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Acoustic radiation force and radiation torque beyond particles:
Effects of nonspherical shape and Willis coupling
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Acoustophoresis mainly deals with the manipulation of subwavelength scatterers in an incident acoustic field.
The geometric details of manipulated particles are often neglected by replacing them with equivalent symmetric
geometries such as spheres, spheroids, cylinders, or disks. It has been demonstrated that geometric asymmetry,
represented by Willis coupling terms, can strongly affect the scattering of a small object; hence neglecting these
terms may miss important force contributions. In this work, we present a generalized formalism of acoustic
radiation force and radiation torque based on the polarizability tensor, where Willis coupling terms are included
to account for geometric asymmetry. Following Gorkov’s approach, the effects of geometric asymmetry are
explicitly formulated as additional terms in the radiation force and torque expressions. By breaking the symmetry
of a sphere along one axis using intrusion and protrusion, we characterize the changes in the force and torque
in terms of partial components, associated with the direct and Willis coupling coefficients of the polarizability
tensor. We investigate the cases of standing and traveling plane waves and show how the equilibrium positions
and angles are shifted by these additional terms. We show that while the contributions of asymmetry to the force
are often negligible for small particles, these terms greatly affect the radiation torque. Our presented theory,
providing a way of calculating radiation force and torque directly from polarizability coefficients, shows that it
is essential to account for shape of objects undergoing acoustophoretic manipulation, with important implications
for applications such as the manipulation of biological cells.
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I. INTRODUCTION

Acoustic radiation forces play a key role in the field of
acoustic particle manipulation, also known as acoustophoresis
[1–8]. Acoustic sorting, separation, levitation, and other simi-
lar applications have been developed to manipulate particulate
phase in a fluid, e.g., to migrate biological cells to certain
locations using incident plane waves, by inducing a radiation
force field [3,7–16], as schematically shown in Fig. 1. In the
design of such applications, it is customary to treat the objects
in the host fluid as spheres or other simple geometries and
neglect the details of their shapes. In most cases, this leads to a
design based solely on acoustic radiation force and neglecting
the radiation torque. When a subwavelength object is treated
as a particle, its dynamic equilibrium and force balance are
independent of its shapes, and its rotation is neglected. This
assumption can be reasonable for small objects with approxi-
mately spherical shape; however, nonspherical objects lacking
radial symmetry may be better approximated as rigid bodies
than pointlike particles.
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Acoustic radiation stress consists of radiation pressure,
which is related to radiated momentum through scattering
fields, and Reynolds stress arising from surface oscillation.
The primary radiation force acting on a scatterer corresponds
to the incident-scattering portion of the time-averaged ra-
diation stresses [2,17–25]. In the case of multiple objects,
pairwise secondary radiation forces, also known as acoustic
interaction forces, emerge from the scattering-scattering part
of the radiation stresses [21–26]. The acoustic radiation torque
is the resultant moment due to such stresses with respect to
the centroid of the object [27,28]. Acoustic radiation force
and torque contribute to the dynamic equilibrium state of the
scatterers in combination with other forces such as hydrody-
namic drag or gravitational force. The magnitudes of acoustic
radiation force and torque are proportional to the incident
energy density, and their direction is determined from their
normalized value, also referred to as the acoustic contrast
factor [2,18,24], as shown in Fig. 1.

Current theories of acoustic radiation force and torque
either use the radiation stresses at the surface of the object
[17,18,29–31] or convert the surface integral of radiation
stresses in the far field to a volume integral using the diver-
gence theorem [2,19,24]. The advantage of the latter approach
is that the object can be replaced by a set of acoustic mul-
tipole sources to evaluate the volume integral, capturing the
essential geometric features and material properties of the
object with the simplest possible model. Acoustic radiation
force and torque have been developed analytically or modeled
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FIG. 1. Principle of acoustophoresis with acoustic radiation
force and torque exerted on an object with arbitrary shape, for any
choice of incident pressure wave and the angle of incidence. The
components of the acoustic radiation force and torque and the nota-
tion for their normalized contrast factors, Q and Z, respectively, are
illustrated.

numerically for objects of spheroidal, cylindrical, and disk
shapes [27,31–38]. However, these shapes exhibit a high de-
gree of symmetry (at least axial symmetry) and are not fully
representative of three-dimensional, arbitrarily shaped ob-
jects. Although the numerical approaches based on surface or
volume integrals can be applied to objects of arbitrary shape,
they do not directly show how the geometric asymmetry
impacts on the force and torque. An example of recent numer-
ical approaches to investigate the shape effects on acoustic
radiation force is the application of the T -matrix method
to obtain the scattering response of an object [39,40]. This
method provides a good estimate of the scattered fields for
symmetric objects; however, it was shown to be less accurate
for objects with asymmetric features in their geometry [39]. It
is difficult to separate out the effects of the shape asymmetry
on the radiation force, from the estimate value provided by the
T -matrix approach.

