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Squeezing multiple soft particles into a constriction: Transition to clogging
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We study numerically how multiple deformable capsules squeeze into a constriction. This situation is largely
encountered in microfluidic chips designed to manipulate living cells, which are soft entities. We use fully
three-dimensional simulations based on the lattice Boltzmann method to compute the flow of the suspending
fluid and on the immersed boundary method to achieve the two-way fluid-structure interaction. The mechanics
of the capsule membrane elasticity is computed with the finite-element method. We obtain two main states:
continuous passage of the particles and their blockage that leads to clogging the constriction. The transition from
one state to another is dictated by the ratio between the size of the capsules and the constriction width and by the
capsule membrane deformability. The latter is found to enhance particle passage through narrower constrictions,
where rigid particles with similar diameter are blocked and lead to clogging.

DOI: 10.1103/PhysRevE.104.065101

I. INTRODUCTION

The flow of particles is largely encountered in microfluidic
devices designed to manipulate, sort, or characterize micro-
sized artificial particles or living cells. The performance of
such devices can dramatically be hindered by the clogging
events that take place at the entrance of channels, especially
when the particle size is of the same order as the microchan-
nels’ width or when multiple particles arrive suddenly at
narrow passages [1–4]. While there is an increasing need to
improve the capability of microfluidic devices to handle high
particle throughput, this study is carried out to address the
scenarios that emerge when multiple soft particles are pushed
to flow through an abrupt 90◦ microfluidic constriction (see
Fig. 1). The constriction has a basic geometrical shape, but it is
one of the most commonly encountered microfluidic devices
engineered with the soft lithography technique. The flow of
soft particles into constrictions is also encountered in vivo, for
example, in blood vessels where the accumulation of fat on
their walls may obstruct the flow of red blood cells and other
particles, such as drug-carrier particles.

Recent experimental studies have investigated the clogging
phenomenon by rigid particles [5,6], which are found to form
a stable arch at the entrance of the microfluidic constriction
and thus block the channel. The neck-to-particle size ratio
is found to be the leading parameter that determines the
transition threshold to clogging, with permanent clogs sys-
tematically formed for a neck-to-particle size ratio below 3.
For a sufficiently large neck-to-particle size ratio, the parti-
cles flow either continuously or intermittently depending on
the solid volume fraction. The corresponding dynamics has
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been characterized by stochastic mathematical models. In the
case of soft particles, the existing literature focuses solely on
the flow and deformation of single isolated particles passing
through constrictions [7–12]. In this study, we extend these
previous works and get one step toward mimicking living
cells in microfluidic chips by considering a suspension of soft
particles.

We perform fully three-dimensional simulations as used in
Ref. [8] to study the collective motion of multiple particles
through a constriction while varying two control parame-
ters: (i) the particle deformability to cover the range of rigid
(nondeformable) and soft (deformable) particles and (ii) the
width of the constriction. The details of the numerical setup
are shown in Fig. 1. The deformability is found to affect
the transition to clogging and serves as an additional key
parameter in predicting the mechanism and the behavior of
particles squeezing into a microfluidic constriction. We report
a state diagram that depicts whether or not particles clog the
channel depending on their deformability and the ratio of
the constriction width to the capsule diameter. Moreover, we
characterize the particle passage by analyzing the dynamics of
the number of particles passing the constriction.

II. SETUP AND METHOD

We consider a microfluidic channel with dimensions L =
37.5d (length), W = 6.25d (width), and H = 1.875d (height)
as shown in Fig. 1, where d is the diameter of the capsules
at rest when they adopt a spherical equilibrium shape. We set
d = 2R = 8. All units are given in lattice units as defined by
the lattice Boltzmann method used to compute the flow. The
technical details about the numerical methods used to obtain
the results are given in the Appendix. Both the suspending
and the encapsulated fluids are considered to have identical
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FIG. 1. Numerical setup used to study the flow of capsules
(orange-colored spheres). The microfluidic constriction forms an
angle of 90◦ with the channel walls. The flow direction is from the
left lower preconstriction chamber to the right upper postconstriction
chamber. The main geometrical parameter is the ratio of the channel
width D to the capsule diameter d , D/d , where D is varied and d is
held constant.

kinematic viscosity ν and mass density ρ. The channel inlet
contains initially 38 non-Brownian neutrally buoyant particles
with no viscosity contrast. All the particles have the same
geometrical and mechanical properties (i.e., a monodisperse
suspension). They are randomly placed at the entrance region
of the constriction. The present work is limited to a fixed
number of particles; how this parameter alters the behavior
of the system is left for future study.

