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Metric mechanics with nontrivial topology: Actuating irises, cylinders, and evertors
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Liquid crystal elastomers contract along their director on heating and recover on cooling, offering great
potential as actuators and artificial muscles. If a flat sheet is programed with a spatially varying director pattern,
then it will actuate into a curved surface, allowing the material to act as a strong machine such as a grabber or
lifter. Here we study the actuation of programed annular sheets which, owing to their central hole, can sidestep
constraints on area and orientation. We systematically catalog the set of developable surfaces encodable via
axisymmetric director patterns and uncover several qualitatively new modes of actuation, including cylinders,
irises, and everted surfaces in which the inner boundary becomes the outer boundary after actuation. We confirm
our designs with a combination of experiments and numerics. Many of our actuators can reattain their initial inner
or outer radius upon completing actuation, making them particularly promising, as they can avoid potentially
problematic stresses in their activated state even when fixed onto a frame or pipe.
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I. INTRODUCTION

In classical engineering, a mechanism is a device for
transforming motion/force from one form to another [1]; for
example, a screw translates rotation to linear motion, and
a lever trades displacement for force. Tables of ingenious
mechanisms were drawn up in the nineteenth century (see
Ref. [2]) and a skilled mechanical engineer can combine
these building blocks into a useful machine. In soft matter
a similar challenge has emerged. We have a growing class
of active shape-changing materials—swelling hydrogels [3],
contracting nematic elastomers [4], dilating dielectric elas-
tomers [5], inflating pneumatics [6]—and are challenged with
transforming these elementary shape changes into alternative
modes of actuation with desirable mechanical properties. How
do you transform contraction into a push, or swelling into a
squeeze?

The key to such transformations is assembling comple-
mentary shape changes into an actuating mechanism. This
approach is exemplified by Harrison’s bimetallic strip, which
turns differential expansion into bend [7] and thereby trades
force for displacement, just like a lever. In soft materials,
complementary shape changes can often be programed into
different regions of a single sample. For example, spatially
patterning the cross-link density in hydrogels gives patterned
magnitudes of dilation on swelling or deswelling [8–10],
while spatially patterning the alignment direction in liquid
crystal elastomers (LCEs) gives patterned directions of con-
traction on heating [11–13]. These programed materials can
then achieve sophisticated modes of actuation: The material
is the mechanism, if not quite yet the machine [14].

Here we focus on LCEs: Rubbery networks of rodlike
repeat units which spontaneously align along some direction
n̂ forming a nematic LC phase within the material [4]. Fol-
lowing the protocol in Ref. [15], we fabricate LCE sheets
by UV-crosslinking a nematic oligomer sandwiched between
two sheets of glass. The inner faces of the glass sheet are
photo-patterned with a preferred planar nematic alignment
n̂(x), which is passed to the nematic fluid and crosslinked
in as it forms the elastomer. After the elastomer sheet is
released, this alignment can be reversibly disrupted with heat
(reflecting the nematic-isotropic LC phase transition) causing
the elastomer to contract by a factor of λ ∼ 0.65 along n̂.
Contraction is accompanied by a transverse dilation λ−ν , with
the optothermal Poisson ratio being strictly ν = 1/2 in the
volume-preserving response characteristic of LCEs, although
it can rise as high as ν = 2 in nematic photoglasses [16], and
can take a range of other values in pneumatic or swelling
sheets [17,18].

Several elementary entries in a table of LCE mechanisms
are now well established. First are monodomains: Sheets with
uniform planar alignment which simply contract on heating,
and can pull a load as they do so [19], failing however be-
cause of Euler instability, to push as they elongate during
recovery. Second are benders, which arise whenever a thin
strip or film suffers differential shape change through its
thickness. In LCE sheets, thickness variation can be achieved
by programing different director alignments on each side of
the cross-linking cell [20–22], or by the asymmetric actua-
tion of a monodomain through its thickness [23]. All these
benders produce high-displacement, low-force motion that
looks impressive but, like the original bimetallic thermostats,
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is better suited to sensing than mechanical work. Third are
pushers and lifters, created by programing a flat sheet with
an alignment that varies in-plane and morphs the sheet into a
curved-surface on activation. For example, a disk programed
with concentric circles of contraction (a topological defect
with director winding number m = 1) will rise into a cone on
activation [11,13,24]. These surfaces have fundamentally dif-
ferent metrics to the original flat sheets [8,24], allowing them
to have Gauss (intrinsic) curvature that can only be flattened
by energetically expensive stretch. Lifters mostly arise when
the Gauss curvature is positive (cones, caps, spindles etc.)
causing a protrusion on activation (though an evolving hyper-
bolic cone also protrudes, despite its negative GC away from
the origin), and metric mechanics [25] makes such pushers
mechanically strong: LCE cones can lift thousands of times
their own weight as they rise [26]. A final category could be
radial m = 1 defect patterns, which buckle into ruff-like “an-
ticones” with negative Gauss curvature, although it is unclear
what mechanical utility such actuation offers.