A semianalytical approach based on finite element simula-
tion and partial-wave expansion of the scattered field was used
to study the radiation force and torque on objects with ax-
isymmetric shape such as spheroids [41–43] and a simplified
red blood cell geometry [44]. The results were in good agree-
ment with the benchmark case of spheroids [33,35,38], which
were obtained by analytical expressions and full boundary
element models. Despite the capability of the finite element
method in calculating the scattered field from an arbitrary
shape, the study of objects with shape asymmetry, which is
more naturally occurring than the axisymmetric shapes, was
excluded, and the details of the shortcomings of the approach
were missed. Moreover, these studies [41–43] were primarily
focused on showing that monopole-dipole approximation of
the scattered field is sufficient for calculating the acoustic
radiation force and torque on axisymmetric objects, which is
an extension of the well-known radiation force formulation
for subwavelength spheres. For acoustic scattering from small
particles, it has been shown that asymmetry can be accounted
for by incorporating Willis coupling terms into the multipole
tensor [45–49]. However, to date there has been no investi-
gation of the role that these terms may play in the acoustic
radiation force and torque.

In this work, we derive a rigorous mathematical formula-
tion of acoustic radiation force and acoustic radiation torque

that includes the shape complexity as represented by the Willis
coupling terms. We make use of the far-field approach, also
referred to as the Gorkov approach, and show how the particle
responds to both the incident pressure and velocity fields. We
present a general formalism based on the polarizability tensor,
as a given measure of scattering response for an object, but
consider in detail the cases of plane traveling and standing
waves. Starting from a symmetric shape, we show how in-
troducing geometric protrusions or instructions controls the
Willis coupling, and hence the additional radiation force and
torque terms.

II. THEORY

A. Scattering of subwavelength objects and polarizability

The acoustic wave propagation in a lossless fluid is gov-
erned by the wave equation, which is expressed in terms of
acoustic pressure p as follows:

∇2 p = 1

c2
f

∂tt p, (1)

where ∇2 represents the Laplacian operator, c f denotes the
speed of sound in the fluid medium, and ∂t = ∂

∂t . The acoustic
density ρ and velocity v are related to the pressure as follows:

p = c2
f ρ, ∂tρ = −ρ f ∇ · v, p = −ρ f ∂tφ, v = ∇φ,

(2)

where κ f = ρ f c2
f is the fluid compressibility, ρ f is the mean

fluid density, and φ denotes the velocity potential. Acoustic
pressure, density, and velocity fields are time-harmonic,

p = p(x)e− jωt , v = v(x)e− jωt , ρ = ρ(x)e− jωt , (3)

where t , ω, and x denote the time, angular frequency, and
position vector, respectively.

In the Rayleigh limit, the monopole-dipole approximation
of the scattering field of a sphere is given as [2,19,24]

φs ≈ − a3
s

3ρ f
f1∂tρi

e jkr

r
− a3

s

2
∇ ·

(
f2vi

e jkr

r

)
,

f1 = 1 − κs

κ f
, f2 = 2ρs − 2ρ f

2ρs + ρ f
,

(4)

where ρi and vi denote the value of incident density and
velocity fields, respectively, as denotes the sphere radius, r
is the radial distance measured from the center, ρs and κs

denote the density and compressibility of the scatterer, respec-
tively, and k = ω/c f denotes the wave number. To generalize
this approach to arbitrary small objects, including those ex-
hibiting Willis coupling, we employ the method of multipole
moments, up to dipole accuracy and express the scattered
pressure as [46,50]

ps ≈ −ω2�MG + ω2∇ · (�DG), G = G(kr) = e jkr

4πr
,

φs = ps

jρ f ω
, (5)

where G denote the Green’s function in the 3D domain, and M
and D denote the volumetric monopole and dipole moments,
respectively. The term a3

s from Eq. (4) is generalized to the
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volume of the object, denoted �. Furthermore, a characteristic
size, denoted by a, is required for nonspherical shapes to
calculate the Rayleigh index of ka. For this study, we propose

a = 3
�

	
, (6)

where 	 is the outer surface area. This allows us to in-
corporate the volume and surface area as two measures of
three-dimensional geometries in our numerical analysis. A
factor of 3 is included to normalize a to the radius as for the
case of a spherical object.