A constriction of length Lobst = 6.25d and width D is
placed at a distance Lin = 12.5d from the inlet of the channel
having the width W . A body force fz is applied in the z
direction to generate a flow with a parabolic velocity profile,
whose midplane velocity umax in the absence of particles and
the constriction is given by

umax = fzW 2

8ρν
. (1)

Here fz = 2.22 × 10−6 is set in all simulations.
We study the influence of two dimensionless control

parameters: (i) the aperture defined as the ratio of the constric-
tion width to the capsule diameter D/d and (ii) the particle
deformability quantified by the capillary number

Ca = ρνrγ̇

κs
, (2)

where γ̇ = 4umax/W is the measured shear rate at the wall. We
use also K = 1/Ca, which expresses the dimensionless elastic
modulus of the membrane and characterizes the rigidity of the
particles. The ratio D/d is set to desired values by varying D
while keeping d constant. The value of Ca is varied by varying
only the shear elastic modulus κs while holding all the other
parameters constant.

III. RESULTS

A. Clog and no-clog states

All the simulations are carried out on 40 CPUs during
60 h at the Reynolds number Re = umaxR/ν = 0.1, as is en-

countered in microfluidic flows. Figure 2 shows snapshots
of both the effect of varying the constriction aperture D/d
[Fig. 2(a)] and the effect of varying the particle deformabil-
ity Ca [Fig. 2(b)]. In Fig. 2(a) the aperture degree is varied
from 1.25 (left snapshot) to D/d = 3.25 (right snapshot). The
capillary number is set to Ca = 0.001 to model rigid particles
because when Ca � 1 the capsules deform weakly, and thus
behave mechanically as rigid particles (see Ref. [13]). For
the case of D/d = 1.25 (narrowest constriction), two particles
are found to be sufficient to clog permanently the constric-
tion entrance. For D/d = 2, more than two particles clog
the constriction by building a stable arch while the fluid still
continues to flow. For D/d = 3.25 (widest constriction), the
aperture is large enough to allow and maintain a continuous
flux of particles without observing any clog formation. In
Fig. 2(b) we hold the same aperture degree D/d = 1.25 and
we vary only the capillary number. For nondeformable parti-
cles, with Ca = 0.001, again only two particles are sufficient
to clog the constriction. When increasing Ca, the particles
deform further and thus they can squeeze easily through the
constriction (see Ref. [13]). No clog event is observed for
particles with large deformation capability under flow. At
large Ca and narrow constrictions, the particles cross the con-
striction one by one while forming a regular train and exiting
the constriction as a jet. The reported results are observed
independently of the initial random positions of the particles.

B. State diagram

For a given number of particles (N = 38) and a given
applied flow strength ( fz = 2.22 × 10−6), we explore the state
diagram that gives the blockage status as a function of the con-
striction aperture D/d and the capillary number Ca. The latter
is taken smaller than 0.1 to avoid the limit beyond which the
capsules, whose membrane elasticity follows a neo-Hookean
law, are susceptible to undergo continuous elongation [14].

Figure 3 reports the state diagram, where we distinguish
clearly two main regions representing the clog (red sym-
bols) and the no-clog states (green symbols). The border
separating the two regions (black dashed line) depends on
the deformability of the capsules and their aspect ratio with
respect to the constriction width. It is also sensitive to the
initial spatial arrangement of the particles. Simulations with
three initial conditions are represented with different sym-
bols: open squares, saltires (×), and crosses (+). In the limit
of weakly deformable capsules, i.e., when Ca → 0 (K →
∞), the transition from clog to no-clog states occurs at a
critical value that approaches D/d = 3, which is measured
experimentally for rigid spherical particles and when using
a converging-diverging constriction [5]. By choosing a basic
steplike-shaped constriction here, we intentionally rule out the
angle of the constriction to appear as an additional parameter
[15]. Capsules with a large degree of deformability, beyond
the threshold Ca = 0.005 (below K = 200), can pass without
clogging the constriction independently of the aspect ratio,
even for particles having almost the same size as the constric-
tion width (D/d → 1).

