nonlinear effects. Furthermore, the response of the ferrofluid ring to changes in the thickness of the annulus,
in the relative strength of magnetic and surface tensions forces, as well as in the magnetic susceptibility of the
ferrofluid material, are also discussed.
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I. INTRODUCTION

The development of interfacial instabilities in radial Hele-
Shaw cells is a classical fluid mechanical problem which
became a prototypical example of moving interface, pattern-
forming phenomena [1]. A Hele-Shaw cell is an experimental
device consisting of two parallel glass plates separated by a
narrow gap filled with a viscous fluid. When a less-viscous
fluid is injected into the more viscous one in this spa-
tially confined cell, the fluid-fluid interface expands radially
outwards and becomes unstable, forming fingerlike struc-
tures [2–5]. These viscous fingering patterns arise due to
the Saffman-Taylor instability [6] which is triggered by the
viscosity difference between the fluids. Due to its practical
and academic importance, Hele-Shaw cell flows and related
interfacial instability phenomena are of primary interest to
physicists, applied mathematicians, and engineers and have
been studied extensively since the late 1950s.

A particularly interesting variant of the conventional radial
Hele-Shaw cell problem, which involves two fluids, and a sin-
gle interface, is that of a fluid annulus [7–13]. Such an annular
fluid configuration establishes three distinct fluid regions, sep-
arated by two interfaces: an inner or trailing interface and
an outer or leading interface. The fluid annulus setup is of
special interest because it involves the interplay between two
disjoint interfaces, something that potentially can lead to new
phenomenology and still unexplored dynamical behaviors not
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available in the usual radial Hele-Shaw cell case (where two
fluids are separated by one interface).

In the annular injection-driven system, depending on the
relative viscosity differences among the fluids, a variety of
pattern-forming scenarios may arise. In Ref. [7], Cardoso and
Woods performed a linear stability analysis, as well as ex-
periments of such fluid annulus problem in radial Hele-Shaw
cells. For the situation in which the trailing interface is highly
stable while the other is unstable, one noteworthy finding is
the possibility of instability suppression by the continuous
thinning of the expanding annulus. Another peculiar obser-
vation is the occurrence of a topological instability in which
the intermediate fluid annulus eventually ruptures, forming
a number of small separate drops. These dual-interface pro-
cesses (instability suppression and drop formation) are not
observed in the usual single-interface problem in radial Hele-
Shaw flows. Ward and White [8] also performed experiments
for a similar fluid annulus system and analyzed a three-layer
radial flow in which an intermediate liquid ring is encircled by
two gases. Thus, as opposed to Ref. [7], in Ref. [8] the outer
(inner) interface is stable (unstable), and the inner gas can
break through the outer annular boundary. Their experiments
aimed at measuring average annular film thicknesses, gas
phase and total areas, and bursting times. In addition, various
different types of interfacial pattern morphologies have been
disclosed.

Still within the scope of injection-driven problems in fluid
annuli in radial Hele-Shaw cells, more recent studies went
beyond ordinary linear stability theory and performed weakly
nonlinear analysis [9] and fully nonlinear simulations [10] to
examine how nonlinear effects impact the dynamic evolution,
and morphological aspects of the spreading fluid annulus.
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Researchers have also devised alternative controlling strate-
gies to try to restrain increased destabilizing behaviors in
dual-interface and multilayer annular fluid systems. This has
been done by finding an optimal value for the annulus’
viscosity to allow the fastest injection rate possible while
maintaining a stable flow [11] or by employing proper time-
dependent injection rates [12,13].

The stability and time evolution of fluid annular structures
have also been examined in rotating Hele-Shaw cells [14–17].
In this context, the cell rotates about an axis perpendicular to
its plates, and centrifugal forces act on the fluids. Therefore,
the rotating fluid annulus problem involves the simultaneous
action of two different types of morphological instabilities:
The traditional, viscosity-contrast-mediated Saffman-Taylor
instability and a centrifugally induced one, driven by the
density difference of the fluids. Depending on the densities
and viscosities of the fluids in the different regions of the
cell, distinct scenarios of interfacial instabilities can be con-
sidered. References [14,15] carried out two different sets of
experiments of a rotating spreading annulus: Reference [14]
considers the situation in which the annulus evolves in a stable
manner, while Ref. [15] focuses on the linear and nonlinear
regimes of the fingering instabilities experienced by the trail-
ing and leading interfaces of the annulus. In these rotating
annulus studies, special attention has been devoted to the
behavior resulting from the coupled motion of the annular
interfaces.

The rotating three-layer fluid system examined in Ref. [15]
is particularly appealing since it comprises the development
of still uncharted unstable behaviors for the expanding fluid
annulus. Distinctive interfacial aspects have been identified,
specially in the deep nonlinear regime and in the limit of
a very thin annulus. Under these conditions, a phenomenon
unique to this annular system has been reported: The forma-
tion of thin fluid filaments at the tip of the outgrowing fingers,
leading to annular interface breakup, followed by the radial
emission of liquid droplets. The doubly connected nature of
the rotating annular fluid domain (as opposed to the simply
connected character of the corresponding rotating fluid blob
problem) has also motivated a number of theoretical studies
for the development of time-dependent exact solutions for
the rotating fluid annulus interface shape (see, for instance,
Refs. [16,17]).

Interesting numerical studies [18,19] investigated a vari-
ation of the immiscible rotating fluid annulus situation
examined in Refs. [14–17]. In Refs. [18,19] researchers con-
sidered the case in which the confined rotating fluids were
miscible. Miscible fluids present negligible interfacial tension,
and consequently diffusion and convection effects play an im-
portant role in determining the shape and dynamic evolution
of the expanding annulus. The result of such centrifugally
driven, miscible interfacial instability of the annulus is the
emergence of even more complex pattern forming structures.
It is also worthwhile to note that a recent work [20] ana-
lyzed the development of injection-driven, miscible viscous
fingering of a fluid annulus without rotation (i.e., miscible
analog of the immiscible injection-driven studies performed
in Refs. [7–13]) through both numerical computations and
laboratory experiments, revealing the formation of very con-
voluted annular morphologies.

It is worth pointing out that the confined fluid annulus prob-
lem has also been studied in another nonstandard Hele-Shaw
cell configuration, namely in a lifting Hele-Shaw cell [21–23].
For the lifting plate arrangement with two fluids and one inter-
face, theoretical and experimental analyses usually consider
an initially circular blob of viscous fluid surrounded by a fluid
of negligible viscosity. In this framing, the upper cell plate is
moved upwards uniformly, while the lower plate remains at
rest, such that the cell gap is a function of time. The uniform
lifting forces the fluid-fluid interface to move inward, making
the outer less viscous fluid to penetrate into the inner more
viscous fluid. As a result of the Saffman-Taylor instability,
visually striking fingering patterns are formed.

The equivalent problem of a fluid annulus in a lifting Hele-
Shaw cell has been very recently examined in Ref. [24] via
experiments and linear stability analysis. Their dual-interface
experiments reveal a considerably different scenario from the
one observed in the usual lifting case with just one interface:
As the upper plate is lifted, the inner interface deforms, and a
single finger arises, while the outer interface remains basically
stable. As time progresses, this finger grows, bifurcates at its
tip, and eventually reaches the outer interface. Meanwhile, the
outer interface is only weakly perturbed. Then, the growing
bifurcating finger detaches from the inner interface and erupts
to the exterior. As time keeps advancing, an even more com-
plex situation is unveiled, in which a second finger emerges at
the inner interface, while intense fingering instabilities arise
at the outer boundary and start to move inwards. After that, a
very convoluted pattern-forming structured is formed as pen-
etrating fingers moving inward puncture the outward-moving
second finger, and cavitation bubbles appear. This sequence of
events for the lifting of the fluid annulus makes this situation
considerably more complicated than the corresponding lifting
case in which only a single interface is present [21–23].

From the material presented above, it is apparent that
the consideration of the fluid annulus problem in Hele-Shaw
cells introduces a quite diverse spectrum of pattern-forming
phenomena and dynamical behaviors which were not present
in its single interface counterparts. Nevertheless, in spite of
the relevance of the investigations previously performed in
the fluid annulus system for various Hele-Shaw cell config-
urations and different driving forces (injection-driven [7–13],
centrifugally induced [14–17], and lifting generated [24]), it
is curious to observe that only nonmagnetic fluids have been
considered. After all, it is well known that the consideration of
magnetic fluids (ferrofluids), subjected to externally applied
magnetic fields, introduces the role of a magnetic body force
whose action enriches the already diverse pattern formation
scenario in Hele-Shaw flows.