The scattering moments are expressed in terms of incident
pressure pi and velocity vi fields through the polarization
tensor α as follows:[

M
D

]
= 1

�

(
αpp αT

pv
αvp αvv

)[
pi

vi

]
, αpv =

⎡
⎣αx

pv
α

y
pv

αz
pv

⎤
⎦,

αvp =
⎡
⎣αx

vp
α

y
vp

αz
vp

⎤
⎦, αvv =

⎛
⎝αxx

vv α
xy
vv αxz

vv

α
yx
vv α

yy
vv α

yz
vv

αzx
vv α

zy
vv αzz

vv

⎞
⎠,

(7)

where αρv and αvρ denote the Willis coupling coefficients, αvv

denotes direct-dipole polarization tensor, and superscript T
denotes the transpose operator. The Cartesian form of these
subtensors are given in Eq. (7). The entries of α are often
normalized as follows [46]:[−√

3M
jkD

]
= α

�

[ 1√
3

pi

ρ f c f vi

]
, α =

(
−3αpp

−√
3

ρ f c f
αT

pv

jk
√

3αvp
jk

ρ f c f
αvv

)
.

(8)

By employing the reciprocity principle for Green’s function,
it has been proven that [46]

α = αT − =
(

αpp −αT
vp

−αpv αvv

)
. (9)

This yields the relation between the Willis coupling co-
efficients αvp = −αpv , which are later required for the
formulation of the acoustic radiation force and the acoustic
radiation torque. By substituting Eq. (7) into Eq. (5) and
comparing the results with Eq. (4), the monopole and dipole
moments for a spherical scatterer become [2,24][

M
D

]
sphere

= 1

�

(
�ρ f κ f f1 0T

0 − 3 j�
2ω

ρ f f2I

)[
pi

vi

]
, (10)

where 0 and I denote the zero column vector and the identity
matrix of size three, respectively. The polarizability tensor can
be expressed as sum of two tensors, as follows:

α = αsym + αasym =
(

αpp 0T

0 αvv

)
+

(
0 αT

pv
αvp 0 × I

)
, (11)

where αsym denotes the tensor that includes only the direct
polarizability coefficients, and αasym denotes the tensor of
polarizability arising from pure Willis coupling effect. We
will utilize this decomposition later to characterize the role
of direct and Willis coupling coefficients in determining the
acoustic radiation force and radiation torque. Subscripts sym
and asym refer to direct and Willis coupling polarizability
hereinafter.

Considering the Green’s function identity (∇2 + k2)G =
−δ(r), one can write(

∇2 − 1

c2
f

∂tt

)
φs ≈ − jω

ρ f
�Mδ + jω

ρ f
∇ · (�Dδ), (12)

where δ denotes the Dirac delta impulse, and r denotes the
distance from the center of the smallest sphere enclosing the
scatterer. We will use Eq. (12), which gives the approximation
of the scattered field by a set of monopole and dipole sources,
to derive the acoustic radiation force and torque.

B. Acoustic radiation force in the Rayleigh limit

Using Gorkov’s far-field approach [2,19,24,51] (see Sec. I
of Ref. [52] for details of force and torque derivations), the
acoustic radiation force acting on a subwavelength particle
can be expressed as follows:

F = −ρ f

∫
�∞

〈
vi

[
∇2 − 1

c2
f

∂tt

]
φs

〉
d�, (13)

where �∞ denotes the unbounded volume of the fluid domain,
and 〈·〉 denotes the time-averaging operator over one wave
period. For any two harmonically varying fields F and G, the
time-averaged product is 〈FG〉 = 1

2 Re[FG∗] with Re denot-
ing the real part of a complex quantity and the asterisk (∗)
denoting the complex conjugation operator. By substituting
Eq. (12) into (13) and making use of the properties of the
Dirac delta impulse [2,24], the force expression changes to

