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Lift force acting on an intruder in dense, granular shear flows
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We report a lift force model for intruders in dense, granular shear flows. Our derivation is based on the thermal
buoyancy model of Trujillo and Hermann [Physica A 330, 519 (2003)], but it takes into account both granular
temperature and pressure differences in the derivation of the net buoyancy force acting on the intruder. In a
second step, the model is extended to take into account also density differences between the intruder and the bed
particles. The model predicts very well the rising and sinking of intruders, the lift force acting on intruders as
determined by discrete element model simulations, and the neutral-buoyancy limit of intruders in shear flows.
Phenomenologically, we observe a cooling upon the introduction of an intruder into the system. This cooling
effect increases with intruder size and explains the sinking of large intruders. On the other hand, the introduction
of small to midsized intruders, i.e., up to four times the bed particle size, leads to a reduction in the granular
pressure compared to the hydrostatic pressure, which in turn causes the rising of small to midsized intruders.
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I. INTRODUCTION

Since the first report by Brown [1], segregation effects in
granular systems have received widespread interest among
both physicists and engineers due to their high practical
relevance. Particles of different sizes [2], densities [3], and
possibly also shapes [4] segregate when excited, e.g., via
vibration, rotation, or gas injection. Segregation is readily
encountered in many processing apparatuses such as rotating
cylinders [5], hoppers [6], or vibrated beds [2]. In industrial
applications, segregation is typically an undesirable effect as it
counteracts mixing. In addition, segregation in granular media
is also commonly observed in nature, e.g., rock avalanches
and debris flow [7,8]. Arguably, model systems in which one
or multiple intruders are immersed in a granular bed have been
studied most frequently, and in such systems the so-called
“Brazil nut phenomenon” (BNP) has been reported. In the
BNP, which is not limited to single intruders, a larger particle
rises through a bed of smaller particles under external exci-
tation, typically vibration. Depending on the regularity of the
vibrational excitation, the BNP has been explained by percola-
tion [2,9] or convection [10]. The percolation model explains
the rising of a larger intruder through a bed of smaller particles
via a void filling mechanism. During a vibration cycle, first a
void is formed underneath the intruder. This void is subse-
quently filled by the small, surrounding bed particles. At the
end of a vibration cycle, the intruder falls back to a higher rest
position. Through a geometric description of the percolation
model, Duran et al. [9] predicted that the rise velocity of the
intruder depends on the size ratio of the intruder to the bed
particles. For very regular vibrations, a convective flow field
is established that carries the intruder upwards until it reaches
the surface of the bed. The intruder is trapped at the surface as
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the region close to the walls where downwards motion occurs
is typically smaller than the intruder. In this model, the rise
velocity of the intruder is independent of the ratio of the size
of the intruder to the bed particles. Although, the two mod-
els described above provide some conceptual understanding
of segregation in granular media, there is still considerable
debate on how to model segregation from a continuum per-
spective. Such continuum models require formulations of the
granular counterparts of drag, buoyancy, and in specific cases
the Saffman forces.

Using discrete element method (DEM) simulations,
Shishodia and Wassgren [11] were among the first to establish
an expression for the buoyancy force in a granular system.
In their two-dimensional (2D) vibrofluidized bed simulations,
periodic boundary conditions were employed to eliminate the
contribution of convection. In the absence of a convective pat-
tern, the intruder was found to rise to an equilibrium position
within the bed (bed position y) instead of rising to the top.
Making an analogy to the fluid mechanic description of the
buoyancy force, i.e., the product of a pressure gradient and
the intruder volume, Shishodia and Wassgren proposed the
following expression for the buoyancy force, Fb:

Fb = ∇P(y)VI = −mI g, (1)

where mI g is the weight of the intruder, ∇P(y) is the pressure
gradient, and VI is the intruder volume.