Several recent works have focused on the programing of
complex surfaces and inverse design [27–29], demonstrating,
for example, how to choose a pattern of contraction that
morphs a sheet into a face [30]. Though analytically virtuosic,
mechanically these are variations on the theme of cones and
caps. Here we take a different approach, and investigate the
elementary modes of actuation of annular sheets. The intro-
duction of a hole fundamentally changes the sheet’s topology,
allowing simple but qualitatively different modes of actuation,
and inviting use cases such as apertures, sphincters, filters
and pipes. Here we focus on axisymmetric director patterns
encoding Gauss-flat shapes. Any simply connected Gauss-flat
surface can be flattened into the plane isometrically (i.e., with-
out stretch). However, introducing a hole opens a rich design
space of actuated shapes, including flat irises, truncated cones
and anticones, cylinders, and everted annuli. Although ν is
limited to 1/2 in our LCE experiments, our treatment shows
that the same family of shapes arises for shape-changing ma-
terials with any ν. Importantly, despite producing Gauss-flat
surfaces, such annular actuations are strong and cannot be
blocked without energetically expensive stretch.

II. SHAPE PROGRAMING OF ANNULAR
LCE ACTUATORS

In this work, we consider an initially flat annular LCE
sheet, Ri < R < Ro, patterned with a planar nematic director
field n̂, as seen in Fig. 1(a). Upon heating, the sheet contracts
by λ in the direction parallel to n̂, and extends by λ−ν in the
orthogonal direction. An infinitesimal length element in the
undeformed sheet, dl, thus has an activated length given by

dl2
A = dl · (λ2 n̂ ⊗ n̂ + λ−2ν n̂∗ ⊗ n̂∗) · dl ≡ dl · ā · dl, (1)

where n̂∗ is orthogonal to n̂. The sheet deforms to adopt this
programed metric, ā, in general becoming a curved surface
such as Fig. 1(b). The sheet’s small thickness t also increases
by λ−ν upon activation. Curvature, κ , is penalised by a bend-
ing energy ∝ t3κ2, leading to residual bending stresses ∝ tκ .
In the t → 0 limit, this bend cost is negligible compared to
the cost of deviating from ā, which incurs stretch energy ∝ t .

FIG. 1. (a) An annular LCE sheet in the reference domain, with
an axisymmetric spiral director pattern characterized by the angle
α(R). (b) A truncated cone with semi-angle φ. The dashed circle has
curvature 1/r, and geodesic curvature kg of magnitude sin(φ)/r.

Thus bend only enters as a ‘tie-breaker’ between (thickness-
independent) isometries of ā.

Our shape programing task is to choose the director pattern
n̂ that will morph the annulus into our desired surface. We
restrict our attention to axisymmetric director patterns, partly
for simplicity, and partly because many use cases may actually
be best suited by axisymmetric actuation. We define such
patterns using the angle α(R) between n̂ and the radial basis
vector R̂:

n̂ = cos (α) R̂ + sin (α) θ̂, n̂∗ = − sin (α) R̂ + cos (α) θ̂.

The integral curves of this pattern are spirals, as shown in
Fig. 1(a). Such spirals encode nematic bend and splay vector
fields given by,

b ≡ (∇ × n̂) n̂∗ = (sin(α)/R + α′ cos (α)) n̂∗,
(2)

s ≡ (∇ · n̂) n̂ = (cos(α)/R − α′ sin (α)) n̂,

and implicitly contain an m = 1 topological defect at the
origin, since the director winds by 2π on traversing any loop
containing the hole.

