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Dipping into a new pool: The interface dynamics of drops impacting onto a different liquid
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When a drop impacts onto a pool of another liquid, the common interface will move down at a well-defined
speed for the first few milliseconds. While simple mechanistic models and experiments with the same fluid used
for the drop and pool have predicted this speed to be half the impacting drop speed, this is only one small part in
a rich and intricate behavior landscape. Factors such as viscosity and density ratios greatly affect the penetration
speed. By using a combination of high-speed photography, high-resolution numerical simulations, and physical
modeling, we disentangle the different roles that physical fluid properties play in determining the true value of
the postimpact interfacial velocity.
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I. INTRODUCTION

Drop impact onto a pool—of the same or a different
liquid—is of great interest due to its occurrence in a wide
range of natural and technological situations. Raindrop impact
onto leaves [1] and oil spills in oceans [2] or paint drops onto
wet coatings [3] and inkjet printed drops onto liquid layers
[4,5] are just a few examples of this ubiquitous phenomenon.

Just prior to impact, the underside of the drop and the top
of the pool deform as a result of pressure build-up due to the
gas between these compliant surfaces. This may lead to the
entrapment of a gas film or disk which either collapses into
a bubble, splits up and forms bubble rings, or ruptures into
microbubbles [6–8]. Nevertheless, the drop-pool interface will
continue to move downwards at a well-defined velocity. This
penetration velocity is crucial in estimating the volume of the
entrapped bubbles postimpact onto liquid pools, films [9,10],
and soft solids [11–13].

The impact of a drop onto a different liquid has been
studied in the context of the contraction of the air layer caught
between two different liquids [14], the formation and subse-
quent collapse of thin hemispherical air sheets [15] and liquid
craters [16,17] on impact, splash dynamics and composition
of the ejecta sheet when varying the pool’s viscosity [18,19],
thickness [20,21], and density [22]. A simple energetic model
proposed by Tran et al. [9] postulates that the penetration
speed is half that of the impacting drop when the drop and
pool consist of the same liquid. Hendrix et al. [23] arrived
at the same result intuitively by noting that in a liquid-liquid
impact there are two deformable surfaces and thus the velocity
should be halved. This was conjectured to hold for impact
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onto sufficiently soft substrates but that it would probably de-
pend on the target stiffness [11,13]. While impact onto pools
of different liquids is ubiquitous in nature and has been studied
before in the context of splashing [19] and liquid lenses [21],
the role that the liquid properties play on the penetration speed
when the drop and the pool do not consist of the same liquid
has not been considered in great detail before, with previous
investigations [24] highlighting that the relationship would be
nontrivial.

In this paper, we investigate the impact of drops onto deep
pools of another liquid for a wide range of density and viscos-
ity ratios. We apply a combination of high-speed imaging and
high-resolution direct numerical simulations (DNS) to extract
the speed at which the center of the drop-pool interface moves
on impact.

II. EXPERIMENT

As shown in Fig. 1(a), drops are generated by a stainless
steel needle by the action of syringe pump and fall under
gravity and impact onto a 20-mm-deep pool below, filled
with a range of liquids. These impacts are captured by two
high-speed cameras in a shadowgraphy configuration. One
camera (Miro 310Lab) acquires images of the impacting drop
at 20 000 frames per second, from which its diameter and
impact velocity are extracted. The second camera (Phantom
v2512) records the deformation of the pool at 100 000 frames
per second, from which the interface velocity is extracted.
Different combinations of working fluids are used to achieve
a range of density and viscosity ratios, as shown in Table I,
where σa denotes the fluid-air interfacial tension. Further de-
tails on the drop-pool surface tension coefficients are provided
in Sec. III. In order to concentrate on the effects of the
physical property variation (in particular contrast in density
and viscosity between the impacting drop and the pool), we
have selected our fluids to be immiscible in both experiments
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FIG. 1. (a) Diagram of the experimental setup. Two cameras
observe the drop impact above and below the surface of the pool.
(b) Sketch of the axisymmetric simulation domain in its initial state.
(c) Zoomed-in view showing the adaptive mesh refinement, achiev-
ing spatial resolutions down to 0.5 μm.

and throughout the theoretical exploration. This preserves the
sharpness and natural description of the interface location that
allows us to compute the relevant metrics. The setup also
remains consistent in cases when surface tension coefficients
between droplet and pool are set to zero, thus reducing to
same-fluid impact.

III. DIRECT NUMERICAL SIMULATIONS

High-resolution simulations are performed using the open-
source software Basilisk [25–27]. Figure 1(b) illustrates the
simulation setup, with a typical axisymmetric run amount-
ing to O(105) computational cells, down to a resolution of
0.5 μm (corresponding to ∼1860 gridpoints per diameter),
while making extensive use of adaptive mesh refinement and
parallelization capabilities. Furthermore, as we are interested

TABLE I. Properties of fluids used in the experiments.

Fluid ρ (kg m−3) μ (cP) σa (mNm−1)

5 cSt silicone oil (SO) 916 4.6 19.7
20 cSt silicone oil (SO) 953 19.1 20.8
Water 1000 1.0 72.0
Fluorinert FC-40 1855 4.7 16.0
5 cP water-glycerol (W-G) 1053 4.9 68.9

in investigating the effects of varying the properties of two
different liquids in the presence of a surrounding gas, a
full three-phase implementation is used. This allows us to
independently vary the fluid properties while tracking the
interfaces of each phase separately.