Ferrofluids are colloidal suspensions of monodomain
nanometer-size magnetic particles suspended in a non-
magnetic carrier fluid [25,26]. These magnetic fluids are
Newtonian and present a superparamagnetic behavior, being
distinguished by their prompt response to external magnetic
stimuli. The unique hydrodynamic and magnetic properties of
ferrofluids make them remarkable materials to study a variety
of interfacial instabilities and pattern formation processes.
This is particularly true for those patterns emerging in Hele-
Shaw cells, where depending on the symmetry properties of
the applied magnetic field, various interfacial morphologies
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have been produced (see, for instance, Refs. [27–37]). Inter-
estingly enough, if, on the one hand, existing fluid annulus
investigations have not used ferrofluids, then, on the other
hand, it is also valid to say that the study of the dynamics and
pattern formation of confined, annular ferrofluid structures
has been largely underappreciated in the ferrohydrodynamics
literature.

This work aims to begin filling this literature gap by
considering a ferrofluid annulus confined in a Hele-Shaw
cell, surrounded by a nonmagnetic fluid, and subjected to
an applied in-plane radial magnetic field. This opens up the
possibility of studying still uninvestigated pattern-forming
phenomena in such confined annular magnetic fluid system.
This is done by taking into account the influence of magnetic
and surface tension effects at the inner and outer interfaces of
the ferrofluid ring. We employ a perturbative mode-coupling
approach, and perform a linear stability analysis as well as
a second-order weakly nonlinear analysis of the problem.
While the linear analysis permits access to the stability of both
leading and trailing boundaries of the ferrofluid annulus, the
inclusion of second-order effects is simply essential to allow
one to extract important information about the morphology of
such magnetic fluid ring in early nonlinear stages of the flow.
It should be emphasized that the weakly nonlinear approach
and terminology used in this work have also been previously
utilized by many other authors in various perturbative studies
of interfacial instabilities in the Rayleigh-Taylor, Saffman-
Taylor, and crystal growth problems. For a few examples,
please see Refs. [38–46].

The outline of the rest of the paper is as follows. Section II
introduces the problem setup and the governing equations and
presents the derivation of a set of coupled nonlinear differ-
ential equations, which describes the time evolution of the
inner and outer interfaces of the ferrofluid annulus. The linear
stability aspects of the system are examined in Sec. III A.
Then, in Sec. III B, we analyze some relevant features of the
pattern formation dynamics in the weakly nonlinear regime.
We focus on understanding how the magnetic properties of the
ferrofluid, the interplay of magnetic field and surface tension
forces, and the coupling of trailing and leading interfaces af-
fect the development of the nonlinear pattern-forming annular
structures. Finally, Sec. IV summarizes our main results and
provides some concluding remarks.

II. PHYSICAL PROBLEM AND GOVERNING EQUATIONS

The flow configuration of the physical problem is illus-
trated in Fig. 1. An annular layer of ferrofluid (fluid 2) is
separated by two nonmagnetic fluids (fluids 1 and 3). Initially,
the fluid-fluid interfaces are circular, having unperturbed radii
R1 and R2. All fluids are immiscible, incompressible, and
Newtonian and have viscosities η1, η2, and η3. The surface
tension of the inner (outer) interface is represented by σ12

(σ23). The fluids are confined in a Hele-Shaw cell of gap thick-
ness b, and the interfacial destabilization is induced by the
action of an externally applied radial magnetic field [35–37],

H = H0r r̂, (1)

produced by a pair of identical Helmholtz coils, whose electric
currents are equal and flow in opposite directions. In Eq. (1),

FIG. 1. Schematic of the three-fluid, magnetic field-induced flow
in a Hele-Shaw cell. The cell contains an initially circular ferrofluid
ringlike structure of radii R1 and R2 (dashed circles), and viscosity
η2, surrounded by inner and outer nonmagnetic fluids with viscosities
η1 and η3. The system is subjected to an in-plane external magnetic
field H pointing radially outward, which deforms the inner and outer
boundaries of the ferrofluid annulus (solid curves). The interfacial
perturbation amplitudes in the deformed ferrofluid structure are de-
noted by ζ = ζ (θ, t ) and ε = ε(θ, t ), where θ is the azimuthal angle.

H0 is a constant, r is the radial distance from the origin of
the coordinate system (located at the center of the cell), and
r̂ is a unit vector in the radial direction. The Hele-Shaw cell
is located at the mid-distance between the coils, such that the
radial magnetic field is coplanar to it.

Due to the presence of the radial magnetic field, a magnetic
body force ∼M∇H [25–29,47], where H = |H| is the local
magnetic field intensity, and M = |M| the magnetization of
the ferrofluid, acts on the ferrofluid annulus pulling it along
the outward radial direction. In contrast, surface tension forces
try to maintain the annular ring shape. As a result of the
interplay of these magnetic and capillary forces, the initially
circular interfaces of the system can become unstable, and
deform. The perturbed shape of the inner interface is ex-
pressed as R1 = R1(θ, t ) = R1 + ζ (θ, t ), where θ denotes
the azimuthal angle in the r-θ plane (Fig. 1). The net interface
disturbance is represented as a Fourier series,

ζ (θ, t ) =
+∞∑

n=−∞
ζn(t ) einθ , (2)

where ζn(t ) denotes the complex Fourier amplitudes, with
integer wave numbers n. Likewise, we represent the perturbed
shape of the outer interface as R2 = R2(θ, t ) = R2 + ε(θ, t ),
where

ε(θ, t ) =
+∞∑

n=−∞
εn(t ) einθ . (3)

Our perturbative approach keeps terms up to second order in ζ

and ε. In both the Fourier expansions of ζ and ε we include the
n = 0 mode to maintain the area of the intermediate ferrofluid
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layer independent of the perturbations. Mass conservation
imposes that the zeroth mode is written in terms of the other
modes as ζ0 = −(1/2R1)

∑∞
n=1[|ζn(t )|2 + |ζ−n(t )|2] [5]. Sim-

ilarly, we have ε0 = −(1/2R2)
∑∞

n=1[|εn(t )|2 + |ε−n(t )|2].
Since we are interested in the linear and early nonlinear be-
havior of the annular system, in this section our main task
is to derive mode-coupling differential equations which de-
scribe the time evolution of the perturbation amplitudes ζn(t )
[Eq. (2)] and εn(t ) [Eq. (3)], accurate to second order. This
will allow us to investigate interesting linear stability issues,
as well as to extract valuable information about the important
morphological features of the deformed ferrofluid annulus at
the onset of nonlinear effects.

By considering the contribution of magnetic forces, the
motion of the fluids in the effectively two-dimensional Hele-
Shaw cell problem is described by a modified Darcy’s law for
the gap-averaged velocity [27–29],

v j = − b2

12η j
∇(p j − � j ), (4)

where p j = p j (r, θ ) is the pressure and � j is a scalar potential
accounting for the magnetic body force in fluid j ( j = 1, 2, 3).
The subscripts 1, 2, and 3 refer to the inner, intermediate
(annulus), and outer fluids, respectively. In Eq. (4), the scalar
potential is written as

� j = μ0χH2

2
, (5)

with μ0 denoting the magnetic permeability of free space.
Consistently with previous studies, in Eq. (5) we assume that
the ferrofluid is uniformly magnetized and that the magne-
tization is collinear with the external magnetic field, M =
χH [25–29,47], where χ is the ferrofluid’s constant magnetic
susceptibility. It is worth noting that for the nonmagnetic inner
and outer fluids χ = 0, and �1 = �3 = 0. Since the applied
magnetic field [Eq. (1)] presents a natural nonzero gradient,
we take it as the main local field contribution to the magnetic
body force. Under these circumstances, demagnetizing field
effects [27–29,47] can be safely neglected.