F = 〈 jω�Mvi〉r=0 + 〈 jω�D · ∇vi〉r=0. (14)

Substituting Eq. (7) into (14), the radiation force expression
expands in terms of incident fields to

F = 〈 jωαpp pivi〉r=0 + 〈 jωαpv · vivi〉r=0

+ 〈 jωpiαvp · ∇vi〉r=0 + 〈 jωαvvvi · ∇vi〉r=0.
(15)

Using ∇pi = jωρ f vi, 〈 jωFG〉 = −〈(∂tF )G〉 = 〈F (∂tG)〉 =
−〈F jωG〉 and rearranging the terms, the force expression
reads

F = −
〈
αpp

ρ f
pi∇pi

〉
r=0

+ 〈 jωαvvvi · ∇vi〉r=0

−
〈

1

ρ f
αpv · vi∇pi

〉
r=0

+ 〈 jωαvp · (pi∇vi )〉r=0.

(16)

Considering, from (8) and Eq. (9), the relation between Willis
coupling coefficients αpv = jωρ f αvp, the force expression
simplifies further to

F = −
〈
αpp

2ρ f
∇[

p2
i

]〉
r=0

+ 〈 jωαvvvi · ∇vi〉r=0

+
〈

1

ρ f
αpv · (pi∇vi − vi∇pi )

〉
r=0

.

(17)

This general expression of the radiation force holds true for
an object of arbitrary shape and of subwavelength size.

1. Acoustic radiation force of a spherical object

Due to the symmetry, the Willis coupling terms αpv and
αvp become zero. Furthermore, αvv = αvvI; hence, the second
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term on the right-hand side of Eq. (17) changes to

〈 jωαvvvi · ∇vi〉r=0 =
〈
jω

αvv

2
∇[

v2
i

]〉
r=0

, (18)

where vi is the magnitude of the velocity vector and v2
i = vi ·

vi. Finally, Eq. (17) becomes

F = −
〈
αpp

2ρ f
∇(

p2
i

)〉
r=0

+
〈
jω

αvv

2
∇(

v2
i

)〉
r=0

. (19)

Substituting Eq. (10) into Eq. (19), one could derive the
Gorkov force potential, basis of the radiation force potential
theory [2,19,24,51], F = −∇G, with

G = 4πa3

3

〈
f1

2
κ f p2

i − 3 f2

4
ρ f v

2
i

〉
. (20)

2. Nonspherical scatterer with rotational and mirror symmetry

Next, we look at nonspherical geometries which still hold
axial or mirror symmetries, such as prolate (elongated) and
oblate (flattened) spheroids. Again, due to mirror symmetry,
the Willis coupling coefficients become zero. The three terms
on the diagonal of αvv are no longer all equal, and Eq. (18) is
invalid for an incident wave with an arbitrary 3D wavefront.
However, for incident plane waves normal to the object’s
planes of symmetry, Eq. (18) can be employed to derive the
force potential since the force acts only in the direction of in-
cidence. For nonspherical scatterers with rotational and mirror
symmetry, the force expression becomes

F = −
〈
αpp

2ρ f
∇[

p2
i

]〉
r=0

+ 〈 jωαvvvi · ∇vi〉r=0. (21)

The expression in Eq. (21) shows that the Gorkov force po-
tential theory is no longer applicable owing to αvvvi · ∇vi 	=
αvv∇(vi · vi ), despite the rotational or mirror symmetry of the
scatterer.

3. Acoustic radiation force for objects of arbitrary shape

A lack of symmetry in the shape of scatterer with respect
to the incident field results in Willis coupling. Since generic
shapes can always be found in real life, it is important to
investigate the role of shape complexity and asymmetry. For
instance, red and white blood cells and wormlike bacteria in
bioacoustophoretic applications or bianisotropic metamateri-
als in acoustic or photonic beam forming, wave manipulation,
and holography show natural or engineered asymmetries,
which are yet to be investigated in the context of acoustic
radiation force and radiation torque. Equation (17) applies to
this general case as long as the characteristic length of the
object is within the Rayleigh limit. Finally, it is evident from
Eq. (17) that Gorkov potential for acoustic radiation force
is inapplicable to the general case of objects with arbitrary
shapes; hence, the force is required to be calculated directly
from Eq. (17).