Here we report the effect of the deformability of multiple
fluid-filled particles (not matrix microgel particles). Soft par-
ticles can cross the constriction easily, and by varying their
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FIG. 2. Motion of multiple capsules (N = 38) at a microfluidic constriction for a given flow strength. (a) Effect of the constriction aperture
D/d , with Ca = 0.001, and (b) effect of particle deformability Ca, with D/d = 1.25. Easy passage of the particles is achieved at large D/d and
Ca. Arch structures form at the entrance of the constriction for narrower constrictions and rigid particles. At large Ca and narrow constrictions,
the particles cross the constriction one by one while forming a regular train and exiting the constriction as a jet.

elasticity the threshold for the transition to the no-clog state
drops down. This border is not sharp since it is sensitive to
the initial arrangement of the particles. There, both the clog
and the no-clog states may emerge. In contrast, far from this
blurry border, only one of the two states emerges with 100%

FIG. 3. Clog and no-clog states of multiple capsules (N = 38)
obtained when varying their deformability Ca (or rigidity K) and
the constriction width D/d , while holding the same applied flow
strength. The deformability character of the particles reduces the
threshold of the transition to the no-clog state below D/d = 3
measured experimentally for rigid particles [5]. Simulations with
three initial conditions are represented with different symbols: open
squares, saltires (×), and crosses (+).

probability. In our previous work [8], the state diagram was
reported only for a single deformable particle for which a
single particle can always cross the constriction when D �
d . Moreover, other works dealing with soft particles (e.g.,
Ref. [16]) have not considered varying the deformability as
a control parameter.

C. Dynamics of the particle passage

The number of escapees N (t ), defined as the number of
particles that have passed through the constriction at time
t , is given in Fig. 4 for stiff particles with Ca = 0.001
[Fig. 4(a)] and for soft particles with Ca = 0.1 [Fig. 4(b)].
Three constriction aperture degrees are considered in each
figure: D/d = 1.25, 2.25, and 3.25. For stiff particles and at
small aperture D/d = 1.25, a clog forms, as shown in Fig. 2.
At D/d = 2.25 and 3.25, the number of escapees over time
N (t ) evolves in the same way, linearly at the early stage and
then nonlinearly. This means the flux of the particles across
the constriction dN (t )/dt is almost constant at the beginning
of the simulations. It adopts a greater slope for D/d = 3.25
for which three particles can pass at the same time through
the constriction, while only two particles can pass for D/d =
2.25. In the second stage the number of escapees increases
nonlinearly and slowly. This latter represents the passage of
the remaining particles that are trapped in the corners at the
constriction entrance, where the flow speed is lower. More-
over, these particles need to overcome the step of the inlet
constriction, which further increases the time needed for them
to pass through the constriction.

When the particles are highly deformable, as shown in
Fig. 4(b) for the case of Ca = 0.1, all the particles pass easily
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(a)

(b)

FIG. 4. Dynamics of the number of escapees through the con-
striction N (t ) for (a) rigid spherical particles with Ca = 0.001 and
(b) soft particles with Ca = 0.1 at various constriction widths D/d .
Here N (t ) increases approximately linearly faster; then it slows down
nonlinearly before it adopts a plateau, whose value corresponds to
the total number of particles N for the no-clog state and to a smaller
value N (∞) < N for the clog state. No clogging event takes place
for deformable particles and the evacuation process is fast.

through the constriction, even for the narrower constriction of
D/d = 1.25. One may notice a plateau at 38 (which is the ini-
tial total number of particles contained in the channel inlet) for
D/d = 2.25 and 3.25. This corresponds to the scenario where
all particles have successfully passed through the constriction
and none of them is left in the inlet compartment. This is
the total evacuation, with which we associate the evacuation
time Tevac that measures the time needed to evacuate all the
particles and which is found to increase when narrowing the
constriction width; Tevac is similar to the time needed to totally
empty one compartment of a sand clock made of granular
particles, while in this study the particles are soft and are

(b)

(a)

FIG. 5. Evacuation time Tevac needed for 38 capsules to pass the
constriction as a function of (a) the aperture D/d and (b) the capillary
number Ca. Here Tevac is a decreasing nonlinear function of both Ca
and D/d .

suspended in a viscous fluid. It is reported in Fig. 5 as a
function of D/d and Ca. The Tevac clearly decreases as the
aperture D/d and the capillary number Ca increase because
particle passage is easier when the constriction is wider and
the particles are more deformable. The dependence of Tevac on
both D/d and Ca is nonlinear. The derivation of a scaling law
Tevac = f (D/d, Ca) would be practical in designing microflu-
idic constrictions with desired throughput of soft particles.
However, in the absence of a theoretical model to guide the
scaling, we are only able to extract the exponents that give
the dependence of Tevac on D/d and Ca for the range of
parameters available to our simulations,

Tevac ∝
(

d

D

)0.827

, Tevac ∝ Ca−0.108, (3)
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using the data set plotted on a log-log scale in both Figs. 5(a)
and 5(b). The exponent related to Ca is low; here that means
the constriction aperture D/d is the leading parameter. How-
ever, its exponent of the proportionality 0.827 is larger than
1/2, which is known for the evacuation time of granular dry
particles through a pore due to the contribution of the particle
deformation and the presence of a suspending fluid in the
present study.