From Eq. (4), it can be seen that the velocity field is
irrotational in the bulk (∇ × v j = 0), and it is convenient
to state our moving two-boundary problem in terms of the
velocity potentials φ j (r, θ ), where v j = −∇φ j . In addition,
by considering the incompressibility condition ∇.v j = 0 one
verifies that the velocity potentials obey the Laplace equation
∇2φ j = 0. These velocity potentials can be written as (for
j = 1, 2, 3)

φ1(r, θ ) =
∑
n �=0

α(t )
( r

R1

)|n|
einθ , (6)

φ2(r, θ ) =
∑
n �=0

β(t )
( r

R1

)−|n|
einθ

+
∑
n �=0

γ (t )
( r

R2

)|n|
einθ , (7)

φ3(r, θ ) =
∑
n �=0

ω(t )
( r

R2

)−|n|
einθ . (8)

To find a relationship between the velocity potential coef-
ficients α(t ), β(t ), γ (t ), and ω(t ) appearing in Eqs. (6)–(8),
and the perturbation amplitudes ζn(t ) and εn(t ) in Eqs. (2)
and (3) [and their time derivatives ζ̇n(t ), and ε̇n(t )], we use the
kinematic boundary condition [1]. This boundary condition
expresses the continuity of the normal flow velocity as one
crosses each one of the interfaces. In polar coordinates this
relation is written for the inner interface as

∂R1

∂t
=

(
1

r2

∂R1

∂θ

∂φ j

∂θ

)∣∣∣∣∣
r=R1

−
(

∂φ j

∂r

)∣∣∣∣∣
r=R1

, (9)

with j = 1, 2, and for the outer interface as

∂R2

∂t
=

(
1

r2

∂R2

∂θ

∂φ j

∂θ

)∣∣∣∣∣
r=R2

−
(

∂φ j

∂r

)∣∣∣∣∣
r=R2

, (10)

with j = 2, 3.
The second pertinent boundary condition to our dual-

interface magnetic problem expresses the pressure jump due
to the surface tensions of the interfaces between the successive
fluid layers and to the unequal normal magnetic stresses on ei-
ther side of the ferrofluid annulus. It is given by the augmented
Young-Laplace equation [25,26] evaluated at each interface,

(p1 − p2)|r=R1 =
[
σ12κ12 + 1

2
μ0(M · n̂)2

]∣∣∣∣
r=R1

, (11)

(p2 − p3)|r=R2 =
[
σ23κ23 − 1

2
μ0(M · n̂)2

]∣∣∣∣
r=R2

, (12)

where

κ12 = R2
1 + 2

(
∂R1
∂θ

)2 − R1
∂2R1
∂θ2[

R2
1 + (

∂R1
∂θ

)2]3/2

and

κ23 = R2
2 + 2

(
∂R2
∂θ

)2 − R2
∂2R2
∂θ2[

R2
2 + (

∂R2
∂θ

)2]3/2 .

In Eqs. (11) and (12), κ12 and κ23 denote the interfacial cur-
vatures of the inner and outer interfaces in the plane of the
Hele-Shaw cell, respectively. In addition, n̂|r=R1,2 represents
the unit normal vectors at the interfaces [n̂ r=R1 = [∇(r −
R1)/|∇(r − R1)|]r=R1 and n̂ r=R2 = [∇(r − R2)/|∇(r −
R2)|]r=R2 ]. The term proportional to (M · n̂)2 on the right-
hand side of Eqs. (11) and (12) is commonly known as the
magnetic normal traction term [25,26] and incorporates the
influence of the discontinuous normal component of the mag-
netization at the interfaces.

At this stage of our calculation, we have all elements neces-
sary to find the set of mode-coupling differential equations for
the perturbation amplitudes ζn(t ) and εn(t ). Following usual
procedures adopted in previous weakly nonlinear studies (see,
for instance, Refs. [5,9,36]) in Hele-Shaw cells, we perform
Fourier expansions for the velocity potentials [Eqs. (6)–(8)]
and use the kinematic boundary condition [Eqs. (9) and (10)]
to express the Fourier coefficients of φ j [i.e., α(t ), β(t ),
γ (t ), and ω(t )] in terms of ζn, εn, and their time derivatives.
Substituting these relations, and the pressure jump condition
[Eqs. (11) and (12)] into Darcy’s law [Eq. (4)] and keeping
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terms up to second order in ζ and ε, we obtain the set of
dimensionless coupled equations of motion for both the per-
turbation amplitudes ζn and εn (for n �= 0)

ζ̇n = f1 �(n)ζn + f2 �(n)εn

+ f1

∑
n′ �=0

[F (n, n′)ζn′ζn−n′ + G(n, n′)ζ̇n′ζn−n′ ]

+ f2

∑
n′ �=0

[H (n, n′)εn′εn−n′ + I (n, n′)ε̇n′εn−n′ ]

+ f2

∑
n′ �=0

[J (n, n′)ζ̇n′εn−n′ + K (n, n′)ε̇n′ζn−n′ ], (13)

and

ε̇n = f3 �(n)ζn + f4 �(n)εn

+ f4

∑
n′ �=0

[F (n, n′)εn′εn−n′ + G(n, n′)ε̇n′εn−n′ ]

+ f3

∑
n′ �=0

[H(n, n′)ζn′ζn−n′ + I (n, n′)ζ̇n′ζn−n′ ]

+ f3

∑
n′ �=0

[J (n, n′)ε̇n′ζn−n′ + K(n, n′)ζ̇n′εn−n′ ], (14)

where the overdot represents a total time derivative. In
Eqs. (13) and (14) lengths and time are rescaled by L = r0 and
T = 12(η3 + η2)r3

0/σ23b2, respectively, where r0 is a charac-
teristic length being on the order of the unperturbed radii R1

and R2. From this point onward, unless otherwise stated, we
use a dimensionless version of the equations. In addition,

�(n) =
[
−A|n|NBχ (1 + χ ) − σ

R3
1

A|n|(n2 − 1)

]
(15)

and

�(n) =
[
|n|NBχ (1 + χ ) − 1

R3
2

|n|(n2 − 1)

]
(16)

are time-independent functions. The somewhat complicated
expressions for the nonlinear mode-coupling functions F , G,
H , I , J , K , F , G, H, I, J , and K are given in the Appendix
[see Eqs. (A1)–(A16)]. In Eqs. (13) and (14)

f1 = 1 − A23R2|n|

1 + A12A23R2|n| , f2 = 1 + A12

1 + A12A23R2|n| R|n|−1,

f3 = 1 − A23

1 + A12A23R2|n| R
|n|+1, f4 = 1 + A12R2|n|

1 + A12A23R2|n| ,

where A12 = (η2 − η1)/(η2 + η1) [A23 = (η3 − η2)/(η3 +
η2)] is the viscosity contrast of fluids 1 and 2 [2 and 3] and
A = (η3 + η2)/(η2 + η1). The ratio of the unperturbed radii

R = R1

R2
(17)

plays an important role in our system as it measures the
coupling strength between the interfaces [9–11], and

NB = μ0H2
0 r3

0

σ23
(18)

represents the magnetic Bond number, which quantifies the
ratio of magnetic to capillary forces. In addition, σ = σ12/σ23

is the ratio of the surface tensions.
Equations (13) and (14) represent the mode-coupling

expressions describing the shapes of the boundaries of a fer-
rofluid annulus subjected to an external radial magnetic field
in the confined setting of a Hele-Shaw cell. Note that these
equations are already coupled at the linear level (first order in
ζn and εn), meaning that any disturbance growing in one of the
interfaces may impact the dynamics of the other. As will be-
come clear during the course of this paper, our mode-coupling
method offers the possibility to assess key morphological fea-
tures arising at the ferrofluid interfaces, and their dependence
on the most relevant parameters of the system (R, NB, and χ ).

Observe that in the limit of a very thick ferrofluid annulus,
the interfaces decouple. This physical situation corresponds to
the limit R → 0 such that ( f1, f4) → 1, and ( f2, f3) → 0 in
Eqs. (13) and (14), yielding

ζ̇n = �(n) ζn +
∑
n′ �=0

[F (n, n′)ζn′ζn−n′ + G(n, n′)ζ̇n′ζn−n′ ]

(19)

and

ε̇n = �(n) εn +
∑
n′ �=0

[F (n, n′)εn′εn−n′ + G(n, n′)ε̇n′εn−n′ ].