It is worth noting that the 2D granular system investigated
by Shishodia and Wassgren [11] was in the granular gas
regime in which binary particle collisions dominate. When
considering practically more relevant dense granular systems
in which multiparticle collisions and long-lasting contacts
dominate, the buoyancy force predicted through Eq. (1) under-
estimates the measured buoyancy force acting on the intruder
when the intruder size approaches the size of the bed particles
[12].
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On the other hand, Trujillo and Herrmann [13] developed a
granular buoyancy model using the kinetic theory of granular
gases. The system considered contained a single intruder in a
vibrated bed. The driving force acting on the rising intruder
was modeled as a thermal-induced buoyancy force, i.e., a
density difference arising from differences in the granular
temperature of the system with and without the intruder. In
their model, a reference state “0” was defined that is charac-
terized by a granular pressure P0(r) and temperature T0(r),
where r is the position of the intruder. The reference state
assumes a bed without the intruder. Upon introduction of
the intruder, the bed transitions to a new state “1” which
is characterized by P1(r) and T1(r). The temperature differ-
ence between the “perturbed” and reference states is given as
�T (r) = T1(r) − T0(r), yielding the following expression for
a granular, thermally induced buoyancy force [13]:

Fb = α�T ρVI g, (2)

with ρ being the bulk density of the reference state (i.e.,
ρ = ρpφ, with ρp being the density of the bed particles and
φ being the solid fraction of the bed), g is the acceleration
due to gravity, and α is the coefficient of thermal expansion,
defined as α = − 1

n ( ∂n
∂T )P, where n is the number density of

the bed particles. Assuming α to be constant, Trujillo and
Herrmann showed that α = 1

T0
C(φ), where C(φ) depends on

the solid fraction with C(φ) → 1 for φ → 0. The system
considered by Trujillo and Hermann [13] was a vibrofluidized
bed and a uniform system pressure i.e., dP ∼ 0 was assumed.
However, such a simplification would not be valid in dense,
shear systems (vide infra).

To summarize, the buoyancy models described in Eqs. (1)
and (2) have been developed for systems that operate in the
granular gas regime. However, when considering more “liq-
uidlike,” dense granular systems, additional effects have to
be considered in the buoyancy model. For example, in an
experimental study of a dense, vertically vibrated bed (ampli-
tude A = 9.76 mm and frequency f = 9.7 Hz), Shinbrot and
Muzzio [14] observed that intruders (dI = 152 mm) with a
density <0.5ρp sink, whereas heavy intruders (dI = 152 mm)
with a density in the range 1.2–1.7ρp rise. This unexpected
behavior has been termed the reverse Brazil nut phenomenon
(RBNP). As the intruder size was fixed in these two ex-
periments, the buoyancy model described in Eq. (1) cannot
explain why the heavier intruder rises to the top while the
lighter intruder sinks. It has been argued that the interstitial air
in beds of small particles (<800 μm) might contribute to the
RBNP [14]. To weaken the influence of the interstitial gas in a
vibrated bed, Huerta et al. [12] investigated the BNP in a dense
bed containing larger particles (i.e., a mixture of glass beads
3 and 4 mm in diameter). Huerta et al. [12] observed that a
light intruder rises faster than a heavier intruder of equal size.
Unlike in the setup of Shinbrot and Muzzio [14], the bed of
Huerta et al. [12] was vibrated horizontally with neighboring
sidewalls vibrating with the same amplitude but out of phase
(phase shift π ), ensuring the cross-sectional area of the bed
to remain almost constant over a vibration cycle and avoid-
ing in turn the establishment of a convection pattern. Huerta
et al. [12] measured the lift force acting on the intruder by
connecting the intruder, placed in the center of the bed, with
a force sensor. The measured lift force Flift = −(Fs + Fg),

where Fg is the gravitational force of the intruder and Fs is the
time-averaged value obtained from the force sensor, can be
interpreted as the buoyancy force acting on the intruder. The
measured lift force was fitted to a generalized Archimedean
formulation of the buoyancy force, viz.,