The simulation setup itself consists of a drop of nondimen-
sional size 1 within a domain of size 2.2, with the drop center
initially 0.55 units above the pool surface (i.e., an initial sep-
aration of 0.05D). The domain size is found to be sufficiently
large that the domain boundaries do not affect the simulation
results, specifically the bottom boundary. The drop nondimen-
sional density and initial velocity are both set to be 1, and
the nondimensional viscosity, surface tension, and accelera-
tion due to gravity are set to produce the correct simulation
values of the Reynolds number Red , the Weber number Wed

and the Froude number Frd (as defined in Sec. IV). For the
particular choice of 5 cP water-glycerine solution impacting
onto the Fluorinert FC-40 liquid, the interfacial tensions are
σda = 72 mNm−1, σpa = 16 mNm−1, and σd p = 52 mNm−1.
For all other cases they are set to replicate the tension coef-
ficients for the 5 cSt silicone oil combination namely σda =
σpa = 19.7 mNm−1, σdp = 0 mNm−1. The air and liquid pool
nondimensional properties are set according to the ratios of
the physical values to those of the drop. Additional detailed
information on the computational framework, including the
three-phase implementation, validation, and dedicated post-
processing techniques, is provided in Appendix A.

IV. EXPERIMENTAL VALIDATION

A comprehensive set of runs is conducted with drop
property-based dimensionless grouping definitions, namely
the Reynolds number Red = ρdV0D/μd = 52.25-1110.2,
Weber number Wed = ρdV 2

0 D/σda = 3.3-53.4, Froude num-
ber Frd = V0/

√
gD = 2.7-11.4, and the modified Ohnesorge

number [10] Ohe = μd/
√

ρdσdae = 0.091-3.695, where ρd

and μd denote the constant density and viscosity of the drop,
respectively, V0 its impacting velocity, D its diameter, σda the
constant surface tension coefficient between the drop and the
surrounding air, and e is the mean thickness of the air film,
as defined in Reference [10]. Similarly, ρp and μp refer to
the density and viscosity of the pool. A modified Reynolds
number based on the drop density and pool viscosity Re =
ρdV0D/μp = 3.27-3344 will also become useful when mod-
eling and describing the observed phenomena in Sec. V. The
velocity of the drop-pool interface at the center of impact
is denoted by V , giving the normalized penetration velocity
V̄ = V/V0. In this paper we focus on understanding the effect
of varying the viscosity ratio μr = μp/μd and density ratio
ρr = ρp/ρd between the pool and the impacting drop, respec-
tively, on the penetration velocity V̄ .

Figure 2 shows simulation and experimental snapshots for
a 2.56-mm drop of a 5 cP water-glycerol solution impacting
a FC-40 pool. Overlaid images for over and under the liquid
surface demonstrate excellent agreement, confirming the ac-
curacy of the three-phase numerical approach. Furthermore,
we conduct a systematic comparison of numerical simulations
and experiments by quantitatively investigating the temporal
evolution of the interface displacement, Dp. Details of the
image analysis technique utilised to account for irregularities
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FIG. 2. Comparisons between an experiment and direct numerical simulation for a 2.56-mm diameter drop of a 5 cP water-glycerol solution
impacting a FC-40 pool at 0.502 ms−1 with Red = 274.1 (Re = 285.8), Wed = 9.4, Frd = 3.2 at −0.079, 0.171, 0.393, and 0.837 ms after
impact from left to right corresponding to dimensionless times −0.015, 0.034, 0.078, and 0.166, respectively. Top row: View from underside
of the pool surface; bottom row: left-half side, view above pool; and right-half side, simulation results showing the magnitude of the velocity
field. Interface contours are extracted from the numerical data.

in the interface are presented in Appendix B. Figure 3 shows
the temporal evolution of the pool depth for three different
sets of experiments and simulations: (i) drop and pool are of
the same liquid (5 cSt SO drop impacting on a 5 cSt SO pool,
ρr = 1, μr = 1), (ii) liquids have approximately the same
density but different viscosities (20-cSt SO drop on 5 cSt SO
pool, ρr = 0.964, μr = 0.24), and (iii) liquids have approxi-

FIG. 3. Displacement of the center of the drop-pool interface
for experiments and numerical simulations for three cases: drop
and pool are of the same liquid [Red = 197.7 (Re = 197.7), Wed =
26.6, Frd = 4.5, V̄ = 0.503 ± 0.002], liquids have approximately
the same density but different viscosities (μr = 0.24 and Red =
58.4 (Re = 243.3), Wed = 29.7, Frd = 3.9, V̄ = 0.537 ± 0.003),
and liquids have approximately the same viscosity but differ-
ent densities (ρr = 1.76 and Red = 274.1 (Re = 285.8), Wed =
9.4, Frd = 3.2, V̄ = 0.469 ± 0.005). represent experimental data
from Ref. [9], for conditions similar to . Different lines show the
numerical results.

mately the same viscosity but different densities (5 cP W-G
solution drop on FC-40 pool, ρr = 1.762, μr = 0.95). For
the 5 cSt SO drop onto the same liquid case we also compare
our findings against experiments presented in Ref. [9] at much
lower acquisition speeds. This setup enables cross-validation
against state-of-the-art results, while also providing a first
glimpse into multiliquid systems with substantially different
properties. It readily becomes clear that varying liquid prop-
erties has a substantial effect on the penetration velocity.