The essential starting point for such metric design prob-
lems is Gauss’s Theorema Egregium [31,32], which states that
the Gauss curvature of the activated surface (computed as the
product of the surface’s principal curvatures, KA = κ1κ2) is an
intrinsic geometric property and hence determined entirely by
the metric. Thus the metric must encode the Gauss curvature
of the target surface. A direct calculation using the LCE metric
in a defect-free region yields [33–36], in terms of gradients of
bend and splay of the director field,

KA = 1
2 (λ2ν − λ−2)∇ · (b + s), (3)

where all quantities on the right-hand side are evaluated in the
reference state. Working with bend and splay, which together
offer a characterisation of a 2D director field, will turn out to
offer particular insights into the genesis of the Gauss curva-
ture.

We now set KA = 0, partly for simplicity again, but also
with the intention of designing an ‘iris’ actuator, for which
the activated state is a flat annulus. Given axisymmetry, the
divergence only acts on the radial component (b + s) · R̂ =
cos(2α)/R − α′ sin(2α) to give the equation

1

R

d

dR
(R(cos(2α)/R − α′ sin(2α))) = 0,
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a result also obtained [34,37] from the general expression
for KA in terms of α(r) and its gradients for spirals. It may
immediately be integrated once with respect to R to get

cos(2α)/R − α′ sin(2α) = c1/R.

Finally, we solve for α yielding

cos (2α(R)) = c1 + c2/R2, (4)

where c1 and c2 are constants of integration. Previous authors
[34,37] obtaining this result have then immediately set c2 = 0
to avoid divergence as R → 0. However, in an annular geome-
try c2 is allowed, provided the pattern obeys −1 � cos(2α) �
1, yielding the limiting radii

R2
± = ±c2

1 ∓ c1
, (5)

with radial and azimuthal alignment respectively for ±.
However, setting KA = 0 within the LCE annulus does

not guarantee a flat iris upon activation: We might have a
cylinder or a truncated cone, neither of which can be flattened
isometrically into the plane. Interestingly, this situation is
fundamentally different to simply connected actuators, where,
in accordance with Minding’s theorem, setting KA = 0 every-
where guarantees an actuated surface that can be flattened
isometrically into the plane. In the annular case, we thus
require an additional intrinsic geometric property to select
between these different Gauss-flat surfaces.

Clarity is provided by geodesic curvature and the Gauss-
Bonnet theorem. In general, the geodesic curvature, kg, of a
curve on a surface is computed by projecting its (3D) vector
curvature into the tangent plane of the surface. For example,
the dashed circle in Fig. 1(b) has curvature 1/r, but geodesic
curvature kg of magnitude sin(φ)/r. Like Gauss curvature,
geodesic curvature is intrinsic. Furthermore, geodesic curva-
ture is connected to Gauss curvature by the Gauss-Bonnet
theorem which, for any topologically-disk-like patch of sur-
face, states that

� ≡
∫

K dA = 2π −
∮

kg dl, (6)

where the right-hand integral is around the boundary of the
patch. Gauss-Bonnet thus allows us to compute the integrated
curvature within a region of surface from the geodesic cur-
vature on its boundary. If we have a surface containing a
hole (e.g. a truncated cone as in Fig. 1(b)) we may imagine
covering the hole with a smoothly connected patch. Gauss-
Bonnet then reveals that this patch must contain integrated
Gauss curvature

�◦ ≡ 2π −
∮

hole
kg dl, (7)

which is computed solely from the geodesic curvature of the
hole’s boundary, and is thus independent of nature of the
patch. Furthermore, since kg is an intrinsic quantity, so is
�◦, which may be interpreted as the flux of Gauss curva-
ture threading the hole. For example, the truncated cone in
Fig. 1(b) has �◦ = 2π (1 − sin φ) threading the hole, which
is familiar as the integrated Gauss curvature of a cone-tip.
The quantity �◦ thus serves as a convenient additional intrin-
sic property in the shape programing of surfaces with holes,

which is able to distinguish cylinders (�◦ = 2π ), truncated
cones (�◦ = 2π (1 − sin φ)) and flat annuli (�◦ = 0).