Fb = |Fs + Fg|= ρpφVIg, (3)

where the “fitting constant” φ was very close to the aver-
age solid fraction of the bed, i.e., the intruder rises as in a
fluid with a density that is equal to the bulk density of the
granular media (φρp). However, the experimental data ac-
quired by Huerta et al. [12] showed only good agreement with
the buoyancy model given by Eq. (3) for large (dI/dp > 4)
and very light intruders (ρI/ρp = 0.0169). As the intruder
size approached the size of the bed particles, the measured
buoyancy force exceeded the predictions of the generalized
Archimedean principle given in Eq. (3). In a convection-free,
vibrated bed in which the intruder is fixed in an equilibrium
position and only buoyancy and gravity forces are acting on
the intruder, the buoyancy force will become smaller than the
bed particle weight for VI → Vp, i.e., Fb = φρpVpg < mpg as
the solid fraction of the bed φ < 1. Thus, the generalized
Archimedean principle expressed in Eq. (3) underestimates
the buoyancy force acting on a bed particle. This limitation of
the buoyancy model given in Eq. (3) has also been remarked
upon by van der Vaart et al. [15].

Although the buoyancy concept was investigated initially
in vibrated systems, its applicability to shear flow systems
of practical relevance has also been studied. Qualitatively,
Savage and Lun [16] proposed that in dense shear flows,
segregation is driven by both kinetic sieving and squeeze ex-
pulsion. Overall, there is a higher probability of finding a void
into which a small particle can fall compared to a void into
which a large particle can fall. This size-dependent, gravity-
induced segregation mechanism has been termed “random
fluctuating sieving” or “kinetic sieving.” In addition, a force
imbalance on a particle leads to the particle being squeezed
out of its layer. This mechanism was termed “squeeze expul-
sion,” but it is neither necessarily size dependent nor does
it have a preferred direction. However, there is currently no
continuum model that describes accurately the motion of seg-
regating intruder(s) in dense, granular shear flows. To gain
some insight into these systems, Guillard et al. [17] per-
formed 2D, steady-state, shear-flow simulation using DEM to
quantify the lift force acting on an intruder as a function of
the prevailing pressure (and stress) gradient. The size of the
intruder was varied from dp to 10 dp while fixing the intruder
density to the density of the bed particles. In their simulations,
the intruder was kept at a position of half the height of the bed
(hc/2) by connecting it to a virtual spring. The virtual spring
imposed an additional (spring) force onto the intruder, i.e.,
Fs = −ks(y1 − y0)ey, where ks is the spring constant, y1 is the
vertical position of the intruder at a given time, y0 = hc/2 is
the initial position of the intruder, and ey is the unit vector in
the y direction. The virtual spring ensures that the intruder
remains at its equilibrium position while allowing its free
movement along the direction of the flow. The buoyancy force
acting on the intruder was calculated in analogy to Eq. (1) and
expressed as a function of the spatial gradients of the granular
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pressure and shear, viz.,

Flift= − π
dI

4

(
F (μ,dI/dp)

∂P

∂y
+G(μ,dI/dp)

∂|τ |
∂y

)
, (4)

where τ is the granular shear stress, P is the granular pressure,
and μ = |τ |/P is the bulk friction coefficient. Guillard et al.
[17] proposed the factors F and G to be exponential functions
of μ and dI/dp.