(20)

In this scenario, which characterizes the two-fluid single-
interface limit, it can be shown that after appropriate
reintroduction of dimensions, Eq. (19) describes the interfa-
cial behavior of a nonmagnetic fluid droplet with viscosity
η1 surrounded by a ferrofluid with viscosity η2, where �(n)
[Eq. (15)] is the time-independent growth rate of the flow.
Note that this situation is stable, and the interface tends to
maintain its circular shape since �(n) < 0 for all the Fourier
modes n, and for any parameter values. Likewise, Eq. (20)
represents the interface behavior of a ferrofluid droplet with
viscosity η2 surrounded by a nonmagnetic fluid with viscosity
η3, where �(n) [Eq. (16)] is the time-independent growth
rate. In this case, some of the Fourier modes have a positive
growth rate [�(n) > 0] depending on the value of NB, and the
flow can be unstable. Equations (19) and (20) are in agree-
ment with previous expressions obtained in Refs. [35,36] for
two-fluid, single-interface, magnetic field-induced flow prob-
lems in Hele-Shaw cells. We point out that to reinforce the
pragmatic and academic relevance of our theoretical results,
throughout this work, we utilize typical parameter values that
are consistent with the ones used in existing experimental
studies of pattern formation in ferrofluids [29,30,48–55].

III. DISCUSSION

A. Linear dynamics of the coupled interfaces

Considering that the two interfaces of the ferrofluid annu-
lus are already coupled at the linear level, prior to addressing
the nonlinear issues connected to the morphology of the
pattern-forming structures, we first discuss some noteworthy
features of the linear regime. In this section, our leading goal
is to analyze the very early time dynamics of the interfaces
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as the coupling strength parameter R is varied. In this ini-
tial time regime, the two interfaces are just mildly deformed
by magnetic forces. Under these conditions, the interfacial
perturbations ζ and ε are so small that second-order terms in
Eqs. (13) and (14) can be neglected. Within this linear frame-
work, the equations of motion for the perturbation amplitudes
[(13) and (14)] are significantly simplified, being reduced to

ζ̇n = f1 �(n)ζn + f2 �(n)εn (21)

and

ε̇n = f3 �(n)ζn + f4 �(n)εn. (22)

Equations (21) and (22) form a system of coupled first-order
ordinary differential equations (ODEs), presenting constant
(in time) coefficients.

In order to solve the system of ODEs, we first rewrite
Eq. (21) as

εn = ζ̇n − f1 �(n)ζn

f2 �(n)
, (23)

and substitute it into Eq. (22) to obtain

ζ̈n− [ f1�(n)+ f4�(n)]ζ̇n+ [( f1 f4− f2 f3)�(n)�(n)]ζn = 0.

(24)

Taking the initial conditions as ζn(0) = εn(0) and ζ̇n(0) =
[ f1 �(n) + f2 �(n)]ζn(0) [obtained from Eq. (23) evaluated at
t = 0], this second-order ODE can be easily solved, yielding

ζn(t ) = ζn(0)

2δ(n)
{[ f1 �(n) + (2 f2 − f4) �(n)] f−(n, t )

+ δ(n) f+(n, t )}. (25)

Finally, by substituting the previous result back into Eq. (23),
we have

εn(t ) = εn(0)

2δ(n)
{[(2 f3 − f1) �(n) + f4 �(n)] f−(n, t )

+ δ(n) f+(n, t )}, (26)

where

δ(n) =
√

[ f1 �(n) − f4 �(n)]2 + 4 f2 f3 �(n)�(n) (27)

and

f±(n, t ) = exp
{ t

2
[ f1 �(n) + f4 �(n) + δ(n)]

}

± exp
{ t

2
[ f1 �(n) + f4 �(n) − δ(n)]

}
. (28)

Equations (25) and (26) describe the linear time evolution
of the perturbations growing (or decaying) in the inner and
outer interfaces, respectively. From these relations one obtains
the linear growth rates of the ferrofluid annular system

λ1(n, t ) ≡ ζ̇n

ζn
= f1 �(n) + f2 �(n)

εn(t )

ζn(t )
(29)

and

λ2(n, t ) ≡ ε̇n

εn
= f3 �(n)

ζn(t )

εn(t )
+ f4 �(n). (30)

Note that both growth rates [Eqs. (29) and (30)] do de-
pend on time, in contrast to the time-independent growth
rates [Eqs. (15) and (16)] found in the simpler two-fluid,

magnetic field-induced flow which has a single interface. An-
other unique feature of three-fluid, ferrofluid annulus problem
is the fact that even if one of the interfaces is initially (at t = 0)
stable, i.e., λ1(n, t = 0) < 0 or λ2(n, t = 0) < 0, it may be-
come unstable for subsequent times (for t > 0) due to the
influence of the other interface. Therefore, already at the linear
level, the ferrofluid annulus system presents a richer dynamics
than its two-fluid, single interface counterpart [35,36].

To investigate the effects of the coupling strength parame-
ter R at the linear level of the annular ring dynamics, in Fig. 2
we plot the two linear growth rates λ1(n, t ) [Eq. (29)] and
λ2(n, t ) [Eq. (30)] of the system as functions of mode n, at
time values t = 0 [Figs. 2(a) and 2(d)], t = 10−3 [Figs. 2(b)
and 2(e)], and t = 2.2 × 10−3 [Figs. 2(c) and 2(f)]. This is
done for R = 0.3, depicted in the top row panels, and R = 0.9,
shown in the bottom row panels. Recall that R [Eq. (17)] is
simply the ratio of the unperturbed radii of the ferrofluid annu-
lus, and since we take R2 = 1 and R1 = R, this dimensionless
parameter is related to the initial ferrofluid ring thickness
through the relation 1 − R. Therefore, larger values of R are
associated with thinner annuli. Moreover, with no loss of
generality, we consider the characteristic physical parameters
NB = 136, χ = 0.8, A12 = A = 1, A23 = −1, R2 = 1, R1 =
R, and σ = 1.

First, we analyze the case in which R = 0.3, meaning
that the coupling between the interfaces is not so strong. By
inspecting Fig. 2(a), we verify that the growth rate λ2(n, t )
of the outer interface is positive in the interval 2 � n � 14
and reaches its largest value at approximately n = 8. These
findings provide useful information about the band of unstable
modes and the wave number of maximum growth (or the
dominant mode), respectively. As time progresses, neither of
these features are significantly affected, as one can observe
in the graphs illustrated in Figs. 2(b) and 2(c). However, note
that while λ2(n, t ) almost does not change with time, λ1(n, t )
is remarkably altered by it. At time t = 0, we observe that
λ1(n, t ) is negative for any mode n [Fig. 2(a)], meaning that
the inner interface is linearly stable against perturbations of
any wave number. With the increase of time, this curve starts
to become positive, first for higher modes n [Fig. 2(b)] and
later for all the modes inside the band of unstable modes
of λ2(n, t ) [Fig. 2(c)]. Note that at t = 2.2 × 10−3, the two
curves are very similar to each other, and for larger values
of time (not presented here), they overlap and stop to vary
with time. We emphasize that this does not mean that the
system reaches a stationary state but rather that, from this
point onward, the linear disturbances in both interfaces grow
at a constant rate.

Now we turn our attention to the bottom row of Fig. 2,
where the value R = 0.9 is considered, and therefore the
coupling strength is stronger than the situation analyzed in
Figs. 2(a)–2(c). We can see that difference in the dynamics
of the system begins already at t = 0: In Fig. 2(d), both
growth rates have small positive values for some modes n;
however, the band of unstable modes, the dominant mode, and
also the magnitude of λ2(n, t ) are significantly reduced when
compared to the equivalent situation presented in Fig. 2(a)
for R = 0.3. When the interfacial coupling is more intense,
one can see that both growth rates evolve in time as two very
similar curves [Fig. 2(e)], and, finally, in Fig. 2(f), we observe
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FIG. 2. Linear growth rates λi(n, t ) with i = 1, 2, as a function of the azimuthal wave number n for R = 0.3 (top panels) and R = 0.9
(bottom panels), and three values of time: t = 0 [(a) and (d)], t = 10−3 [(b) and (e)], and t = 2.2 × 10−3 [(c) and (f)]. In addition, we set
NB = 136, χ = 0.8, A12 = A = 1, A23 = −1, and σ = 1.

that the curves are almost indistinguishable. Therefore, for
situations in which R is large, we expect that the interfaces
evolve linearly to almost the same final shape, aside from a
small difference in the perturbation magnitudes. The findings
unveiled by Fig. 2 highlight the importance of the coupling
strength parameter R in the dynamics of our three-fluid, mag-
netic field-induced flow.