Returning to LCE shape-programing, the activated
geodesic curvature kgA along any loop in the reference state
may be computed from the LCE metric [36], to reveal that

2π −
∮

kgA dl = 1

2
(λ1+ν − λ−1−ν )

∮
(b + s) · ν̂ dl

+ mπ (1 − λ1+ν )(1 − λ−1−ν ), (8)

where the boundary integral on the right is conducted in the
reference state, ν̂ is the reference state outward normal, and
m is the winding number of the director around the loop
which, for a simply connected domain, would be the topo-
logical defect charge within. We note that our patterns have
(b + s) · R̂ = c1/R and m = 1. Thus, applying Eq. (8) to the
inner boundary of our annular reference domains, we compute
that

�◦ = π (2 − (1 + c1)λ−1−ν − (1 − c1)λ1+ν ), (9)

revealing that the dimensionless constant c1 alone controls
�◦, and selects between flat annuli, cylinders and truncated
cones. This insight is immediately accessible from the form
of (b + s) · R̂ that determines the nontopological component
of �◦, highlighting the utility of working with bend and splay.
In contrast, the constant c2, which has dimensions of length2,
simply determines the extent of the pattern in the reference
domain, and hence the overall size of the actuated surface. In
the following sections, we will explore the different modes of
actuation achieved by programing c1 and hence �◦. We start
with an extended discussion (and demonstration) of patterns
for flat irises, cones and cylinders, and then map out the entire
phase diagram produced by this set of patterns.

III. IRIS ACTUATOR: �◦ = 0

We start our exploration of annular actuators by demon-
strating an iris: An annular LCE that activates to a flat annular
state, but with a different inner radius. Such an iris could be
used as an optical aperture, or to regulate flow down a pipe.

Previous work has demonstrated an LCE iris constructed
from “petals” that bend away from the light-path to increase
the aperture [38]. The beauty of this design was that the LCE
was photo-active, and the bending was driven by the incident
light, making the iris self-regulating. However, the resultant
actuation is nonplanar, leads to a noncircular aperture, and is
mechanically weak as it depends on bend rather than stretch.
A second approach has been to pattern an LCE annulus with a
simple radial alignment [39], generating radial contraction on
heating that mimics the pattern of muscular in a biological iris.
However, radial patterns should actually buckle into anticones
on actuation [24], rather than remaining flat. This was avoided
in [39] by using an extremely thick sample, so that bending
stiffness prevented out-of-plane deformation. Here, instead,
we set �◦ = 0, to target a truly flat annulus as the final state,
which should remain flat even in the limit of a thin sheet, or
at very high actuation strains. To achieve �◦ = 0, we must
choose:

c1 = −(1 − λ1+ν )/(1 + λ1+ν ). (10)
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This expression generates a unique c1 for any actuation pa-
rameters (λ, ν). Furthermore, since any parameters generate
−1 � c1 � 1, the resultant pattern is actually defined out
to infinite radius, where it converges to a simple log-spiral
(constant α). However, if c2 is included in the pattern, the
pattern terminates at a finite inner radius, which is R+ (radial
director) for c2 > 0 and R− (azimuthal director) for c2 < 0. To
design an iris with maximum dilation on actuation, we require
radial alignment on the inner boundary, so we take c2 > 0 and
Ri = R+.

Given the pattern extends out to infinity, we must also
choose an outer boundary. To guide our choice, we note
that, although elastomers are incompressible (ν = 1/2), LCE
sheets reduce in area on actuation by a factor of

√
λ = λ1−ν ,

with overall volume conserved by associated thickening. In
an LCE iris, although the hole radius dilates on actuation,
circles at large radius must contract. There is thus a circle at
an intermediate radius that is fixed on actuation, which can be
found from area considerations:

R2
fix − λ−2νR2

i = λ1−ν
(
R2

fix − R2
i

)
. (11)

By choosing Rfix as the outer radius of the sample we attain an
anchored iris actuator, which could be fastened along its outer
circumference in a frame or pipe, without suffering stretches
in its final state (at the design λ) that could otherwise lead to
buckling, damage etc.

To demonstrate this anchored iris actuation, we fabricate
an annular LCE sheet with reference state radii Ri = 5 mm
and Ro = 9.5 mm. Given incompressibility, imposing Ro =
Rfix yields λ = 0.705, and hence (via Eq. (10)) c1 = −0.257.
Finally, setting Ri = R+, fixes the value of c2 and completes
the specification of the pattern.

Having specified the pattern, it is imprinted into the LCE
using photo-patterning. To reduce the number of alignments,
the continuous theoretical patterns were ‘binned’ into 20 dis-
crete angles before fabrication. The resulting iris was actuated
by heating in a bath of silicon oil, and displayed very satisfac-
tory dilation and anchoring, as shown in Fig. 2.