In a subsequent study, van der Vaart et al. [15] aimed to
elucidate whether the lift force acting on an intruder in a shear
flow can be expressed as the sum of a granular buoyancy force
and a Saffman-type lift force, i.e.,

Flift = Fb + FSaff . (5)

where FSaff = −a0b0Iθμ–0.5(dp/dI − 1)dI
2dp

–1sgn(γ̇ ) [a0 and
b0 are fitting constants, Iθ = γ̇ dp/(P/ρp)0.5, γ̇ is the shear
rate, and μ is the bulk friction coefficient]. Van der Vaart et al.
[15] considered a full 3D, dense shear flow along an inclined
plane with an inclination angle θ with respect to the horizontal
direction. Van der Vaart et al. [15] modified Eq. (3) to correct
for the underestimation of the buoyancy force for VI → Vp by
replacing the solid fraction of the bed, φ, by φ/φI , where φI

is the solid fraction of the intruder, yielding

Fb = ρp
φ

φI
VI g. (6)

The solid fraction of the intruder is defined as the ratio of its
Voronoi volume, ṼI , to its physical volume, VI . The modified
buoyancy model Eq. (6) has also recently been assessed and
validated in a vibrofluidized system [18]. The derivation of the
Saffman lift force is limited to conditions in which inertia is
not dominating the local flow around the intruder, i.e., when
the shear rate-based Reynolds number Re � 1. Furthermore,
it is currently unclear whether the Saffman lift force model
also holds for very large intruders which have been found to
sink [19].

In the most recent work, Jing et al. [20] reported a simple
buoyancy-based model to describe the lift force acting on
a single spherical intruder in a dense, granular shear flow.
By varying the size and density ratio of the intruder to bed
particles, it was found that the lift force Flift , as determined
via a virtual spring, i.e., Flift = −(Fs + Fg), collapses onto an
Archimedean-type model, viz.,

Fb = f (D) ρpφVI g, (7)

where f (D) = [1 − c1exp(−D/a1)][1 + c2exp(−D/a2)] is
a fitting function with fitting constants c1 = 1.43, c2 =
3.55, a1 = 0.92, a2 = 2.94, and D = dI/dp. As for D �
1, f (D) → 1, the observation that with increasing D the
lift force approaches the generalized Archimedean principle
[Eq. (3)] is captured by Eq. (7). This trend of the buoyancy
force for D � 1, which can be considered as the contin-
uum limit, can be explained as follows. As the surface area
of the intruder increases with D2, the number of contacts
between the intruder and the surrounding bed particles in-
creases rapidly with increasing D, yielding a uniform stress
transmission to the intruder for D � 1 and hence a similar
behavior to that of an intruder immersed in a fluid. On the
other hand, for D → 1, the stress distribution on the intruder
is highly anisotropic, leading to a deviation from Eq. (3).

However, the effect of stress anisotropy on the lift force acting
on an intruder remains largely unclear. Nonetheless, despite
the empirical derivation of f (D), Eq. (7) can be of practical
importance, allowing us to make an a priori prediction of
whether an intruder of a given size and density ratio will sink
or rise.

To summarize, recent works have improved significantly
our understanding of size-driven segregation of intruders in
dense shear flows and its continuum modeling. However, al-
though several works observe a distortion of the hydrostatic
pressure field, in addition to the granular temperature field,
upon the addition of the intruder, the model of Trujillo and
Hermann [13] is limited to disturbances in the temperature
field, which is most likely insufficient to describe dense gran-
ular systems. Furthermore, while the theoretical models have
been shown to predict well the forces acting on intruders for
lower ratios of dI/dp (e.g., dI/dp < 4 for [15]), theoretical
models that can also predict accurately the sinking of very
large intruders would be advantageous. Hence, in this work we
aim to extend the original work of Trujillo and Hermann [13]
to dense shear flow systems by describing local perturbations
in both the pressure and temperature field upon the introduc-
tion of an intruder. Compared to existing models for the lift
force acting on an intruder, the model proposed here is based
on a physical description of the granular system. The proposed
model not only predicts quantitatively the lift force acting on
the intruder, but it also provides insight into the mechanisms
at play.