C. Acoustic radiation torque

Acoustic radiation torque T is obtained from the radiation
stresses using the far-field approach (see Sec. I of Ref. [52]
for details of force and torque derivations) [2,19,27,28,53] as

FIG. 2. Schematic of nonspherical shapes for the study Willis
coupling with engineered asymmetry along the z-axis by adding,
(+), or removing, (−), material at one side. Square and circle cross
sections are considered, as shown in panels (a) and (b), respectively,
to reduce the spherical symmetry to mirror symmetry in x- and
y-directions and axisymmetric, respectively. Results for the ones with
circle cross section are provided in Sec. III of Ref. [52]. For the study
of size effects, the design with the tail and square cross section is
considered for the given scaling ratios in panel (c), the largest being
10:1 compared to the reference size.

follows:

T = −ρ f

∫
�∞

x ×
〈

vi

[
∇2 − 1

c2
f

∂tt

]
φs

〉
d�, (22)

where x denote the position vector. Substituting Eq. (12) into
Eq. (22) and using x × n = 0, the torque expression becomes

T = 〈 jω�D × vi〉r=0. (23)

This expression is the same as Eq. (11) in Ref. [54], in which
the radiation force and the radiation torque were derived from
their canonical momentum and spin densities. Finally, using
Eq. (7), we obtain the radiation torque for an arbitrarily shaped
scatterer, as follows:

T = 〈 jωpiαvp × vi〉r=0 + 〈 jω[αvvvi] × vi〉r=0. (24)

This formulation of radiation torque not only gives the term
corresponding to the spin density, which is proportional to
〈vi × vi〉 [54], but also shows the role of Willis coupling
effects distinctively. See Sec. II of Ref. [52] for details of how
to calculate the polarizability tensor from the scattering of in-
cident standing waves in three dimensions using the boundary
element method (BEM).
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FIG. 3. Changes of (a) real and (b) imaginary parts of the nonzero polarizability coefficients, given in Eq. (7), with respect to the deviation
from spherical shape by adding a tail or hole with square cross section.

III. RESULTS

A. Case of standing plane wave

The incident pressure, velocity, and their derivative fields
are expressed as

pi = Pa cos(kz)e− jωt , vi = jPa

ρ f c f
sin(kz)e− jωt ez,

∇pi = −Pak sin(kz)e− jωt ez, ∇vi = jPak

ρ f c f
cos(kz)e− jωt ezez.

(25)

Without loss of generality, the propagation direction is as-
sumed to be along the z-axis, denoted by ez. Substituting
Eq. (25) into Eq. (17) and time averaging, the force and torque
acting on an arbitrarily shaped object become

F · ez = Fsym + Fasym,

Fsym = kEi

ρ f

[
Re(αpp)

κ f
− kc f Im(αvvez ) · ez

]
sin(2kz),

Fasym = kEi

ρ f
c f Im(2αpv · ez ) cos(2kz),

T = Tsym + Tasym,

Tsym = −kEi

ρ f
c f Im(2αvvez ) × ez sin2(kz),

Tasym = kEi

ρ f

[
1

κ f
Re(αvp) × ez

]
sin(2kz),

(26)

where Ei = P2
a

4ρ f c2
f

denotes the acoustic energy density of the

incident wave, and Im denotes the imaginary part of a com-
plex variable. Subscripts sym and asym, previously defined
in Eq. (11), refer to the contributions from direct and Willis
coupling coefficients, respectively. Fasym and Tasym denote
partial force and torque terms that arise from the Willis
coupling representation of shape complexity. The spatial de-
pendence of partial force Fasym is cos(2kz), which gives
the stable zero-force location with negative force gradient
at λ/8. Compared to Fsym, which is classically referred to
as the acoustic radiation force, with sin(2kz) leading to the
prediction of acoustic traps at pressure or velocity nodes
under plane standing waves for subwavelength spherical and
spheroidal particles [18,19,24,31,33,51], the location of zero
net force is shifted by up to λ/8 along the wave direction.
The effects of geometrical complexity on the primary ra-
diation force are the largest at pressure and velocity nodal
planes, where sin (2kz) = 0. Furthermore, the actual location
of stable zero force for acoustic traps in a plane stand-
ing wave, considering the contribution of Willis coupling,
is shifted from the nodal locations as a result of the addi-
tional force induced by Willis coupling. However, this shift
depends on how large the Willis coupling effect is. This re-
sult implies that it is possible to obtain anomalous force and
torque fields by engineering the Willis coupling coefficients
through shape manipulation. Finally, it is noted that changing
the object symmetry also changes the αpp and αvv , since a
portion of the scattered energy goes to the Willis coupling
effect.
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FIG. 4. Normalized force and torque for the case of a sphere with a rectangular tail or hole, oriented at π/4 in the y-plane. Panels (a) and
(c) shows the parts corresponding to the direct polarizability coefficients, Fsym and Tsym, respectively, while (b) and (d) are those arising from
the Willis coupling coefficients, Fasym and Tasym, respectively.