V. MATHEMATICAL MODELLING

In order to better understand these effects, we develop a
general model for nonmatching liquids inspired by the energy
considerations first described by Tran et al. [9] for the case of
identical drop and pool liquids. Before impact, we consider a
spherical cap with density ρd , volume �, and velocity V0, with
preimpact kinetic energy given by E0

� = ρd�V 2
0 /2. At a time

t after impact, we assume this volume takes the shape of a
hemisphere of radius Rp and thus � = 2πR3

p/3 moving at the
penetration velocity V , with kinetic energy Et

� = ρd�V 2/2.
At this time, the pool has been displaced and its motion
assumed to be confined to a cylinder with radius Rp and
height 2Rp (and hence volume 3�) moving at the penetration
velocity V , with kinetic energy Et

P = 3ρp�V 2/2 (the same
result is obtained by assuming a radial flow field in the pool
[28]). Equating the preimpact (E0

�) and postimpact (Et
� + Et

P)
kinetic energies and solving for the normalized penetration
velocity we obtain the inviscid model V̄ = 1/

√
1 + 3ρr . Note

that for the case ρr = 1 (i.e., drop and pool of equal density),
we recover the oft used result of V̄ = 1/2 [9,10,12,13].

The viscous energy dissipation rate per unit volume in
axisymmetric coordinates is given by εμ(r, z) = 2μ[( ∂Vr

∂r )2 +
(Vr

r )2 + ( ∂Vz

∂z )2] + μ( ∂Vr
∂z + ∂Vz

∂r )2, where Vr and Vz are the ra-
dial and axial velocities, respectively [29]. This indicates
that viscous dissipation scales as μV 2/D2, where the drop
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diameter is taken as the reference length scale. The viscous
dissipation in the pool (up to time t), Et

μ, can be expressed
as εμ�μτ , where εμ, �μ, and τ represent the viscous dissi-
pation rate per unit volume, volume over which the viscous
dissipation occurs and the characteristic time for the im-

pact, respectively. Taking εμ ∼ μpV 2

D2 = k1
μpV 2

D2 , �μ = k2�,
and τ = D

V0
, where k1 and k2 are dimensionless constants, we

can now write Et
μ = Cμp�

2DV0
V 2, where C = 2k1k2 is a dimen-

sionless constant. Including this term in the original energy
balance results in V 2

0 = V 2 + 3ρrV 2 + C μp

ρd DV0
V 2. By using

Red and viscosity ratio, μr , we find the penetration velocity

V̄ = 1√
1 + 3ρr + C

Red
μr

. (1)

By relaxing the assumptions about the postimpact flow
field and replacing the prefactor of three in front of the density
ratio with another fitting parameter (denoted A), we obtain a
compact two-parameter model

V̄ = 1√
1 + Aρr + C

Red
μr

. (2)

This leads to a simple yet versatile tool to investigate the
influence that both different viscosity and density ratios play
in establishing the penetration velocity. The fixed values for
the constants C and A are obtained by fitting the models to
our entire dataset consisting of 54 numerical results. For the
one-parameter model (1), the best fit value of C is 19.1537,
while for the two-parameter model (2) the values of C and
A are 24.3983 and 2.7096, respectively. For the conditions
explored here, a typical value for C

Red
is ∼0.25. At first glance

this seems to imply that the effect of density on the pene-
tration velocity is significantly greater than that of viscosity.
We emphasize, however, that in real-world situations viscosity
ratios much larger than density ratios are often encountered:
Silicone oils can span seven orders of magnitude in viscosity,
whereas density ratios rarely exceed a factor of 10.

It is possible to further simplify the modeling frame-
work by noticing that the ratio of viscosities provides useful
physical insight but artificially increases the number of dimen-
sionless groupings in expressions (1) and (2), given that the
simplified model does not depend on the droplet viscosity. A
natural way to address this issue is to make use of the pre-
viously defined modified Reynolds number Re = ρdV0D/μp,
where the droplet density and the pool viscosity are used
instead. This leads to an expression which, beautifully, only
depends on two dimensionless parameters, ρr and Re, in the
form

V̄ = 1√
1 + Aρr + CRe

−1
, (3)

as a counterpart to the previous two-parameter model (2).
In the subsequent discussion we will refer to models (1)

and (2) in order to first isolate the individual contributions of
the studied physical property ratios (density and viscosity),
ultimately summarising our insight using the compact toolkit
provided by the updated expression (3).

VI. DISCUSSION

Figure 4 illustrates the penetration velocity against (a)
the density ratio and (b) the viscosity ratio for our simula-
tions, experiments, and proposed models (1) and (2) alongside
inviscid-theory predictions [9]. For the simulations in each
case the drop properties are held constant (corresponding to
a D = 1.9 mm 5 cSt SO drop) while V0, and ρr or μr are var-
ied independently. For the numerical results, the penetration
velocity for each impact event represents the velocity of the
interface averaged over 0.1 dimensionless time from the mo-
ment of impact and this is equivalent to ∼300 to ∼600 μs. In
some cases, for both experiments and numerical simulations,
the penetration speed varied slightly due to the presence of
entrapped bubbles or due to the rapid collapse of the trapped
air film immediately after impact; however, these disturbances
were short lived and our method (fully described in Appendix
B) was found to be sufficiently robust to account for these
features. Also included are experimental results for different
combinations of fluids, with each point obtained from averag-
ing at least 10 impact events (error bars are smaller than the
symbols in some cases).