II. METHOD

A. Simulation method

DEM simulations of the shear flow system considered here
were performed using the LIGGGHTS software [21]. In DEM,
each particle is modeled as a single entity (Lagrangian ap-
proach) and the normal, Fn,αβ , and tangential contact forces,
Ft,αβ , acting between the contacting particles α and β are
modeled by a Hertzian contact model [22,23]:

Fn,αβ = −kn

√
1

4R∗ δn,αβ
3/2 + γn,αβ

√
m∗ 4

√
δn,αβ

4R∗ un,αβ, (8)

Ft,αβ = −kt

√
1

4R∗ δt,αβ
3/2 + γt,αβ

√
m∗ 4

√
δt,αβ

4R∗ ut,αβ, (9)

where kn and kt are the spring constants in the normal and tan-
gential direction, respectively. Here, δn and δt are the particle
overlaps in, respectively, the normal and tangential direction,
γn and γt are the damping coefficients in, respectively, the nor-
mal and tangential direction, R∗ is the effective radius given
as R∗ = RαRβ/(Rα + Rβ ), m∗ = mαmβ/(mα + mβ ), and un,αβ

and ut,αβ are the tangential and normal relative velocities
between particles α and β, respectively. The tangential contact
force, Ft,αβ , is limited by Coulomb’s law, i.e., Ft,αβ � μFn,αβ ,
with μ being the coefficient of friction.

We have chosen to study inclined plane flow as it is one
of the classical setups, having well-established flow dynamics
[24]. Figure 1 illustrates the setup of the simulation domain.
The bed of dimensions lx × lz × hc = 20dp × 20dp × 40dp

consists of 16 000 bed particles of diameter dp. We have

064903-3



MENG LIU AND CHRISTOPH R. MÜLLER PHYSICAL REVIEW E 104, 064903 (2021)

FIG. 1. Sketch of the granular shear flow system under investi-
gation. An intruder (dark gray) is immersed in the bed at an initial
location y0 = hc/2. The inclination angle is given by θ , and hc is the
distance (in the y-direction) from the bottom of the bed to its surface.
For simplicity, we introduce a local coordinate system. A virtual
spring (blue spring) is attached to the intruder. The intruder is able to
move freely in the xz plane, while it reaches a (dynamic) equilibrium
position y1. The size of the simulation domain is lx × lz × hc =
20dp × 20dp × 40dp.

confirmed that the computational domain is adequately sized
since doubling its size had no effect on the numerical results.
The bed particles flow along an inclined plane due to gravity.
The gravitational vector |g| = 9.81 m/s2 can be decomposed
into gx = g sinθ and gy = g cosθ . Particles with a diameter
dw = 10 mm are glued onto the bottom plate to increase the
roughness of the bottom wall. In the x and z directions, peri-
odic boundaries were applied to establish a steady-state shear
flow. The velocity profiles in the shear flow were varied by
adjusting the inclination angle θ . However, as only a narrow
range of θ ensures steady-state conditions, the inclination an-
gle θ was only varied in the range 24°� θ � 28° in this work.
The inclined chute flow is chosen due to its well-established
dynamics. A spherical intruder of diameter dI was placed
inside the bed at a vertical position yc = hc/2 = 20dp. The
motion of the intruder in the y-direction was constrained by a
virtual spring (spring constant 80 N/m). The spring constant
has been varied by a factor of 4, and we have observed a
negligible effect on the lift force. The intruder can move freely
in the xz plane. The spring force acting on the intruder is
determined through its displacement in the y direction, i.e.,
Fs = −ks(y − y0)ey. The vertical displacement of the intruder
is very small, at most 0.5dp for dI/dp = 8. The lift force
acting on the intruder is then given by Flift = −(Fs + Fg). The
parameters used in the DEM simulation are given in Table I.
The reported parameters correspond to the material properties
of glass, except for the particle spring constant for which a
lower value was chosen to accommodate DEM simulation
constraints.

B. Coarse-graining

To obtain the granular pressure, stress, and temperature,
coarse-graining (CG) of the DEM data was employed [25,26].
The granular stress tensor in the coarse-graining volume is

TABLE I. Parameters used in the DEM simulations.