B. Case of traveling plane wave

For a traveling wave in the z-direction, the incident pres-
sure, velocity, and their derivative fields are expressed as

pi = Pae jkze− jωt , vi = Pa

ρ f c f
e jkze− jωt ez,

∇pi = − jkPae jkze− jωt ez,∇vi = jPak

ρ f c f
e jkze− jωt ezez.

(27)

Substituting Eq. (27) into (17), the force and torque under a
plane traveling wave becomes

F = 2Ei

ρ f

(
−Im

[
αpp

κ f

]
ez + kc f Re[αvvez]

)
,

T = −2kEi

ρ f

(
1

κ f
Im[αvp] × ez + c f Im[αvvez] × ez

)
. (28)

This expression shows that the direct contribution of the Willis
coupling terms αpv and αvp to the force under traveling wave is
zero. However, the force generally has also transverse compo-
nents in the x- and y- directions due to the αvvez term, despite
the incident wave’s one-dimensional propagation line.

C. Numerical results

The shapes of objects are constructed by adding a taillike
attachment (protrusion) to or by creating a hole (intrusion) in a
sphere to engineer a geometrical asymmetry in one direction.
The circular tail or hole as shown in Fig. 2 is considered
to generate a nonspherical and axisymmetric shape. The ap-
parent symmetry is further reduced by considering the cross
section of the attachment being a square but having the same
edge length as the diameter of the circular one; however, they
both exhibit zero Willis coupling in the normal to the length
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FIG. 5. Variation of (a) real and (b) imaginary parts of the nonzero polarizability coefficients in terms of size for the case of adding a tail
with square cross section.

directions due to the mirror symmetry. The latter design was
used to investigate the shape effects over a given range of
size within the Rayleigh limit, which in practice is reasonably
ka < 0.3 [55].

We consider a standing plane wave and assume that objects
are sound hard and immovable, allowing us to focus only on
the effects of scatterer’s exterior shape. An incident pressure
field with 10 mm wavelength in air with c f = 343.140 ms−1

and ρ f = 1.204 kg m−3 is considered. The acoustic radiation
force and torque results are normalized, as follows:

Q = F
Eik�

, Z = T
Ei�

, (29)

where Q and Z are dimensionless vector quantities, as shown
in Fig. 1. For one-dimensional problems such as a sphere in
plane waves, these quantities reduce to a scalar value, which
has been referred to as force contrast factor an torque contrast
factor, respectively, and used to determine the direction of the
force and torque [18,21,24,56–60].

To study the effect of asymmetry in the axial direction z,
the objects are perturbed from sphere by adding a tail or hole
with square cross section. The nonzero polarizability coeffi-
cients are shown in Fig. 3, which indicate that the real parts
of Willis coupling coefficients are negligible for the small
object sizes considered here. For shapes with z-symmetry,
i.e., the reference sphere and the case with a hole all the way
through, both real and imaginary parts of the Willis coupling
coefficients become zero, marked by the red circles on the hor-
izontal axis in Fig. 3. The polarizability coefficients are larger
for the cases with the tail, added material volume (+), than
those with the hole, subtracted material volume (−). Consid-
ering Eq. (26) which shows the relation between polarizability
coefficients and the acoustic radiation force and torque, it is
expected that addition of a tail produces larger magnitude of
the torque than the cases with a hole. Finally, a comparison
between the cases with square and circular cross sections is
given in Sec. III of Ref. [52], showing that the polarizability

coefficients are smaller for the square cross section, for any
given tail length or depth hole in the studied range of 0 to 2as.