IV. CONCLUSION

Multiple deformable capsules passing through a microflu-
idic constriction exhibit dynamics similar to that observed for
a single capsule reported in Ref. [8], with slight differences
due to the collective motion that is rendered cooperative due to
the particle deformation. The capsules either pass the constric-
tion or they get stuck by building an arch at the constriction
entrance. Here the flow is not blocked since the fluid can
flow around and through the blocked capsules. This study
has examined both the effect of the constriction confinement
and the particle deformability degree for a fixed number of
particles and for a given applied flow strength. The suspension
is dilute when compared to the overall volume of the channel
and the constriction, but it becomes dense at the constriction’s
entrance. For the same flow strength, the transition from the
blockage state to the passage is controlled by the size aspect
ratio and the capsule deformability. Capsules with extremely
weak deformability show an almost similar threshold, as mea-
sured experimentally by Marin et al. [5] for rigid particles
D/d = 3. The capsules have revealed the presence of two
types of blockage states, permanent and transient, which lead
to a nonsharp border in the state diagram. The dynamics of the
number of particles crossing the constriction evolves linearly
in the beginning of all the simulations and then nonlinearly
before it adopts a plateau when all the particles have been
evacuated. The complete passage of the capsule through the
constriction is carefully analyzed and it may be used when
designing microfluidic devices for handling high throughput
of soft particle suspensions. At large Ca and small aperture
(D/d → 1), the particles cross the constriction one by one
by forming a regular train, which could be exploited for di-
agnosis in the case of living cells. This study has examined
the role of both the constriction confinement and the particle
deformability for a fixed number of particles, while further
exploration of the parameter space is left for future work,
where we plan to vary the geometry of the constriction and
the number of particles. The small number of particles used in
the present study does not lead to strong stochastic behavior
as observed for a large number of particles, for example, when
flowing through a silo [16], which is described by statistics
and probabilistic mathematical models. Here, faraway from
the border of the state diagram, only one of the clog and
no-clog states occurs. In the vicinity of the border these two
states may emerge with a probability due to the weak but
non-negligible effect of the initial positions of the particles.
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APPENDIX: NUMERICAL METHOD

1. Fluid flow solver

We use the lattice Boltzmann method (LBM) as a meso-
scopic numerical method which allows us to recover the
solutions of the Navier-Stokes equations. We introduce very
briefly the method, while the readers are invited to check out
existing textbooks for more details [17,18]. The spirit of the
LBM consists in streaming a distribution function fi that gives
the probability to find a number of fluid particles on a lattice
node r, at a discrete time step t , and with a discrete velocity
ei. The dynamics of fi is given by

fi(r + ei, t + 1) − fi(r, t ) = �i(r, t ) + Fi(r, t ). (A1)

On the right-hand side, �i(r, t ) is the collision operator. The
time and space steps are both taken to be unity. Here we
use the Bhatnagar-Gross-Krook collision operator [19] �i =
− 1

τ
[ fi(r, t ) − f eq

i (r, t )] that expresses the relaxation of fi to-
ward its equilibrium f eq

i within the relaxation time τ . The f eq
i

is given as a truncated expansion of the Maxwell-Boltzmann
distribution for the velocities in an ideal gas. External applied
forces, including the membrane forces, are incorporated in
Eq. (A1) through the source term Fi such that

Fi(r, t ) = ωi

(
1 − 1

2τ

)(
ei − u

c2
s

+ ei · u
c4

s

ei

)
· F(r, t ), (A2)

where F(r, t ) accounts for either the body force or the mem-
brane forces. Here cs = 1/

√
3 is the lattice speed of sound

and ωi are the lattice weights which, for the D3Q19 lat-
tice used here, are 1

3 , 1
18 , and 1

36 for i = 1, i = 2, . . . , 7,
and i = 8, . . . , 19, respectively. We impose no-slip boundary
conditions on the channel walls using midgrid bounceback
boundary conditions.