Although the analysis of the linear growth rates performed
in Fig. 2 is a useful way to gain insights into the early
time evolution of the system, these linear predictions are
better visualized by examining the pattern-forming structures
that emerge for the inner and outer interfaces of the fer-
rofluid annulus. Therefore, in Fig. 3 we present the linear
time evolution of the ferrofluid annulus for three increas-
ing values of coupling strength parameter: R = 0.75 for the
top panels [Figs. 3(a)–3(c)], R = 0.92 for the middle pan-
els [Figs. 3(d)–3(f)], and R = 0.95 for the bottom panels
[Figs. 3(g)–3(i)]. The linear interfaces are obtained by using
Eqs. (25) and (26). We consider the interplay of a finite num-
ber N of Fourier modes and rewrite Eqs. (2) and (3) in terms
of the real-valued cosine amplitudes an(t ) = ζn(t ) + ζ−n(t )
[ān(t ) = εn(t ) + ε−n(t )]. More specifically, most of the pat-
terns in this work are generated considering N = 80 Fourier
modes, namely the fundamental mode n = 8 and its harmon-
ics 2n, 3n, . . . , and 80n. This large number of participating
modes (N = 80) is justified in order to guarantee that the
edges of the fingering patterns are quite smooth. This is es-
pecially true for the nonlinear patterns that will be shown in
Sec. III B. Without loss of generality, we choose the phase of
the fundamental mode so that an > 0, ān > 0. In addition, we
take the initial conditions an(0) = ān(0) = a2n(0) = ā2n(0) =
... = a80n(0) = ā80n(0) = 10−5. We point out that the numer-
ical calculations leading to the various patterns shown in this
work have been performed by using the software package
Mathematica.

Throughout this work, we assume that the fundamental
mode is given by the closest integer to the fastest growing
mode at the final time t f of the evolution (i.e., the mode
of maximum growth rate nmax). Note that nmax is obtained
by evaluating either [dλ1(n, t = t f )/dn]|n=nmax or [dλ2(n, t =
t f )/dn]|n=nmax , since both growth rates overlap very rapidly
for times smaller than the final times t f considered in Fig. 3.
Each row of Fig. 3 corresponds to a different time evolution,
and the patterns are depicted at the times (a) t = 7.0 × 10−3,
(b) t = 8.0 × 10−3, (c) t = 8.6 × 10−3, (d) t = 9.5 × 10−3,
(e) t = 1.1 × 10−2, (f) t = 1.15 × 10−2, (g) t = 1.2 × 10−2,
(h) t = 1.4 × 10−2, and (i) t = 1.52 × 10−2. Note that the
values of t f used in Fig. 3(c), Fig. 3(f), and Fig. 3(i) are not
arbitrary. They are defined as the times at which the amplitude
of the fundamental mode of the outer interface has reached the
same magnitude [namely ān(t = t f ) ≈ 7.7 × 10−2] for each
value assumed by R. Recall that the perturbations that emerge
in the outer interface may trigger instabilities in the inner
interface depending on the value of R. Therefore, by keeping
ān(t = t f ) fixed in each one of these three time evolutions,
we guarantee that the influence of the outer interface over the
inner boundary is equal, and in that way, any changes in the
shape of the inner interface are solely due to the interplay of
magnetic and surface tension effects in the ferrofluid annulus.
Finally, we point out that all the other physical parameters are
the same as those utilized in Fig. 2.

Before we begin the morphological analysis of the patterns
displayed in Fig. 3, we would like to stress that although
these patterns are plotted for almost the same set of physical
parameters utilized to plot Fig. 2, in Fig. 3, we have modi-
fied some of the parameters. More specifically, in Fig. 3, we
utilize R = 0.75, R = 0.92, and R = 0.95, in contrast to the
values R = 0.3, and R = 0.9 employed in Fig. 2. Moreover,
the values of final times used in Fig. 3 are also larger than the
values utilized in Fig. 2. Therefore, one should not interpret
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FIG. 3. Snapshots illustrating the typical purely linear evolution of the ferrofluid annulus patterns for R = 0.75 (top panels), R = 0.92
(middle panels), and R = 0.95 (bottom panels). Each row corresponds to a different time evolution, and the values of time t utilized are the
following: (a) t = 7.0 × 10−3, (b) t = 8.0 × 10−3, (c) t = 8.6 × 10−3, (d) t = 9.5 × 10−3, (e) t = 1.1 × 10−2, (f) t = 1.15 × 10−2, (g) t =
1.2 × 10−2, (h) t = 1.4 × 10−2, and (i) t = 1.52 × 10−2. Moreover, these patterns are generated by considering N = 80 (n, 2n, 3n, . . . , 80n)
participating cosine modes, where n = 8 is the fundamental mode. All the other physical parameters are identical to those utilized in Fig. 2.

the patterns depicted in Fig. 3 as the fingered structures cor-
responding to the situations presented in Fig. 2. It should be
clear that these modifications were employed just as a way to
better illustrate, in a more visual fashion, the impact of R on
the morphology of the linear interfaces.

We initiate our discussion by examining the pattern-
forming dynamics shown in the first row of Fig. 3 [Figs. 3(a)–
3(c)] for R = 0.75. In Fig. 3(a), we can observe a thick
ferrofluid annulus delimited by a mildly deformed outer inter-
face and an almost circular inner interface. As time advances,
the inner interface keeps its circular shape, but eight small,
smooth protrusions start to take form in the outer interface,
as one can see in Fig. 3(b). This eightfold sinusoidal shape
is determined by the growth of the fundamental mode n =
8, which reaches much larger amplitudes than its harmonic
modes (2n, 3n, . . . , and 80n). When time advances even
further, the perturbation amplitude of the fundamental mode
ān continues to increase, and one observes that the fingers

of the outer interface grow larger in length. Conversely, the
inner interface exhibits just a very modest onset of pertur-
bation growth. Therefore, for the values t = 8.6 × 10−3 and
R = 0.75 considered in Fig. 3(c), the coupling between the
interfaces is relatively weak, and the inner boundary does not
change much with respect to its initial circular shape.

In Figs. 3(d)–3(f) we present the time evolution of the
ferrofluid annulus for R = 0.92, a case in which the cou-
pling between the interfaces is stronger than the situation in
Figs. 3(a)–3(c) for R = 0.75. By comparing the initial pattern
depicted in Fig. 3(d) with the structure found in Fig. 3(a),
we can only point to the fact that the ferrofluid annulus in
Fig. 3(d) is thinner but that the interfaces look very similar to
those shown in Fig. 3(a). Nevertheless, the difference between
the dynamics of the first and second rows of Fig. 3 starts to be-
come more evident as time increases. In Fig. 3(e), in contrast
to what was found in Fig. 3(b), we verify that both the outer
as well as the inner interfaces present fingered perturbations.
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This behavior becomes even more apparent in Fig. 3(f), in
which both boundaries exhibit a legitimate eightfold shape,
with the outer interface being more unstable than the inner
one. We stress that, although the final times t f in the cases de-
picted in Fig. 3(c) and Fig. 3(f) are different, the amplitudes of
the fundamental mode of the outer interface [ān(t f )] are equal.
In this way, the more prominent eightfold shape exhibited by
the inner interface in Fig. 3(f) is due to the augmented influ-
ence of the outer interface over the inner interface provided by
the thinner ferrofluid annulus. As a matter of fact, this effect is
even more clear when we utilize a larger value of R, as shown
in the bottom row of Fig. 3 for R = 0.95 [Figs. 3(g)–3(i)].
In particular, the inner interface found in Fig. 3(i) is not only
more unstable than the inner boundaries shown in Figs. 3(c)
and 3(f) but also acquires a similar shape to the outer interface,
as if the two interfaces had evolved almost as a single one.
One very important point to be stressed is the fact that the
final time shapes illustrated in Figs. 3(c), 3(f), and 3(i) are
not stationary states. We have verified that, at the linear level,
the perturbation mode amplitudes grow very rapidly as time
progresses and do not reach a stationary value. Consequently,
if one goes beyond t = t f , then the length of the fingers
increase exponentially. As a result, the trailing and leading
interfaces cross one another, and our perturbative approach is
no longer valid.