To investigate the radiation force and torque further, nor-
malized values Qx, Qz, and Zy are shown in Fig. 4, for the
object oriented at π/4 with respect to the incidence direction,
in the y-plane. This means that the radiation force has the
same components in the x- and z-directions, and the torque
has only one component in the y direction. The spatial de-
pendence of the force and torque components is according
to Eq. (26). The normalized values of the partial force Fsym,
due to direct-polarization coefficients, in Fig. 4(a), show that
the magnitude change is negligible compared to the reference
sphere. However, it was observed that the cases with a tail
experience almost similar forces as the reference sphere. For
those with a hole, the force increases with increasing hole
depth, except for the case of through-hole, which shows a
sudden force reduction, due to the topological change of
shape from regular to toroidal, which results in a decrease
of the amplitude of scattered pressure. In contrast, the Willis-
coupling force Fasym varies more significantly as the tail length
or the depth hole increases. The only exception is the case
of through hole, lh/as = 2, which gives zero Willis-coupling
force due to z-symmetry. Nonetheless, the Willis-coupling
force Fasym is at least two orders of magnitude smaller than
the direct-polarization force Fsym; hence, it could be neglected
for estimating the radiation force for practical applications.

The results of torque contrast factor Zy, in Figs. 4(c) and
4(d), shows that radiation torque is more sensitive to the
deviation from spherical shape. The changes of Tsym are larger
for the case with the tail, experiencing a negative torque
that aligns the tail with the direction of the incident wave
vector. Those with a hole are subjected to a positive torque
that tends to align the hole in the normal to the wave vector
direction. The case with a through hole is an exception as
it experiences a large negative torque, similar to the cases
with a tail. These results imply that the partial torque Tsym,
due to direct polarization effect, tends to bring the object to
the orientation with the smallest cross section normal to the
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incident wave direction. A similar relation between object
orientation and the radiation torque was observed for prolate
and oblate spheroids [33].

However, as shown in Fig. 4(d), these nonspherical objects
are also subjected to the Willis-coupling torque Tasym, as ex-
pressed in Eq. (26). Unlike the large difference between partial
radiation forces, this partial torque is just smaller than the Tsym

by less than an order of magnitude. It was found that Tasym

opposes and reinforces the Tsym before and after the pressure
node at z/λ = 0.25, respectively. Therefore, the orientation
of the objects under the action of the radiation torque needs
to be determined by accounting for both components. These
observations are particularly of interest as it captures not only
the contribution of Willis coupling, but also the significance of
calculating radiation torques in capturing the essence of shape
complexity, even for subwavelength objects with ka 
 1.

The changes of polarizability response in terms of size
were investigated for the case of a tail with square cross
section and lt/as = 2. A scaling ratio from 1:1 to 1:10 was
applied, indicating an increase of size by one order of mag-
nitude, as shown by the ka values in Fig. 5. It was found
that both real and imaginary parts of the nonzero polarization
coefficients increase with increasing size ratio. The real part of
Willis-coupling coefficients αz

pv increases by at least seven or-
ders of magnitude, while the direct polarizability coefficients
grow by three. For the imaginary parts in Fig. 5(b), the growth
of Willis coupling is around four orders of magnitude, while
it is six orders for the direct polarizability coefficients. These
change of polarizability coefficients influences the radiation
force and torque, as can be seen in Eq. (26). Moreover, our
results of αz

pv and αz
vp indicate that the reciprocity principle for

the acoustic polarization, as expressed in Eq. (9), was satisfied
within the computational margin of accuracy over the given
size range.

Inspecting Eq. (26), we expect the changes of polarizabil-
ity coefficients with size to influence the radiation force and
torque, and our results are shown in Fig. 6. Although the
Willis coupling increased for larger objects, its contribution
to the radiation force is still negligible. The radiation force is
less sensitive to size increase as the spread of forces is rather
narrow, indicating almost the same magnitude for the given
size range. Tasym increased to one third of Tsym, which implies
a greater contribution from the Willis coupling for larger
objects. Both parts of the radiation torque increase faster for
ka > 0.05, which shows a nonlinear change with respect to
the size factor. These results demonstrate that the effects of
size and shape on the radiation torque are more prominent
than the radiation force.