Parameters Value

kn (N/m) 6.41 × 104

kt (N/m) 2/7kn [24]
dp(m) 0.005
dI (m) dp up to ∼ 8dp

dw(m) 0.01
ρp(kg/m3) 2500
γn[(N/m)1/2] 23.01 [24]
γt [(N/m)1/2] 1/2γn

μ 0.5
e 0.88
Time step (s) 10–5

given by [27]

σi, j (r, t ) = −1

2

∑
α,β

fi,αβr j,αβ

∫ 1

0
�(r − rα + srαβ )ds

−
N∑

α=1

mα�(r − rα )u′
i,αu′

j,α, (10)

where � is the coarse-graining function, i, j denotes the
Cartesian components, fi,αβ is the ith component of the con-
tact force vector between particles α and β (see the illustration
in Fig. 2), and r j,αβ is the branch vector connecting the
centers of gravity of particles α and β. We use the Heav-
iside function as the coarse-graining function, i.e., �(R) =
1/(4/3πw3)H (w − |R|), where w is the radius of the spheri-
cal coarse-graining volume, R = r − rα is the vector pointing
from a sampling particle inside the coarse-graining volume
to the center (×) of the coarse-graining volume, and u′

i,α
is the velocity fluctuation of particle α, viz., u′

i,α = ui,α−ūi,

where ui,α is the instantaneous velocity of particle α in the ith

FIG. 2. Illustration of the coarse-graining method. The coarse-
graining volume is bounded by a spherical space centered at r with
the coarse-graining radius w. The branch vector rαβ = rα − rβ is
shown as a red arrow that points from particle β to particle α.
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FIG. 3. Dependence of σyy and the granular temperature on the
normalized coarse-graining radius w/dp: (a) σyy increases with in-
creasing w/dp for w/dp < 1. For w � dp, σyy reaches an asymptotic
value that is in excellent agreement with its hydrostatic value, i.e.,
Nmpg/(lx · lz), where N is the particle number, mp is the particle
mass, and lx · lz is the cross-sectional area of the system. (b) The
granular temperature increases continuously with increasing coarse-
graining radius w/dp.

direction, and ūi is the average velocity in the ith direction of
the particles in the coarse-graining volume.

The average pressure in the coarse-graining volume is
given by P = 1/3(σii + σ j j + σkk ). The value of σi, j depends
mainly on the coarse-graining radius w. For example, Fig. 3(a)
shows the dependence of σyy on the coarse-graining radius
w. For w/dp < 1, σyy increases with increasing w/dp, but it
reaches an asymptotic value for w/dp � 1, in agreement with
previous works [26,28]. To avoid an oversmoothing of the
local stresses, we chose w = d̄ = 1/2(dI + dp), in agreement
with previous works [15,29,30].

Turning now to the granular temperature, viz. [13,31],

3

2
T = 1

N

N∑
α=1

1

2
mα

(
u′2

i,α + u′2
j,α + u′2

k,α

)
, (11)

where i, j, and k denote the Cartesian components, u′
i,α , u′

j,α ,
u′

k, α are, respectively, the velocity fluctuations of particle α

with regard to the respective average velocity in the coarse-
graining volume. The magnitude of the granular temperature
depends on the coarse-graining volume. For example, in the
dense granular shear flow system studied here, the granular
temperature increases monotonically with increasing coarse-
graining volume [Fig. 3(b)]. Recently, a method has been
proposed to eliminate the influence of the coarse-graining
volume on the granular temperature, however the approach is
only suitable for very specific systems such as monodisperse
shear flows [28]. However, as this work concentrates on the
effect of a differently sized granular intruder on the granular
temperature of the system when compared to the intruder-free
reference case, this method is not applicable to the system
studied here. Generally, there is very little consensus on the
“correct” coarse-graining radius for the granular temperature
[32]. In the work of Trujillo and Hermann [13], a coarse-
graining radius of w = L/3 (L is the width of the vibrating
bed) was chosen for the granular temperature calculation to
achieve a good agreement between their thermal buoyancy
model and the experimental measurements. Here, we have
decided to use the coarse-graining radius w = rI + dp for the
granular temperature, as it is physically reasonable to include
the first layer of particles around an intruder into the coarse-
graining radius.