Figure 4(a) shows the theoretical models correctly display
the overall trend for the experiments and simulations. The
penetration velocity decreases as ρr increases as the pool
becomes less compliant. For density ratios less than unity the
inviscid model can be interpreted as an upper limit of the
theoretically predicted penetration velocities, whereas both
the one- and two-parameter models (1) and (2) correctly
capture the observed variations with changes in the impact
velocity (and thus Red ). This is expected, as even when we
consider the pool density becoming very small, the compli-
ance induced by the pool viscosity still plays a role. For
density ratios greater than 1, both new models, as well as
the inviscid model, overpredict the penetration velocity. We
hypothesize that the large density of the pool in these cases
significantly affects the underlying modeling assumptions of
the energy balance. By inspecting simulation data for these
cases we notice that the motion within the pool is confined to a
small region close to the drop interface, whereas the energetic
balance assumes that the volume of the pool that moves is the
same for all density ratios. Future modeling could therefore
focus on how the pool motion depends on its density and thus
more accurately quantify the kinetic energy associated with
the pool motion. Another possible direction would be to adopt
a conservation of momentum approach. Preliminary work
has revealed potential benefits in describing high-density-ratio
cases.

For the widely reported case in the literature of same
drop and pool fluids (i.e., ρr = 1, μr = 1), our experiments,
numerical data and theoretical models confirm that the nor-
malized penetration velocity is very close to the frequently
used value of 0.5 (for all considered Red ). Our results reveal,
however, that changes in the physical properties of the liquids
used lead to vastly different outcomes, with penetration veloc-
ities spanning 0.1–0.9 across the wide range of fluid properties
considered here.

The effect of varying the pool to drop viscosity ratio while
keeping the density ratio fixed is also comprehensively inves-
tigated, with the results presented in Fig. 4(b). We find that the

065102-4



DIPPING INTO A NEW POOL: THE INTERFACE … PHYSICAL REVIEW E 104, 065102 (2021)

FIG. 4. Penetration velocity including simulations, experiments, and models for (a) fixed viscosity ratio and varying density ratio and
(b) fixed density ratio and varying viscosity ratio. In each case the droplet corresponds to a D = 1.9 mm 5 cSt SO drop impacting at either
1.1, 0.55, or 0.275 ms−1, with the pool density or viscosity varied to produce the correct ratio. Note the abscissa is logarithmic in the main
figure and linear in the inset. Where error bars are not visible they are smaller than the symbol itself. The numbering of the experimental results
( ) is consistent between (a) and (b) and are as follows: (1) 5 cSt SO drop on 5 cSt SO pool Red = 197.7 (Re = 197.7), Wed = 26.6, Frd =
4.5; (2) water drop on water pool Red = 1110.2 (Re = 1110.2), Wed = 6.6, Frd = 2.7; (3) 5 cP water-glycerol solution drop on FC-40 pool
Red = 274.1 (Re = 285.8), Wed = 9.4, Frd = 3.2; (4) 20-cSt SO drop on 5 cSt SO pool Red = 58.4 (Re = 243.3), Wed = 29.7, Frd =
3.9; and (5) 5 cSt SO drop on 20-cSt SO pool Red = 201.9 (Re = 48.5), Wed = 27.0, Frd = 4.4. The range 3.27 � Re � 3344 is explored
in panel (b). represents DNS run with same conditions of experimental point denoted by . Representative videos are presented as part of
Appendix D.

effect of the viscosity ratio is comparatively smaller, being
particularly minor for viscosity ratios less than 1. This is,
however, entirely expected; as noted above, the coefficient of
the viscosity ratio in the fitted models is an order of magnitude
below its density ratio counterpart. The difference between
the one- and two-parameter models (1) and (2) is most pro-
nounced for low-viscosity ratios. In this regime the viscous
contribution is small and therefore it is the density coefficient
that determines the displacement velocity. While the two-
parameter model (2) has increased accuracy, there is scope
for improvement. Figure 5 shows the data plotted using the
updated expression (3) based on the modified Reynolds num-
ber Re, which elegantly collapses the dataset onto this new

FIG. 5. The dataset from Fig. 4(b) showing the penetration ve-
locity as a function of the composite Reynolds number Re for density
ratio ρr = 1. The inset represents the same plot with linear scale for
the abscissa. While in this case the droplet-based Reynolds number
Red is not relevant, the distinction between the points is retained in
order to facilitate comparisons to Fig. 4(b).

dimensionless grouping. This result demonstrates the asymp-
totic behavior of V̄ for large values of Re, further confirming
the description above. For small viscosity ratios the majority
of the viscous dissipation occurs within the drop rather than
the pool (as discussed in more detail Appendix C)—an aspect
deemed negligible in the models. Attempts to include this
effect have, however, led to overfitting and ultimately loss
of generality. Furthermore, previous work [30] into droplet
impact onto solid surfaces has shown that, for low-speed
impacts, the viscous dissipation due to the presence of the
air layer can become significant. We have looked into this
effect for the setup presented here, with more details also
presented in Appendix C. Our results indicate that the contri-
bution of the air toward the total viscous dissipation does not
translate into a significant effect on the penetration velocity
even for comparatively lower Reynolds numbers. While the
presence of the gas may significantly affect the dynamics in
droplet-solid impacts, the deformable nature of the impacted
surface appears to mitigate these effects over the regimes and
timescales of interest here.