We further verified this pattern by conducting numerics
using our bespoke code MorphoShell [36] that, unlike our
theory, accounts for both bend and stretch in a sheet with
nonzero thickness. As seen in Supplementary Movie M1 [40],
our numerics highlight that if its outer circumference is artifi-
cially pinned (cannot move) the iris remains planar and moves
smoothly throughout its actuation without sudden instabili-
ties, despite the stresses present before the design λ is reached.
If instead the boundary is completely free (Supplementary
Movie M2), the iris passes through weakly conical shapes
as it actuates, before regaining flatness at the design value of
λ = 0.705, consistent with attaining �◦ = 0 only at the design
λ. Similarly, as λ falls below the design value, one would
again expect nonflat shapes. However, as seen in Fig. 2, both
simulation and experiment indicate that, for realistic sheet
thicknesses, energetic bend cost can suppress this transition,
at least until λ = 0.6. Additional simulations using ‘binned’
director patterns (Supplementary Movie M3) confirm that the
binning has little effect.

Our iris dilates upon heating (decreasing λ) and contracts
upon cooling (increasing λ). One can instead create irises
that contract on heating by setting c2 < 0 so that the inner

FIG. 2. We design a spiral director pattern (top-left) that pro-
duces a flat anchored iris (top-middle) on actuation to λ = 0.705.
Top right shows a crossed-polars image of an LCE sample bearing
this spiral pattern, with the dark and bright patterns associated with
the director profile. Iris actuation is observed on heating the LCE
from from 25 ◦C to 200 ◦C (middle), with the design λ attained near
100 ◦C. Numerical calculations (bottom) also confirm iris actuation,
and show, surprisingly, that the iris remains flat at even more ex-
treme actuation strains (λ = 0.6, 200 ◦C) due to its nonzero bending
stiffness.

boundary has azimuthal director Ri = R−. However, since the
LCE must lose area during actuation, there is no fixed outer
radius for anchoring in such systems. Similarly, it would also
be impossible to create an anchored iris via isotropic swelling,
unless swelling and shrinking co-occur in the same sample.
However in nematic photo-glasses ν can range as high as 2,
leading to areal growth on heating and enabling contractile
anchored iris actuation, albeit with limited actuation strain.
Within LCEs, oblate order parameters (where λ > 1 on heat-
ing) could offer another approach to such irises.

IV. CONES AND CYLINDERS: 0 < �◦ � 2π

Any choice of c1 other than that in Eq. (10) will give
�◦ = 0, producing shapes which are Gauss-flat but with in-
tegrated curvature threading the hole: Truncated generalized
cones. As discussed previously, a truncated cone has �◦ =
2π (1 − sin φ), with φ being the semi-angle, and 0 < �◦ <

2π parametrizing the range of cones between a flat annulus
and a cylinder. Comparing this �◦ to that of our patterns, we
see that our patterns produce truncated cones with semi-angles
given by

sin φ = 1
2λ−1−ν (1 + c1 + (1 − c1)λ2+2ν ), (12)

which is familiar [24] from log-spiral patterns with
cos(2α) = c1. The underlying deformations, (R, θ ) →
(r(R), θ + 
θ (R), z(R)), are nonlinear functions of radius.
Indeed, by comparing the resultant metric a with the target
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FIG. 3. Director spiral (top-right) to morph an annulus into a
cylinder (top-middle) at a design λ = 0.652. Experiments (middle)
and numerics (bottom) confirm the cylinder is attained, and also
highlight the intermediate cone states en route.

metric ā, we may construct an exact isometry of ā:

r(R)2 = R2(λ−2ν cos2 α(R) + λ2 sin2 α(R)),

z(R) = ± cot(φ)r(R),

d
θ

dR
= R

2r(R)2
(λ2 − λ−2ν ) sin (2α(R)),

which highlights the presence of twist between the inner and
outer circumferences.

By varying c1, we may attain a wide range of cone-angles.
For simple log-spiral patterns, one is limited to −1 � c1 � 1,
and the steepest cone is given by c1 = −1 (a concentric circle
pattern giving sin φ = λ1+ν). However, in annular domains,
the addition of c2 removes this limitation on c1, so we can
explore the full range of φ. This enables sharper cones; indeed
we can even get cylinders (�◦ = 2π , sin φ = 0) by setting in
Eq. (12)

c1 = −(1 + λ2+2ν )/(1 − λ2+2ν ). (13)

Such a cylinder pattern requires c1 < −1, so we must take
c2 > 0 yielding a pattern confined to the annular region, R+ <

R < R−, in which the director varies from radial to azimuthal,
dilating the inner radius and contracting the outer one on
heating.