2. Mechanics of particle deformation

We consider strain-softening capsules with zero-thickness
membranes that exhibit neo-Hookean 2D hyperelastic me-
chanical behavior with the energy [20]

Es = κs

2

∫
A

[
I1 − 1 + 1

I2 + 1

]
dA, (A3)

where κs is the shear elastic modulus, I1 = λ2
1 + λ2

2 − 2 and
I2 = λ2

1λ
2
2 − 1 are the two deformation invariants, λ1 and λ2

are the principal stretching ratios, A is the surface of each
capsule, and dA is the surface element. In addition, we enforce
the constraint of the capsule volume conservation by using
an energy that gives the cost of any deviation of the actual
volume of the capsule V from its original value V0, which is
the volume of the spherical capsule at rest,

Ev = κv

2

(V − V0)2

V0
, (A4)
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where κv is a numerical parameter whose value is set large
enough to fulfill the volume conservation constraint. Non-
physical wrinkles may also emerge at the surface of the
capsules and are consequently avoided by applying a bending
force Fb, which is derived as a functional derivative of the
Helfrich energy originally proposed for lipid membranes [21],

Fb(xi ) = 2κb[2H (H2 − K ) + 
sH]n, (A5)

where κb is the bending modulus, H = 1
2

∑2
i=1 ci is the mean

curvature, K = ∏2
i=1 ci is the Gaussian curvature, ci is the

principal curvature, 
s is the Laplace-Beltrami operator, and
n is the normal vector pointing outward from the membrane.
The bending modulus is chosen such that the dimensionless
number B = κb/κsr2, which quantifies the relative importance
of the bending rigidity with respect to the shear elasticity,
is small. In this way the bending force mitigates wrinkle
formation while it does not influence globally the dynamics
and deformation of the capsules. Further, H , K , and 
s are
computed following a discrete differential geometry operator
approach [22].

The membrane of each capsule is discretized into 1280
triangular elements and the force on each membrane node xi,
with i referring to the index of the node, is evaluated following
the principle of virtual work such that

Fα (xi ) = −∂Eα

∂xi
. (A6)

The subscript α denotes either {s} for the strain energy, {v}
for the volume energy, or {b} for the bending energy. The
derivatives needed to evaluate the membrane forces are com-
puted numerically using the finite-element method [23]. A
short-range repulsive force is implemented to mimic the hy-
drodynamic lubrication force and to avoid overlap between
particles or between particles and walls,

Frep =
{
ε̄[( 1

di j
)2 − ( 1

δ0
)2] di j

di j
if di j < δ0

0 if di j � δ0,
(A7)

where ε̄ is the strength of the force and di j is the surface-
to-surface distance between particles i and j or the distance
between particle i and the solid node j on the wall. The
repulsive force vanishes when di j is larger than the cutoff
distance δ0 = 1.

3. Fluid-structure interaction

The two-way coupling between the fluid flow and the
capsule dynamics is realized using the immersed boundary

method (IBM), which is a front-tracking method developed
originally by Peskin to study blood flow in the heart [24].
The IBM consists of coupling a moving Lagrangian mesh δ�

representing the capsule membrane and a stationary Eulerian
grid � [25], where the flow is computed with the LBM. The
method has two main steps.

(a) Advection. The flow advects all the capsules’ mesh
nodes as if they are massless pointwise particles. Once the
fluid velocity field u(x, y, z, t ) is computed by the LBM
on the Eulerian mesh, the velocity of each membrane node
u(s1, s2, t ), where (s1, s2) are curvilinear coordinates, is es-
timated by interpolation of the velocities of its neighboring
fluid nodes using a function δ,

u(s1, s2, t ) =
∫

�

δ(r(x, y, z, t ), r(s1, s2, t ))u(x, y, z, t )dr,

(A8)
with r(x, y, z, t ) ∈ �, r(s1, s2, t ) ∈ δ�, and

δ(r1, r2) = φ(x1, x2)φ(y1, y2)φ(z1, z2), (A9)

where

φ(x1, x2) = 1

4

(
1 + cos

π (x1 − x2)

2

)
(A10)

if |x1 − x2| � 2, |y1 − y2| � 2, and |z1 − z2| � 2; otherwise
δ(r1, r2) = 0. All the membrane nodes are then advected us-
ing the explicit Euler scheme

r(s1, s2, t + 1) = r(s1, s2, t ) + u(s1, s2, t ). (A11)

(b) Reaction. When all the membrane nodes are advected,
the overall capsule deforms into a new shape that is not nec-
essarily its equilibrium shape and thus it tries to relax back to
its lowest-energy configuration. By doing so it exerts a force
back upon its surrounding fluid. The forces exerted by the
membrane in the Lagrangian mesh F(s1, s2, t ) are computed
with the finite-difference method and are extrapolated to the
fluid nodes using δ again as a weight in order to have a force
field in the Eulerian grid F(x, y, z, t ),

F(x, y, z, t ) =
∫

δ�

δ(r(x, y, z, t ), r(s1, s2, t ))F(s1, s2, t )dA.

(A12)

This force is plugged into the right-hand side of the LBM
equation.
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