We also revisit recent results in the literature in order to fur-
ther contextualize the predictive power of our derived model.
For the case of a 500-cSt SO drop impacting onto a 1-cSt
SO pool (with μr ≈0.002, ρr = 0.843), Li et al. [24] report
a normalized penetration velocity of 0.54 ± 0.02. While the
exact Reynolds number for this case is not provided, the range
of Red is given as 1145 < Red < 8500 and thus, combined
with the very small viscosity ratio, we find it justifiable to
consider the viscous term in the model when calculating V̄ as
being negligible. This is further supported by Fig. 4, where
for very low viscosity ratios we found that the penetration
velocity varies only weakly with μr . Thus substituting ρr =
0.834 in (1) and (2) and ignoring the viscous term we obtain
V̄ = 0.534 and V̄ = 0.554, respectively, both of which are
in good agreement with previously reported findings in this
regime [24].
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VII. CONCLUDING REMARKS

In this study we uncovered and systematically investigated
the rich behavior of the impacting front between a drop and
pool in the context of general multiliquid impingement sce-
narios. Motivated by the commonplace strong discrepancies
in physical properties (density and viscosity) between the
impactor and its target, we used high spatial and tempo-
ral resolution experimental methods to capture a previously
unrecorded level of detail, as well as direct numerical simu-
lations capable of discerning the delicate multiscale features
within such challenging contexts. We constructed a theoret-
ical model accounting for all of these parameters, building
on previous simpler single-liquid inviscid approaches. We
showed that both trends and quantitative predictions for the
impacting front velocity can be encapsulated as part of a
simple formula V̄ ≈ [1 + 2.71ρr + (24.3983/Red )μr]−1/2 ≈
(1 + 2.71ρr + 24.3983 Re)−1/2, with predictive capabilities
spanning three orders of magnitude in density and viscosity
ratios, as well as a wide range of impact conditions described
by 50 � Red � 1110 or 3.27 � Re � 3344. This allowed us
to unfold and explain a rich landscape of impact front be-
haviors, with significant departures from the typically used
V̄ = 1/2 formula derived in single-liquid impingement sce-
narios. In particular, it allowed us to determine that the main
contribution to the penetration velocity is the inertia due to
the differing densities of the drop and pool. Furthermore, we
have characterised the non-negligible decrease in the impact
velocity found as the viscosity ratio between the pool and drop
is larger than unity, while also theoretically and experimen-
tally confirming that the penetration velocity does not change
significantly should the pool viscosity be lower than that of the
drop. The developed framework provides substantial insight
into general multiliquid systems of interest for the first time,
which is particularly relevant given that more often than not
drops will impact different fluids—when painting, printing,
and even cooking.

The raw data, as well as the code supporting the numerical
findings of this study, are available from the corresponding
author upon request.
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APPENDIX A: NUMERICAL SETUP AND VALIDATION

In what follows we provide relevant details on our DNS
setup, as well as information on the typical computational
effort required to ensure accurate and robust results in this
context. We have developed our code as part of the Basilisk
[25] package, an open-source second-order accurate in time
and space partial differential equation solver, employing the

volume-of-fluid (VOF) method for interfacial flows. With
these simulations we are able to both validate against our
own experimental results (as well as previous studies in the
literature), complement them with flow information which is
difficult to image or extract, as well as investigate a wider
range of density and viscosity ratios that may not be exper-
imentally feasible.

One of the strengths of this computational platform in
the context of rapidly evolving multiscale interfacial flows
rests in its ability to employ both adaptive mesh refinement
(AMR) and parallelization capabilities. Figure 1(c) shows the
snapshot of the flow demonstrating the spatial variance of the
resolution level to be focused around the drop and pool inter-
faces. In this case the mesh is adapted based on changes in
the magnitude of the velocity field and interface location. The
saving from using AMR is considerable (by at least an order
of magnitude in our context), reducing the number of degrees
of freedom down to O(105), which is tractable using sufficient
computational power. Up to 2500 CPU hours extending over
32 threads have been employed to ensure submicron resolu-
tion and a sufficient level of accuracy for robust results. Mesh
independence, comparison to experimental data (elaborated
on in Sec. IV), as well as early validation to the multifluid
liquid lens literature [21,31] have been conducted to ensure
the reliability and reproducibility of the numerical results.
In regimes of interest it was generally found that a smallest
computational cell size equivalent to approximately 2000 cells
per drop diameter was required for robust behavior. Tests with
up to 4000 cells per diameter were frequently conducted to
affirm the quality of the results, with 8000 cells occasionally
employed over early timescales in order to ascertain the level
of detail needed for the most delicate simulations described by
either larger impact velocities or stronger contrasts between
physical properties of the impacting drop and the pool.

In order to measure the pool displacement velocity the
simulation outputs the pool, air and drop interfaces every
0.001 simulation time (of a maximum simulation time of up to
0.6, corresponding to a physical time of between 1 and 4 ms).
Numerically obtained drop interfaces are then postprocessed
in MATLAB in order to extract the center line position of
the interface as detailed below from which the penetration
velocity is found.