The physical reason behind the time dependence in the
linear growth rates discussed in Figs. 2 and 3 emerges due
to fluid-dynamic and magnetic interactions between the inner
and outer interfaces of the annular structure, whose intensity
is related to the thickness of the ferrofluid annulus. However,
the fact that the interfaces are physically connected in this
fashion does not necessarily imply a time dependence in the
linear growth rates. Therefore, a key point to understand this
phenomenon at the linear level is to note that what triggers
growth of instabilities on the inner interface is the emergence
of disturbances in the always linearly unstable outer interface
[see Eq. (16)]. So the time-dependent disturbances [εn(t )]
arising in the outer interface are transferred, via finite-size
effects of the annulus, to the inner boundary, influencing its
linear stability, and thus making its growth rate dependent
on εn(t ) or, equivalently, on time. Note that if, for some
reason, perturbations on the outer interface are absent, i.e.,
if εn(t ) = 0, then the outer interface would not impact the
inner interfaces stability regardless of the annulus thickness
(value of R), and, in that case, its linear growth rate would be
independent of time. This physical interpretation is contained
in Eqs. (15), (16), (29), and (30).

The linear results extracted from Figs. 2 and 3 complement
each other and thoroughly illustrate the characteristic linear
dynamic behavior of the disjoint interfaces of the ferrofluid
annulus, under the influence of an applied radial magnetic
field. Nevertheless, it is a well-known fact that, although
purely linear theory provides useful answers concerning the
system’s stability issues, it usually fails to capture the inner
and outer interfaces’ morphologies accurately. For example,
from the existing theoretical studies for the situation of a
viscous ferrofluid drop surrounded by an outer nonmagnetic
fluid (i.e., single interface problem with two fluids) subjected
to a radial magnetic field, the most typical morphological
aspect of the resulting patterns is the formation of starlike

fingered structures presenting sharp fingers [35–37]. However,
by scrutinizing the linear patterns portrayed in Fig. 3, we see
the formation of n-fold structures revealing the emergence of
fingers that are notably rounded at their tips. The absence
of sharp fingers in the ferrofluid annular structures in Fig. 3
indicate that, even though linear theory is capable of cor-
rectly predicting some of the essential effects related to the
coupling of the leading and trailing interfaces, it is not able
to accurately reproduce the ultimate shape acquired by the
magnetically deformed ferrofluid annulus. For these reasons,
in Sec. III B, we take into account the second-order pertur-
bative terms and utilize Eqs. (13) and (14) to try to obtain a
more accurate description of the interfaces’ coupling and their
resulting morphologies for our ferrofluid ring system at the
onset of nonlinearities.

B. Nonlinear ferrofluid annulus morphologies

In this section, we turn our attention to the whole mode-
coupling equations (13) and (14), taking into account the
contributions coming from the intricate second-order terms
[Eqs. (A1)–(A16)]. We focus on investigating the morphology
of the magnetically induced annular ferrofluid structures and
analyze how they are impacted by the combined action of
magnetic and surface tension effects. An important aspect to
be examined is to check how the controlling dimensionless
parameters R, NB, and χ influence the nonlinear dynamics of
leading and trailing interfaces and the ultimate shapes of the
emerging annular patterns.

We initiate our discussion by examining Fig. 4 which
displays the time evolutions of a typical set of weakly non-
linear patterns for our ferrofluid annulus system. The weakly
nonlinear patterns portrayed in Fig. 4 are obtained by numer-
ically solving the second-order mode-coupling equations (13)
and (14). As we did in Fig. 3 for linear patterns, here we
consider the interplay of N = 80 Fourier cosine modes, a
fundamental mode n = 8, and its harmonics 2n, 3n, . . . , Nn.
To allow a direct comparison between the linear patterns
of Fig. 3 and the weakly nonlinear structures illustrated in
Fig. 4, all the the physical parameters and initial conditions
used in Fig. 4 are equal to the ones utilized in Fig. 3. As
will be justified shortly, the only difference refers to the final
times taken in Figs. 4(c), 4(f), and 4(i), as opposed to the
times considered in Figs. 3(c), 3(f), and 3(i). The nonlinear
patterns are depicted at the times (a) t = 7.0 × 10−3, (b)
t = 8.0 × 10−3, (c) t = 1.7 × 10−2, (d) t = 9.5 × 10−3, (e)
t = 1.1 × 10−2, (f) t = 3.4 × 10−2, (g) t = 1.2 × 10−2, (h)
t = 1.4 × 10−2, and (i) t = 3.4 × 10−2. As in Fig. 3, each row
of Fig. 4 corresponds to a distinct time evolution for R = 0.75
[Figs. 4(a)–4(c)], R = 0.92 [Figs. 4(d)–4(f)], and R = 0.95
[Figs. 4(g)–4(i)].

Figure 4 is very illuminating once it permits one to identify
the impact of the nonlinear effects on the shape of the evolving
patterns, already at the lowest nonlinear level. Initially, for
very early times, by contrasting the first column of Fig. 3
[Figs. 3(a), 3(d) and 3(g)] with the first column of Fig. 4
[Figs. 4(a), 4(d) and 4(g)], one can hardly notice any differ-
ence between linear and weakly nonlinear patterns. This is
actually expected, since at very initial time stages, nonlinear
effects can be ignored. However, as time increases, things
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FIG. 4. Snapshots illustrating the typical weakly nonlinear evolution of the ferrofluid annulus patterns for R = 0.75 (top panels), R = 0.92
(middle panels), and R = 0.95 (bottom panels). Each row corresponds to a separate time evolution, and the snapshots are taken for times
(a) t = 7.0 × 10−3, (b) t = 8.0 × 10−3, (c) t = 1.7 × 10−2, (d) t = 9.5 × 10−3, (e) t = 1.1 × 10−2, (f) t = 3.4 × 10−2, (g) t = 1.2 × 10−2,
(h) t = 1.4 × 10−2, and (i) t = 3.4 × 10−2. These weakly nonlinear patterns, which have been generated by employing our second-order
mode-coupling scheme, should be contrasted with the equivalent linear structures depicted in Fig. 3. All physical parameters and initial
conditions used here are identical to those utilized in Fig. 3.

begin to change. This can be readily verified by comparing
the second column of Fig. 3 [Figs. 3(b), 3(e) and 3(h)] with
the second column of Fig. 4 [Figs. 4(b), 4(e) and 4(h)]: It
is quite apparent that now the linear and weakly nonlinear
patterns are different. For instance, the rounded tips and
concave-shaped edges of the outer boundary of the linear
shapes are replaced by outer boundaries having sharper tips
and fairly straight edges in the nonlinear cases. The discrep-
ancy between linear and weakly nonlinear morphologies is
even more evident when one confronts the third column of
Fig. 3 [Figs. 3(c), 3(f) and 3(i)] with the third column of Fig. 4
[Figs. 4(c), 4(f) and 4(i)]: While the linear patterns still reveal
leading and trailing interfaces having blunt tips, the corre-
sponding nonlinear annular conformations unveil their most
salient differing features. Figures 4 [Figs. 4(c), 4(f) and 4(i)]
reveal the formation of inner and outer nonlinear interfaces
that, depending of the value of R, may present very pointy tips,

assuming a characteristic starlike, n-fold polygonal shape. It
is worthwhile to note that these peaky polygonal-like, annular
ferrofluid morphologies for the dual-interface nonlinear situa-
tions closely resemble the typical nonlinear shapes obtained in
the single interface problem of a confined ferrofluid drop un-
der the influence of a radially applied magnetic field [35–37].
This is certainly reassuring, reinforcing the need to go beyond
purely linear analysis in order to properly catch the most
prominent morphological aspects of the emerging patterns in
the ferrofluid annulus system.

A physical mechanism for the origin of the pointy tips
that appear in the nonlinear dual-interface patterns shown in
Figs. 4 [Figs. 4(c), 4(f) and 4(i)] can be given as follows. If,
on the one hand, surface tension forces tend to promote the
formation of rounded tips, then, on the other hand, under a
radial magnetic field [Eq. (1)], the magnetic traction terms
proportional to (r̂ · n̂)2 in Eqs. (11) and (12) reach their largest
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FIG. 5. Plots of the cosine amplitudes of the outer [ān(t )] and inner [an(t )] interfaces as a function of time t , corresponding to each time
evolution presented in Fig. 4. Amplitudes for modes n, 2n, 3n, . . . , 10n are shown. Column (a) is related to the top row of Fig. 4. Likewise,
columns (b) and (c) correspond to the middle and bottom rows of Fig. 4, respectively.

values as n̂ is collinear to r̂. In this way, once a protrusion
is formed at the annular interfaces, the growing fingering
structures tend to become sharper in such locations. In ad-
dition, since the applied magnetic field is proportional to the
radial distance r, larger peaks arise at the leading interfaces.
Moreover, from Figs. 4 [Figs. 4(c), 4(f) and 4(i)] one can see
that this nonlinear peak formation mechanism becomes more
effective as the parameter R is increased, due to the stronger
coupling between the trailing and leading interfaces.