To demonstrate this cylindrical actuation, we once again
use the experimentally convenient domain Ri = 5 mm and
Ro = 9.5 mm. Solving Ri = R+ and Ro = R− fixes c1 =
−1.766 and c2, and then Eq. (13) reveals that a cylinder
will be attained at λ = 0.652, just within our experimentally
accessible range. The resulting cylinder actuator is shown in
Fig. 3, alongside matching numerics (Supplementary Movies
M4, M5). Actuation proceeds via sharpening cones as �◦
rises from 0 to 2π . Here we use the full mathematical region
of the cylinder pattern, R+ < R < R−, however any annular
sub-region could be selected to give a shorter cylinder. In
particular, one can again find an invariant radius, Rfix = λR−,
that could be used to anchor the inner or outer boundary.
This can be quickly found from the condition that, to produce

a cylinder, every reference-state circle must attain the same
activated-state radius, which then must equal Rfix.

V. EVERSION, ANTICONES, AND THE COMPLETE
PHASE DIAGRAM

Finally we classify the full set of actuators available via
Eq. (4). Any value of �◦ can be achieved with a suitable
choice of c1. However, for c1 > 1 we must take c2 < 0, giving
an annular region R− < R < R+ with azimuthal (radial) di-
rector at the inner (outer) boundary. Conversely, for c1 < −1
we must take c2 > 0, giving an annular region R+ < R < R−
with radial (azimuthal) director at the inner (outer) boundary.
Between these limits, −1 � c1 � 1, the patterns converge
to a log-spiral with constant angle α(∞) = 1

2 cos−1(c1) as
R → ∞. However, the c2 term will still diverge towards the
origin until the director is purely radial (+ve c2) or azimuthal
(-ve c2), requiring R± < R < ∞ respectively. In every case,
the magnitude of c2 (with units of area) simply sets the overall
scale of the pattern without affecting its proportions, or the
shape of the resultant surface. Without loss of generality we
can thus display the full family of patterns in Eq. (4) parame-
terized only by c1 and the sign of c2, as shown along the top
of Fig. 4, where λ = 1 (the reference state).

Upon heating, λ will diminish below unity, and each
annulus will morph into an increasingly extreme surface,
generating a c1 − λ phase diagram that captures the full set
of actuated shapes. As seen in Fig. 4, the various regions
of the phase diagram can be straightforwardly identified as
intervals of �◦. We already have a cone region 0 < �◦ < 2π .
For �◦ < 0 we have surfaces with an angular surplus rather
than an angular deficit, which buckle into ruff-like (truncated)
anticones. Moving in the other direction, the cone region
terminates at �◦ = 2π with a line of cylinders. However, there
is nothing preventing c1 being chosen to make �◦ still larger.
For 2π < �◦ < 4π we will have a region of everted truncated
cones (−1 < sin φ < 0) in which the original outer boundary
becomes the actuated inner boundary. Everted cones terminate
at �◦ = 4π (i.e. sin φ = −1) with a line of everted flat annuli,

c1 = −(1 + λ1+ν )/(1 − λ1+ν ). (14)

Finally, for �◦ > 4π we have the most extreme mode of
actuation: Everted anticones.