Specifically for this problem we need to use a three-phase
version as we need to be able to simulate the motion of the
pool, drop, and surrounding air. In order to do this, instead of
using the standard one VOF field used in a two-phase simula-
tion (as performed previously in, e.g., Ref. [19]), we use three
fields, one for each phase. Consequently, each fluid property
(for example, density) is expressed in terms of these three
VOF fields, and here we use the arithmetic mean for the den-
sity and the harmonic mean for the viscosity as this produces
more stable results at large viscosity ratios. Furthermore, in
the three-phase case, as there is a VOF for each fluid, this
means that at each physical interface there are actually two
VOF interfaces. Consequently, the surface tension coefficient
for each VOF is set such that at each physical interface the
surface tension coefficients of the two present VOFs sum to
produce the correct interfacial tension. Specifically for phase
i of phases i, j, and k the surface tension coefficient σi is set to
be equal to (σi j + σik − σ jk )/2; consequently, if, for example,
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there was an interface between phases i and j then σi and σ j

would sum to σi j , the correct value.
As well as verifying the code with comparisons to exper-

iments performed here and in the literature reported below
the three-phase solver was also verified by simulating the
case of a liquid lens whereby a spherical drop is initialized
at rest in a pool and subsequently attains the shape of a lens
due to the three different surface tension forces acting on
it. The equilibrium values of the interface angles from these
simulations are then extracted and compared to the theoretical
ones showing good agreement and thus that the three-phase
solver is performing as it should. A similar approach to verify
a three-phase solver using liquid lenses was performed in
Ref. [21].

APPENDIX B: INTERFACE VELOCITY CALCULATION

As the main aim of this work is to find the drop penetration
velocity which to do so we need to track the displacement of
the liquid-liquid interface as part of the impingement process.
The technique used should be sufficiently robust to accurately
discern the quantities of interest even in our more general
setup with potentially vastly different density and viscosity
ratios between drop and pool, which we show can introduce
substantial variance in the dynamics. The presence of the air
film between the pool and drop which ruptures during the
impact contracting into a central bubble can make the tracking
of the pool motion ambiguous.

Figure 6 shows the results of four different methods of
tracking the pool motion and the effect that the bubble has.
When tracking the top or the bottom of the bubble (which
corresponds to the underside of the drop or the top of the
pool, respectively) the contraction of the ruptured air film
into a central bubble causes a large deviation from the overall
pool motion resulting in a large disturbance to the measured
velocity. One possible way to avoid this would be to track
the midpoint of the bubble as one might assume that the
deviations on the top and bottom would cancel out producing
a smooth measure of the pool displacement. As is seen from
Fig. 6, this produces an improved result, with only minor
velocity deviations. However, looking at Fig. 7, we can see
that when the density or viscosity ratios are far from 1 the
bubble can become displaced either upwards into the drop
or downwards into the pool. In these cases the bubble center
point does not correspond to the drop-pool interface location
and the motion of the bubble into the pool or drop can drasti-
cally affect the measured velocity.

For this reason we introduce a new way of finding the
pool position by extracting points on the drop-pool interface
sufficiently far away from the central bubble(s) and fitting a
quadratic to these points to find where the interface would
be in the absence of the entrapped bubble. Figure 7 shows
the results of the proposed methodology for identical and
different pool and drop densities and viscosities, from which
it can be seen that this method produces excellent results even
for significantly varying physical properties. As can be seen
in the case of equal density and viscosity ratios, the fitting
method and bubble midpoint produce very similar results but
the greatly increased performance is seen for when these ratios
are different and the bubble detaches and becomes encapsu-

FIG. 6. (a) The front displacement and (b) velocity against sim-
ulation time for four different measurement techniques. In the case
of tracking either the top or bottom of the bubble (corresponding
the underside of the drop or the top of the pool, respectively) the
contraction of the air film into a bubble produces large variations
in the displacement and thus velocity. Following the middle of the
bubble lessens this effect, but it is still visible in the velocity. By
fitting a quadratic function to the profile of the underside of the drop
(as demonstrated in Fig. 7), an accurate measure of the front motion
can be found. In this case the simulation corresponds to the impact
of a 5 cSt SO drop onto an identical pool with Red = 104.5 (Re =
104.5), Wed = 26.724, and Frd = 4.0 at resolution level 12.

lated into the drop or the pool. The temporal results for one
such fitting method can also be seen in Fig. 6, where there are
no perturbations to the motion visible. Furthermore, as stated
in Sec. VI, the penetration velocity was found by averaging
the pool velocity over 0.1 dimensionless time units. During
this interval, the instantaneous velocity remained constant to
within ∼2% of the average velocity for the vast majority of
analyzed scenarios (see negligible error bars in Fig. 4 as rele-
vant proxy for the error magnitudes). The least-well-behaved
result can be seen in Fig. 4(b) for a large viscosity ratio μr =
16 and a more violent impact, in which case instantaneous
velocities still remained within 4.5% of the average velocity
reported. Simulations and experiments also agreed very well
(as demonstrated in Fig. 2). The theoretical model, on the
other hand, only offers a constant value for the penetration
speed, as it is not a dynamic model and, as described in the
text, offers information relevant to a short time after impact.
Due to the available computational resources, the simulations
ran for 0.6 dimensionless time units. As shown in Fig. 6, the
penetration speed V/V0 hardly changes from t = 0 to t = 0.25
(dimensionless time, equivalent to 800 μs for this particular
case), consistent with the experimental values for most cases.
As the bulk of the drop continues to penetrate, further viscous
dissipation, buoyancy effects, drop and pool deformation,
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FIG. 7. Comparison of the different methods for tracking the interface position for (a) ρr = 1, μr = 1, t = 0.116; (b) ρr = 4, μr = 1,
t = 0.216; (c) ρr = 1, μr = 0.5, t = 0.216; and (d) ρr = 1, μr = 1 at early times (t = 0.016) just after the rupture of the air film. In all cases
the impact conditions are Red = 104.5 [Re = 104.5 except (c) where Re = 209.0], Wed = 26.724, and Frd = 4.0 at resolution level 12. In
each case the inset shows the bubble region in detail with the maroon square, triangle, and circle showing the bubble top, middle, and bottom,
respectively and the cyan triangle the position of the interface by fitting a quadratic to the drop underside. The quadratic function is fitted to
the points marked in green on the underside of the drop a sufficient distance away from the central bubble. The black line then shows the result
of this procedure.