We continue by discussing Fig. 5 which plots the time
evolution of the cosine amplitudes of the outer [ān(t )] and
inner [an(t )] interfaces associated with the situations illus-
trated in Fig. 4. Although the nonlinear patterns shown in
Fig. 4 are produced by considering the interplay of 80 Fourier
modes, for the sake of clarity and simplicity, in Fig. 5 we only
present a few representative curves. More precisely, the curves
related to the time evolution of modes n, 2n, 3n, . . . , 10n,
which have sizable perturbation amplitudes. Even though the
consideration of all 80 Fourier modes is important to generate
accurate nonlinear shapes, having smooth peaks and edges,
the curves for the perturbation amplitudes of larger Fourier
modes would all overlap close to the horizontal axes, being lit-
erally indistinguishable from one another. Figure 5(a) displays
how the amplitudes ān(t ) of the leading interface, and an(t )
of the trailing interface, evolve with time t , corresponding
to the time-evolving patterns illustrated in Figs. 4(a)–4(c).
Similarly, Figs. [5(b) and 5(c)] portrays how the perturbation
amplitudes corresponding to patterns’ evolutions shown in
Figs. 4(d)–4(f) [Figs. 4(g)–4(i)] behave as time passes. By
examining Fig. 5 one promptly identifies the most noticeable
features of the curves: After an initial period of growth, all
perturbation amplitudes saturate and remain unchanged as
time advances. This indicates that the second-order, nonlinear
ferrofluid annulus patterns tend to a stationary-state configu-
ration. This behavior differs significantly from the equivalent
linear situation of the patterns presented in Fig. 3, where the

exponential growth of the perturbation amplitudes proceeds
unchecked.

Now we can justify why the final times taken for the non-
linear patterns shown in Fig. 4 [Figs. 4(c), 4(f) and 4(i)] were
different from the ones used in the linear patterns portrayed
in Fig. 3 [Figs. 3(c), 3(f) and 3(i)]. In the linear patterns,
the perturbation amplitudes grow very quickly in time, in
such a way that one has to consider the largest time before
interface crossing as an upper bound time for the validity
of the perturbative solutions. Conversely, for the nonlinear
patterns the growth of the amplitudes is attenuated, and in
addition, this growth is saturated, leading to a stationary state.
Therefore, while the final times taken in the linear situations
Fig. 3 [Figs. 3(c), 3(f) and 3(i)] are set to avoid the crossing
of the leading and trailing interfaces, the final times in the
nonlinear cases Fig. 4 [Figs. 4(c), 4(f) and 4(i)] are deter-
mined by the times at which the system reaches the stationary
state.

To this point, we have illustrated our main results on the
behavior of the ferrofluid annulus for a representative set of
parameter values, namely for NB = 136, χ = 0.8, A12 = A =
1, A23 = −1, R2 = 1, R1 = R, and σ = 1. Since we were
interested in understanding how the inner and outer interfaces
couple together, we kept the magnetic Bond number NB and
the ferrofluid susceptibility χ constant and analyzed what hap-
pened when the interface coupling parameter R was varied. To
complement our study, now we use a large but fixed value of
R (to favor the coupling between inner and outer interfaces)
and check how the evolving ferrofluid annulus responds to
changes if NB and χ are modified. This is done in Fig. 6,
which exhibits characteristic nonlinear fluid annulus patterns
by considering that R = 0.96, A12 = A = 1, A23 = −1, R2 =
1, R1 = R, σ = 1, and t = 0.1. Our goal is to examine what
happens when a couple of different values of the controlling
parameters NB (NB = 62 and NB = 78) and χ (χ = 1.3 and
χ = 1.7) are used. Under these new parameter conditions the
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FIG. 6. Representative weakly nonlinear ferrofluid annulus pat-
terns for (a) NB = 62 and χ = 1.3, (b) NB = 78 and χ = 1.3,
(c) NB = 62 and χ = 1.7, and (d) NB = 78 and χ = 1.7. Here the
patterns are plotted for R = 0.96, A12 = A = 1, A23 = −1, R2 = 1,
R1 = R, σ = 1, and t = 0.1. The number of resulting pointy fingers
formed in each pattern is (a) 7, (b) 8, (c) 9, and (d) 10.

fundamental modes considered in Fig. 6 are (a) n = 7, (b)
n = 8, (c) n = 9, and (d) n = 10.

In the top row of Fig. 6 the magnetic susceptibility is
χ = 1.3, and the magnetic Bond number assumes the values
NB = 62 [Fig. 6(a)], and NB = 78 [Fig. 6(b)]. On the other
hand, in the bottom row of Fig. 6 χ = 1.7, while NB = 62
[Fig. 6(c)] and NB = 78 [Fig. 6(d)]. By analyzing Figs. 6(a)
and 6(b) one notices the formation of typical starlike ferrofluid
annular structures in which both the inner and outer interfaces
are quite deformed. One can see that, keeping χ fixed and by
increasing the value of NB, the overall morphological aspects
of the annular patterns are not changed dramatically, the only
difference being that larger NB results in a structure having
a larger number of peaky fingers. A similar effect is also
observed in Figs. 6(c) and 6(d) for a higher value of χ , also
leading to the emergence of starlike-shaped ferrofluid annuli.
In the end, we can see that by manipulating the values of
NB and χ one can generate peaky ferrofluid patterns present-
ing different number of fingers. However, the general shape
of the pattern is not significantly modified. These findings
support the generality of our results presented in Figs. 4
and 5.

It is worth noting that all conclusions we have reached
so far regarding the basic dynamic behavior, and the most
fundamental morphological aspects of the ferrofluid annuli
have been illustrated by considering the formation of very
symmetric n-fold structures [Figs. 3, and 4, 6]. The symmet-
ric nature of the resulting pattern-forming shapes is due to
the way the patterns have been generated, i.e., considering

FIG. 7. Representative weakly nonlinear ferrofluid annulus pat-
terns obtained by considering the nonlinear coupling of all sine and
cosine Fourier modes in the interval 2 � n � 80 and two different
sets of random initial phases. Each row of this figure corresponds to
a particular set of random initial phases, and the patterns are plotted
for R = 0.75 and t = 7.75 × 10−3 [(a) and (c)] and R = 0.92 and
t = 9.1 × 10−3 [(b) and (d)].

only cosine modes, where a fundamental mode n interacts
with many of its harmonics. In addition, this has been done
under a set of initial conditions in which the participating
modes were only a fundamental mode n and its harmonics
2n, 3n, 4n, . . . , Nn, where N = 80. At first glance, all these
circumstances may look somewhat arbitrary, but it turns out
they are quite general. To make this point clear, we close
this section by verifying the robustness of our main results
by generating ferrofluid annulus shapes under more general
circumstances. This is done in Fig. 7, where weakly nonlinear
ferrofluid annulus patterns are plotted by considering a whole
range of participating Fourier modes 2 � n � 80 (note: not
just a fundamental and its harmonics) and by assuming that
all modes have the same initial amplitudes equal to 10−5. To
make the conditions even more general, we consider the action
of both cosine and sine modes and impose two different sets of
random phases attributed to each participating mode. To allow
us to make a connection between the new weakly nonlinear
patterns presented in Fig. 7, and the ones we portrayed in
Fig. 4, the same set of relevant dimensionless parameters
have been used, namely NB = 136, χ = 0.8, A12 = A = 1,
A23 = −1, R2 = 1, R1 = R, and σ = 1. More specifically, the
weakly nonlinear ferrofluid annular patterns shown in Fig. 7
are such that for each row [i.e., in Figs. 4(a)–4(b), and in
Figs. 4(c)–4(d)], we consider a distinct set of random initial
phases. In this way, the patterns are plotted for R = 0.75
and t = 7.75 × 10−3 [Figs. 4(a) and 4(c)] and R = 0.92 and
t = 9.1 × 10−3 [Figs. 4(b) and 4(d)].
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By comparing the asymmetric patterns shown in Figs. 7(a)
and 7(c) with their symmetric counterpart depicted in Fig. 4(c)
one can see that, despite all differences in the way used to
generate these patterns, one is still able to identify in Figs. 7(a)
and 7(c) all fundamental morphological features found in
Fig. 4(c). For instance, all these patterns present a relatively
thick ferrofluid annulus in which the inner interface is fairly
circular, while the outer interface reveals the appearance of
typical peaky fingers. Likewise, by contrasting the asym-
metric structures displayed in Figs. 7(b) and 7(d) with their
equivalent symmetric shape illustrated in Fig. 4(f), we readily
identify similarities among these patterns. For example, they
all form a thin ferrofluid annulus having a less deformed
trailing interface and a much more disturbed leading interface
where sharp fingered tips emerge. These results reinforce the
robustness of our theoretical findings and support the validity
and correctness of our predictions regarding the most salient
morphological aspects of confined ferrofluid annular struc-
tures induced by externally applied radial magnetic fields.
Nevertheless, it should be pointed out that, in contrast to the
symmetric shapes displayed in Fig. 4, the asymmetric patterns
depicted in Fig. 7 do not reach a stationary state.