During heating, an LCE annulus will descend a vertical
(constant c1) line of diminishing λ on the phase diagram.
We again use MorphoShell to calculate a spectrum of such
actuation pathways (Supplementary Movies M6-M10), and
graphically populate the phase diagram for ν = 1/2. Inter-
estingly, a given annulus may move through several regions
during actuation, and thus show several qualitatively different
shapes en route to the target. For −1 < c1 < 0 one has flat →
cone → iris → anticone (e.g. M8), while c1 < −1 gives flat
→ cone → cylinder → everted cone → everted annulus →
everted anticone (e.g. M6). Such behavior hints at complex
nematic mechanisms with multiple useful shapes realized at
different temperatures. For example, both paths start flat, rise
out of the plane, then regain flatness, yielding a nonmonotonic
height change that could serve as a frequency doubler for a
cyclic stimulus.
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FIG. 4. Phase diagram for annular LCE actuators in c1 − λ space (for ν = 1/2). The top row (λ = 1) shows the un-actuated director
patterns given by different values of c1. For −1 < c1 < 1 the pattern converges to a simple log spiral at large radius, but terminates at a finite
inner radius with an azimuthal or radial director depending on the sign of c2. Both possibilities are shown in this region. For c1 > 1 one must
take c2 < 0, and the pattern is defined in a finite annulus with azimuthal director at the inner boundary, while for c1 < −1 one must take c2 > 0,
and the pattern is defined on a finite annulus with radial director at the inner boundary. The remainder of the diagram shows simulations of
the actuated shapes achieved when λ = 1, taking the full extent of the pattern in the finite cases. Dotted and bold lines differentiate the
initially-inner and initially-outer boundaries, while ‘fade-out’ regions indicate surfaces extending to infinity. The diagram reveals regions of
truncated cones, truncated anticones, everted truncated cones and everted truncated anticones, which are classified by intervals of �◦, and are
separated by by lines of irises (�◦ = 0), cylinders (�◦ = 2π ), and everted annuli (�◦ = 4π ). The iris, cylinder, and everted annulus lines are
given by theory, and meet at λ = 0.

The phase diagram can be extended to λ > 1, and/or re-
plotted for different values of the opto-thermal Poisson ratio
ν, including ν < 0 as can be realised by materials that swell
or shrink anisotropically. However, no qualitatively new acti-
vated shapes emerge, which can be understood from Eq. (1) as
follows: First (†), observe that rotating n̂ and n̂∗ by π/2 whilst
simultaneously interchanging λ ↔ λ−ν leaves ā unchanged.
Second (‡), observe that ā can be written in the form

ā = �2(λ̃2 n̂ ⊗ n̂ + λ̃−1 n̂∗ ⊗ n̂∗), (15)

corresponding to an anisotropic deformation of λ̃ = λ2(1+ν)/3

along n̂ with an opto-thermal Poisson ratio of 1/2, followed by
an isotropic lineal scaling � = λ(1−2ν)/3. By applying either
(†), or (†) followed by (‡), a pattern with any λ, ν can be be
seen to result in the same activated shape (up to an overall
scale factor) as a pattern with λ < 1, ν = 1/2, the parameter
regime explored in Fig. 4.

If ν > −1, then for λ > 1 the cylinder and everted annulus
lines have c1 > 1, and asymptote to λ = 1 as c1 → ∞ and
c1 = 1 as λ → ∞, while the iris line continues smoothly on
from its λ < 1 portion, also asymptoting to c1 = 1 as λ → ∞.

Returning to the question of anchoring, if ν < 0 then either
both λ and λ−ν are >1, or both are <1. Clearly then no
choice of director can match the azimuthal distortion to that
of an inert support, i.e. one cannot achieve zero azimuthal
distortion, and stress-free anchoring is impossible. However,
if ν > 0 and

sgn(c2)

(
c1 − λ2 + λ−2ν − 2

λ2 − λ−2ν

)
< 0, (16)

one can again find an Rfix at which there is zero azimuthal
distortion. As long as ν > 0, the condition (16) is satisfied
for any |c1| > 1, and for exactly one of the two possible

signs of c2 at each |c1| < 1. When actuation is axisymmetric
(0 � �◦ � 4π ), Rfix could be used to anchor the actuator as
discussed previously.

For our nonaxisymmetric actuators the situation is more
subtle; such anchoring can only be stress-free if a suitably
smooth embedding of ā exists in which the ‘anchored’ curve is
a circle. However, no such embedding exists, as some toying
with a paper truncated anticone will quickly demonstrate.
To prove this, consider any closed reference-state curve that
encloses the origin (e.g. a circle at Rfix), and suppose that
upon activation this curve forms a circle. Observe that if the
activated-state circle has radius �A, then its curvature vector
has magnitude 1/�A.

Given that the geodesic curvature kgA is found by projecting
the curvature vector into the tangent plane, it has magnitude
|kgA| � 1/�A. Then, applying Gauss-Bonnet (in the manner
of Eq. (7)) to the material within any such circle, we find
|2π − �◦| = | ∮ kgAdlA| � 2π . Thus, for |2π − �◦| > 2π the
activated surfaces indeed cannot accommodate such circles
without stretching (deviating from ā).