capillary waves, and effects due to the presence of the bot-
tom of the pool, etc. will result in the penetration velocity
eventually changing, a detail that is not captured here. We
have tested this algorithm across our target parameter space
and found it to be both reliable and efficient. The geometri-
cal reconstruction procedure was found to be sensitive over
short timescales only in extreme scenarios in which mul-
tiple topological changes such as coalescence and rupture
events happen in very quick succession or are particularly
rapid. These were observed in isolated cases toward the high-
est end of our tested impact velocities (e.g., water-glycerol
drop dataset in Fig. 3), with the algorithm still providing
meaningful insight into the target interfacial evolution even
in these difficult conditions. The proposed fitted interface
method proved to be an excellent tool for the target dynamics,
which included complex scenarios in which oscillations in the
bubble formed following the rupture of the trapped gas film
were observed in the present exploration, while also being
relevant to regimes investigated in other recent studies [10].

APPENDIX C: EFFECT OF VISCOUS DISSIPATION

When deriving the model accounting for the affect of vis-
cosity we assumed that its effect was to cause a loss of energy
due to the viscous dissipation in the pool which could be
included in the energy balance. To produce a simple model
we took a scaling argument for how the viscous dissipation
depends on the parameters of interest. In order to verify this
we will take the full equation describing the viscous energy
dissipation and evaluate it numerically throughout the simula-
tion to quantify the energy dissipation and how it varies with
the pool to drop viscosity ratio.

Repeating the equation for the viscous energy dissipa-
tion rate per unit volume in axisymmetric coordinates from
Sec. V as εμ(r, z) = 2μ[( ∂Vr

∂r )2 + (Vr
r )2 + ( ∂Vz

∂z )2] + μ( ∂Vr
∂z +

∂Vz

∂r )2, where the subscripts r and z refer to the radial and
axial coordinates respectively, we measure the total energy
dissipated due to viscosity by integrating this equation over
the entire volume and over time. A redimensionalization of the
energy results would be based on the grouping ρd D3V 2

0 built
on the reference physical values for drop density, diameter
and initial velocity embedded in the simulation setup. It is,
however, useful to retain a dimensionless viewpoint for the

present comparisons. In addition, we can split the energy
dissipation into the three different fluids in the system (drop,
pool and air) to analyze how the different fluids contribute
to the total dissipated energy for different viscosity ratios.
We calculate these energies for viscosity ratios from 1/16 to
16 (and fixed density ratio of 1) for the intermediate impact
velocity, with results summarised in Fig. 8. In each case the
visualized dissipated energy is taken at t = 0.6 (the end of
the simulation timescale), in order to provide a consistent
reference which is independent of when the film rupturing
occurs throughout the dataset. We also include an animation
as part of the Supplementary Material [32] which illustrates
the temporal evolution of the percentage energy dissipation
(the inset in Fig. 8). It shows that after the initial early stage

FIG. 8. Dimensionless viscous energy dissipation per phase
against viscosity ratio for the intermediate impact conditions of
Red = 104.5 (6.53 � Re � 1672), Wed = 26.724, and Frd = 4.0
at resolution level 12. In each case the density ratio is 1 and the
viscosity ratio varies. The values of the viscous dissipation are taken
at t = 0.6. The inset illustrates the same data as a percentage of the
total energy dissipated.
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FIG. 9. Temporal evolution of the viscous energy dissipated per phase (by color) for three different impact velocities (solid line Red =
104.5 (Re = 104.5), Wed = 26.724, and Frd = 4.0, dashed line Red = 52.25 (Re = 52.25), Wed = 3.341, and Frd = 2.9 and dotted line
Red = 26.125 (Re = 26.125), Wed = 0.835, and Frd = 1.4) for the impact of a 5 cSt SO drop onto an identical pool at resolution level 12.
The three inset plots show the energy dissipation for each impact velocity separately, up until the point that the air film ruptures in each case.
The time at which this occurs is indicated by the vertical black lines in the main plot, with the impact velocities again indicated by the line
style.

(t ≈ 0.15) the relative percentage dissipation in each phase is
essentially unchanged.

First, we observe that the energy dissipation is largely con-
stant in the drop and the air, as the viscosities of these phases
are constant throughout the different simulations (however,
different velocity fields within these phases will clearly affect
the energy dissipated). We can clearly see the large difference
in the energy dissipated in the pool across the different viscos-
ity ratios from the inset and in particular that for less than unit
viscosity ratios, the majority of the energy is dissipated in the
drop. By contrast, for ratios greater than one, the majority of
the energy is dissipated into the pool. We find that the energy
dissipated in the pool for the most extreme ratios 0.0625 and
16 are 0.369 and 23.7 times the value for unit viscosity ratio,
respectively.