IV. CONCLUSION

We have considered the interfacial dynamics and pattern
formation behavior of an annulus of ferrofluid, bounded by
two nonmagnetic fluids, confined in a Hele-Shaw cell. Under
the influence of a radial magnetic field, this magnetic fluid
annular structure spreads in such a way that both the leading
and trailing boundaries of the fluid ring can become unstable.
One main goal of our study was to gain insight into such
dual-interface unstable scenarios and try to identify and under-
stand how the magnetic-field-induced effects impact the time
evolution, and the shape of the ferrofluid annulus.

We tackled the problem theoretically and investigated both
linear and weakly nonlinear stages of the dual-interface flow
via a perturbative mode-coupling approach. Special attention
has been given to the interactions between instabilities at the
leading and trailing interfaces. Our linear stability results have
shown that already at the linear regime, the inner and outer
interfaces are coupled. We have found that the interaction of
these two fronts is regulated by a dimensionless parameter R
which measures the ratio of the outer and inner radii of the
initially unperturbed annular ferrofluid layer. Lower values of
R lead to the formation of thick ferrofluid annular patterns,
having an undulated outer interface, and an inner one which
is just mildly deformed. On the other hand, larger values of
R result in the development of thin annular rings where both
the inner and outer boundaries may present sizable interfa-
cial perturbations. Moreover, our linear calculations indicate
that the interfacial perturbation amplitudes grow very rapidly
with time, forming n-fold ferrofluid annular patterns whose
fingered structures have round tips.

All these linear findings are instructive and useful. How-
ever, the resulting linear ferrofluid annular patterns do not
reveal the emergence of typical, peaky fingering shapes which
commonly arise in the equivalent one-interface, two-fluid
problem of a ferrofluid drop subjected to a radial magnetic
field [35–37]. In order to predict and capture this important

morphological feature (formation of sharp finger tips), we
had to go beyond purely linear analysis. We addressed this
issue by employing a second-order, weakly nonlinear analysis
of the problem. By doing that, first, we have been able to
confirm the correctness of the linear predictions regarding the
role of the parameter R. In addition, we have also found a fam-
ily of nonlinear ferrofluid annular shapes, both thin and thick,
whose most remarkable morphological feature is indeed the
formation of polygonal-like patterns, presenting fairly sharp
fingered structures. We have verified that, depending on the
value of R, these peaky fingers may arise in the outer, as
well as in the inner boundaries of the ferrofluid annulus. Fur-
thermore, we have found that nonlinear effects attenuate the
growth of the perturbation amplitudes, in such a way that they
eventually saturate and reach a constant value. As a result, and
within the scope of our second-order theory, the symmetric,
nonlinear ferrofluid annulus patterns are stationary structures.

In the weakly nonlinear regime, we have also studied the
role played by two other important control parameters of the
ferrofluid annulus system, namely the magnetic Bond number
NB (which expresses the relative measure between magnetic
and surface tension forces) and the ferrofluids magnetic sus-
ceptibility χ , which quantifies the strength of the ferrofluid
material to external magnetic stimuli. We have found that
larger values of NB and χ tend to form patterns having a larger
number of sharper fingers. Finally, we also have checked
that the main morphological aspects identified in our current
theoretical work are fairly robust, even if different initial con-
ditions are used or if one introduces random noise into the
system.

Our present study paves the way for other explorations
on the topic of interfacial instabilities and pattern formation
in ferrofluid annular systems. One interesting possibility is
the use of different magnetic field configurations. For in-
stance, one could utilize the azimuthal magnetic field setup
produced by a current-carrying wire oriented perpendicularly
to the Hele-Shaw cell plates [32–34] or the perpendicular field
arrangement generated by Helmholtz coils having electric cur-
rents flowing in the same direction [27–29]. Different applied
magnetic field compositions may trigger distinct instability
behaviors at the disjoint interfaces of the ferrofluid annulus.
For example, for the radial magnetic field studied in this
work (H ∝ r), the outer interface is naturally more unstable
than the inner boundary of the ferrofluid ring. However, if an
azimuthal magnetic field (H ∝ 1/r) is used, then we would
have just the opposite scenario, making the inner interface
more unstable. In this way, by using different magnetic field
configurations one can magnetically induce changes in the
instability of the interfaces, without having to alter the fluids’
positions or their viscosities. Such a versatile magnetic tuning
is obviously not available in usual versions of the three-layer
Saffman-Taylor problem in a radially spreading, nonmagnetic
fluid annulus [7–10]. Moreover, note that one can even exploit
the utilization of more than one field configuration (e.g., by
using the combined action of radial and azimuthal applied
magnetic fields) in order to make both the inner and outer
boundaries of the ferrofluid ring strongly unstable via purely
magnetic means.

Another natural extension of this work is the development
of fully nonlinear numerical simulations of the dual-interface
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ferrofluid annular system, under various possible field con-
figurations. Despite the nontrivial, doubly connected nature
of the problem, such numerical simulations would open up
prospects for analyzing exciting and still unexplored dynami-
cal responses and pattern-forming structures in the long-time,
fully nonlinear regime.
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APPENDIX: SECOND-ORDER MODE-COUPLING
FUNCTIONS

This Appendix presents the expressions for the second-
order mode-coupling functions which appear in the text.

In Eq. (13), the second-order terms are given by

F (n, n′) = −A|n|
R1

{
NB

2
χ{1 + χ [1 + n′(n − n′)]}

+ σ

R3
1

[
1 − n′

2
(3n′ + n)

]}
, (A1)

G(n, n′) = 1

R1

{
A12|n|[1 − g1(n, n′) sgn(nn′)] − f −1

1

}
, (A2)

H (n, n′) = |n|
R2

{
NB

2
χ{1 + χ [1 + n′(n − n′)]}

− 1

R3
2

[
1 − n′

2
(3n′ + n)

]}
, (A3)

I (n, n′) = 1

R2
{A23|n|[1 − g2(n′) sgn(nn′)]}, (A4)

J (n, n′) = |n|
R1

{
(A23 + 1)R|n′|+2

1 − R2|n′| sgn(nn′)
}
, (A5)

K (n, n′) = |n|
R1

{
(A23R2|n| + 1)R|n′ |−|n|

1 − R2|n′| sgn(nn′)
}
, (A6)

where

g1(n, n′) =
(

A12 + 1

2A12

)
(1 + A23R2|n|)(1 + R2|n′|)
(1 − A23R2|n|)(1 − R2|n′|)

+
(

A12 − 1

2A12

)
, (A7)

g2(n′) = A23 + 1

A23(1 − R2|n′|)
, (A8)

and the sgn function equals ±1 according to the sign of its
argument.

The second-order expressions in Eq. (14) are given by

F (n, n′) = H (n, n′), (A9)

G(n, n′) = 1

R2

{
A23|n|[1 − g3(n, n′) sgn(nn′)] − f −1

4

}
,

(A10)

H(n, n′) = F (n, n′), (A11)

I (n, n′) = 1

R1
{A12|n|[1 − g4(n′) sgn(nn′)]}, (A12)

J (n, n′) = |n|
R2
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1 − R2|n′| sgn(nn′)
}
, (A13)

K(n, n′) = |n|
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1 − R2|n′ | sgn(nn′)
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, (A14)

where
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, (A15)

and

g4(n′) = A12 − 1

A12(1 − R2|n′|)
. (A16)
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