IV. DISCUSSION

In the presented formulation, the assumption of a sub-
wavelength scatterer, ka < 1, led to the monopole-dipole
approximation of the scattering field. For ka > 1, a more
accurate approximation including the quadrupole and higher
order multipole moments is required to obtain the analyti-
cal expressions of the acoustic radiation force and radiation
torque. This could be achieved by incorporating the Willis
coupling factors into the partial-wave expansion series and
adjusting the scattering coefficients accordingly.
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FIG. 6. Variation of normalized (a) radiation force and (b) radia-
tion torque in terms of size for the case of a sphere with a rectangular
tail, oriented at π/4 in the y-plane. Solid lines indicate Fsym and Tsym,
and the rest show Fasym and Tasym.

We also observed that the normalized force, also called
the contrast factor, shows far less variation across the pre-
sented range of ka values (Rayleigh index), when k� is
used instead of the choice of πa2. The difference is be-
cause k� ∝ πa2 × ka. In previous studies mainly focused on
spheres or spheroids, the extra ka factor was always applied
to the contrast factor, leading to a size dependence which
bears no helpful information [18,22,24,56,60]. Therefore, it is
concluded that the normalization of radiation force and torque
with the respect to volume, as expressed in Eq. (29), better
indicates the dependence on the shape and size features when
it comes to nonspherical objects.

The assumptions of sound-hard immovable scatterers were
made to focus this study on the effects of shape and size.
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However, including the effects of material properties and wave
refraction is straightforward, since these can be readily incor-
porated into the multipole moments of scatterers. Our choice
of numerical approach for solving the scattering problem was
using the BEM, which was combined by the analytical multi-
pole translation and rotation to obtain the multipole moments
from the four reference cases of the plane standing wave.
The alternative approach is to use the finite element method
(FEM), which is available in commercial software packages,
and use the polarizability retrieval techniques [47,50], based
on surface integral of scattering pressure with appropriate
spherical harmonics as weight functions. Nevertheless, it is
noted that the discretization of the scatterer’s surface for either
of these methods requires extra care to ensure a uniform
distribution of element size and aspect ratio across the sur-
face. Our results were obtained after a numerical convergence
test to achieve the optimal element size. The BEM scattering
results were verified by comparing against FEM simulation of
pressure on a fictitious spherical surface at 2as and λ distances
for nonspherical objects. See Sec. IV of Ref. [52] for details
of the verification study for the BEM scattering results and a
summary of the BEM code implementation.

The advantage of using the presented formulation is its
ability to calculate acoustic radiation force and acoustic ra-
diation torque straightaway from the polarizability tensor, as
a measure of acoustic transfer function and being independent
of the incident wave field. If nonplanar acoustic waves such
as Bessel or Gaussian beams are of interest, one could simply
calculate the radiation force and torque from the incident field
values at the centroid of the object. Moreover, the effect of
the angle of incidence is easily included by rotation of the
polarizability tensor. For subwavelength objects, our explicit
force and torque expressions can be implemented into com-
mercial software packages such as COMSOL for multiphysics
simulations of acoustofluidic processes. Our results show that
geometrical complexities have no effects on the radiation
force that is induced by a plane traveling wave. However, in
the case of two counterpropagating waves, which gives the

plane standing wave scenario, the radiation force and radia-
tion torque will be influenced by such shape effects. This is
an indication of the nonlinear nature of radiation force and
radiation torque, for which the wave superposition principle
becomes inapplicable.

V. CONCLUSION

The theory of acoustic radiation force and torque was
revisited to incorporate the Willis coupling arising from the
shape complexities of an arbitrary object in incident acoustic
fields. The mathematical expression of the acoustic radiation
force and radiation torque were provided in terms of polar-
izability coefficients, applicable for any choice of incident
pressure field. As examples, we derived these expressions for
plane standing and traveling waves to characterize the impact
of Willis coupling and changes to the polarizability tensor
as compared to the case of a simple sphere. The radiation
torque is more sensitive to shape effects than the radiation
force. As the size factor ka increases, the contribution of
the Willis coupling effect becomes larger for the radiation
torque, while it remains largely negligible to the radiation
force. The combination of acoustic radiation torque and force
significantly influences the dynamic equilibrium and stability
of a nonspherical object. Object positioning and global dy-
namics as related to particle interactions especially require
further thorough investigation. Knowing the acoustic radia-
tion torque, as shown here, becomes imperative when the
geometry of the object is accounted for. This even holds true
within the Rayleigh limit and considering locations within
a standing wave field, with stable angular balance and zero
radiation torque, important factors for the design and control
of acoustophoresis processes.
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