We therefore identify a threshold level of pool viscosity
below which the energy dissipation in the pool becomes neg-
ligible relative to the total amount of energy dissipated, only
negligibly affecting the pool motion and penetration veloc-
ity. This corroborates with our findings on the penetration
velocity as shown in Fig. 4(b), where we see that there is a
threshold viscosity ratio below which the penetration velocity
is unchanged.

We further investigate the influence of the viscous dissipa-
tion in the air, as it has been shown to be of importance for
low speed impacts [30]. To do so, we consider the temporal
variation in the energy dissipated per phase for three different
impact velocities, the lower two from Fig. 4 and another one
at a lower velocity (corresponding to V0 =0.55, 0.275, or
0.1375 ms−1).

Figure 9 shows the temporal evolution of the viscous dissi-
pation per phase for three different impact velocities, with the
fluids being the same in all cases (i.e., ρr = μr = 1). In the
later postrupture times we observe that the viscous dissipation
in the air is negligible for all impact speeds. Looking at the

inset plots showing the dissipation before rupture, we notice
that in the case of the lowest impact speed the dissipation
in the air film is initially the most significant contribution,
whereas for the higher impact speeds it is equal to or smaller
than its counterparts. However, by t ≈0.19, the energy dissi-
pated in the air levels out, while we can see that the energy
dissipated in the droplet and pool continue to rise. The same
plateauing of the air dissipation is also visible for the middle
impact speed. We note that this time is significantly before
the rupture of the air film, and, by inspecting the variation of
the pool motion at this stage, we find that the dissipation in
the air has a negligible influence on the penetration velocity.
One reason we believe that the air has a reduced effect here is
the deformability of both droplet and pool surfaces.

Another approach to account for the viscous energy dis-
sipation was recently presented by Tang et al. [28] and is
extended here to account for different drop and pool fluids.
Therein the viscous dissipation in the pool is assumed to
occur within a thin boundary layer of thickness δ near to the
pool interface with volume V = 2πR2δ. Within this region
the derivative in the viscous energy dissipation rate per unit
volume is approximated as V/δ and the viscous dissipation
occurs over the impact time period τ = D/V ; this results
in Et

μ = Cμp(V
δ

)2V τ . Assuming a scaling for the boundary
layer thickness of δ = R

Re
1/2
pen

, where Repen = ρdV D/μp = V̄ Re

is the composite Reynolds number based on the penetration
velocity V and pool viscosity μp, and substituting this result
into the overall energy balance leads to

1 = V̄ 2 + 3ρrV̄
2 + 12CV̄ 2Re

−1/2
pen

= V̄ 2 + 3ρrV̄
2 + 12CV̄ 3/2μrRed

−1/2, (C1)

with the first expression above being the natural compact
form taking into account the modeling assumption of the pool
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viscosity being the key ingredient in the nondimensionaliza-
tion, while the second expression (C1) makes the dependency
on the relevant physical property ratios explicit, thus facil-
itating physical interpretation. We also note that while the
expression involving Repen appears to be of the same form as
the model in the main text and could thus also be rearranged
to find an explicit definition for V̄ , this is not actually the
case due to the variable of interest (the penetration velocity
V ) appearing inside the definition of Repen. While Eq. (C1)
bears similarities with the overall energy balance highlighted
in Sec. V, the key difference is that the power of the nor-
malised penetration velocity in the viscous term is now 3/2
rather than 2. Writing V̄ = x2, the above energy balance can
be written as Ax4 + Bx3 − 1 = 0 with A = 1 + 3ρr and B =
12CμrRed

−1/2. This has the important consequence that there
is no convenient explicit solution for V̄ [unlike the results (1)
and (2)]. It is, however, still possible to find the constant C by
fitting the data to Eq. (C1) implicitly, meaning that V̄ can be
found for a given set of parameters by numerically solving the
quartic equation. While this quartic could produce up to four
possible solutions in all of the cases considered here there is
only one positive real root for x, which is taken as the solution
leading to V̄ .

APPENDIX D: ANIMATIONS

We provide detailed visualisation of one of the cases
highlighted in the paper [32], focusing on key physical and
numerical quantities such as the color functions underlying
each of the fluids in our system, the magnitude of the vorticity,
the velocity field norm as well as the grid resolution level.

The selected case is that of a 5 cP water-glycerol
solution drop impacting on a FC-40 pool: Red =
274.1 (Re = 285.8), Wed = 9.4, Frd = 3.2, ρr = 1.762,

μr = 0.959, ρd = 1052.7 kgm−3, μd = 0.0049 Pa s, σda =
72 mNm−1, σpa = 16 mNm−1, σdp = 52 mNm−1. The
nondimensional simulation time of 0.4 units is equivalent
to 2.04 ms. Direct numerical simulation animations show
the velocity magnitude and vorticity and VOF fields and
resolution level, respectively [32]. For the associated
experimental video provided (captured at 100 000 fps but
displayed at 80 fps), we use a 2.560-mm-diameter 5 cP
water-glycerol solution drop impacting on a FC-40 pool at
0.502 ms−1 over a duration of 3.7 ms. This case corresponds
to point 3 in Fig. 4(a) and is captured as a video [32].

We also include a video showing the temporal evolution of
the relative viscous dissipation in each phase corresponding to
the inset of Fig. 8 [32].
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