VI. DISCUSSION AND CONCLUSIONS

We have explored a new category of nematic actuators with
an annular geometry and found that this change in topology
introduces qualitatively different and more extreme modes of
actuation. For example, although we have focused on patterns
that do not encode Gauss curvature in the LCE region, many
of the resultant surfaces are necessarily curved owing to a con-
centration of Gauss curvature within the hole. Furthermore,
this ‘ghost’ Gauss curvature is unconstrained by material con-
siderations and can take any value, allowing a full spectrum of
(truncated) cones, irises, cylinders, anticones, and even their
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everted counterparts. In all cases the actuation is underpinned
by large-strain metric mechanics, guaranteeing mechanically
strong actuation.

Although our design approach is metric-based, our numer-
ics account for both stretch and bend, essentially providing
bend-minimising isometries of the metric ā, as would be
adopted by a thin sheet. Reassuringly, both here and in Ref.
[37], the axisymmetric theoretical isometries (e.g. irises, trun-
cated cones, cylinders) appear to be the bend minimisers,
apparently validating a design approach in which the metric
ā is matched to a target surface. However, in general there are
many isometries of a given ā, and in cases with less symmetry
there is little reason to think that the bend-minimiser will be
close to the target surface. Furthermore, the presence of many
isometries means that even Gauss-curved surfaces can deform
via energetically cheap pure-bending modes, and care must be
taken to avoid such modes undermining strong actuation.

Looking ahead, it is natural to wonder about geometries
with multiple holes, and patterns that lack axisymmetry or
encode distributed Gauss curvature. Can one solve inverse
problems in domains with holes? However, these lines of
thought seem more likely to produce increasing complex-
ity rather than qualitatively new modes of actuation. More
promising perhaps is to consider the programing of initially
curved surfaces, including closed spherical surfaces and even
nonorientable Möbius strips. Such programed shells would
again have a genuinely different topology, inviting new modes
of actuation, and could be fabricated by newly developed
3D-printing techniques.

VII. MATERIALS AND METHODS

LCE films were prepared between glass plates separated
with a 50 μm spacer where the interior surfaces of the plates
are coated with a photoalignable dye. First, the glass plates
were cleaned by sequential sonication in Alconox-water so-
lution, acetone, isopropanol, and deionized water. The glass
slides were then exposed to oxygen plasma reactive ion
etching for 1 min at 100 mTorr pressure and 50 mW power.
The photoalignable dye solution, 1 wt.% brilliant yellow in
dimethylformamide, was spin-coated onto the glass plates at
750 rpm with an acceleration of 1500 rpm/s for 10 s and then

at 1500 rpm with an acceleration of 1500 rpm/s for 30 s. Two
glass plates are then adhered using a cyanoacrylate adhesive.
The dye was then locally oriented on both plates by exposure
to linearly polarized broadband visible light using a modified
projector (Vivitek D912HD) such that the resolution of the
exposure is 30 μm. To create patterned alignment, the dye on
regions of the plates were sequentially exposed using different
polarization angles. A monomer solution was prepared using a
liquid crystal monomer, 1,4-bis-[4-(6-acryloyloxyhexyloxy)-
benzoyloxy]-2-methylbenzene (RM82, Wilshire Chemicals),
a chain extender, n-butylamine (Sigma Aldrich), and a pho-
toinitiator, Irgacure I-369 (BASF) by heating to 90 ◦C and
then vortex mixing the fluid. The molar ratio of RM82 to
n-butylamine was 1.1:1. The photoinitiator was added at
1.5 wt.% of the monomer mixture. The solution was then
filled by capillary action between the glass plates at 75 ◦C. The
sample was then stored at 65 ◦C for 12 hr for chain extension
to occcur. The sample was then exposed to UV light at room
temperature (OmniCure® LX400+, 250 mW/cm2, 365 nm)
to crosslink the LCE. The total time of UV exposure was
5 min and the sample was flipped at 2.5 min of exposure. After
crosslinking, one glass plate was removed, and the sample
was cut from the surrounding regions using a CO2 laser cutter
(Universal Laser Systems ILS9.150D). The alignment was
confirmed using optical imaging of transmitted light with the
sample between crossed polarizers. To measure shape change,
samples were immersed in silicone oil heated to the appropri-
ate temperature and then imaged with a DSLR Canon camera.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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