III. MODEL DESCRIPTION

Hermann [33] proposed a thermodynamic formulation for
moving granular media that was subsequently adopted to
investigate the BNP problem [13]. First, they defined a ref-
erence state of a vibrofluidized bed that is described by a
given granular pressure P0(r) and granular temperature T0(r).
When introducing an intruder into the system, the state at r
changes and is referred to as a perturbed state “1” described
by the granular pressure P1(r) and granular temperature T1(r).
Trujillo and Hermann [13] argued that the perturbed granular
system tends to reestablish its reference state, leading to a dis-
placement of the intruder from its initial position r. Neglecting
changes in the granular pressure due to the presence of the
intruder, Trujillo and Hermann [13] proposed a thermal-driven
buoyancy force model [Eq. (2)] to describe the motion of an
intruder in a vibrofluidized bed.

In the following, we derive a granular buoyancy model
that takes into account also intruder-induced variations in the
pressure field to allow the description of the motion of an
intruder in a dense, granular shear flow system.

To quantify the impact of an intruder on the local granular
temperature and pressure in a shear flow, we consider the two
systems (i.e., the reference and perturbed states) illustrated in
Fig. 4. Figure 4(a) sketches the shear flow system without an
intruder, i.e., the “reference case,” while Fig. 4(b) contains
an intruder at position r and is referred to as the “intruder
case” (perturbed state). Figure 4(a) is identical to Fig. 4(b)
except that the intruder is replaced by bed particles. In the
reference case, the granular temperature and pressure at r (i.e.,
the center of the imaginary control volume) are referred to as
T0(r) and P0(r), respectively. Similarly, in the intruder case
the granular temperature and pressure at r, i.e., the position
where the intruder is located, are denoted as T1(r) and P1(r),
respectively. P0(r), T0(r), P1(r), and T1(r) are determined

064903-5



MENG LIU AND CHRISTOPH R. MÜLLER PHYSICAL REVIEW E 104, 064903 (2021)

FIG. 4. Illustration of the reference case and the perturbed state,
i.e., the shear flow system with the presence of an intruder. (a)
Reference case: shear-flow system without the intruder. The intruder
is replaced by an imaginary control volume of size Vc = VI , that
is filled with bed particles. The boundary of the imaginary control
volume is given by a dashed circle. Here, P0(r) and T0(r) denote the
reference state at r. (b) Perturbed state: intruder of volume VI and
density ρI is placed at r into the shear flow system. P1(r) and T1(r) are
the granular pressure and temperature at r in the perturbed state. Fnb

is the net buoyancy force acting on the control volume, which arises
from the temperature and pressure difference between the reference
and intruder states. Fnet−lift is the force acting on the intruder, which is
measured by the (virtual) spring force, Fnet−lift = −Fs, and that keeps
the intruder in its equilibrium position. Here, “net” implies that the
gravitational force has been subtracted.

through coarse-graining. The change in the system due to the
presence of an intruder (compared to the reference state) is de-
scribed by �T (r) = T1(r)–T0(r) and �P(r) = P1(r)–P0(r).
We follow now the argumentation of Trujillo and Hermann
[13] that the thermodynamic driving force for an intruder to
sink or rise (i.e., the lift force acting on the intruder) is related
to �T (r) and �P(r). As in our shear flow system, periodic
boundary conditions are applied in the x and z directions, and
P(r) and T (r) are independent of x and z for a given y, we can
simplify our notation to P(y) and T (y).

For an inelastic, hard-sphere system [Fig. 4(a)], the granu-
lar pressure can be expressed as [34,35]

P = nT
[
1 + π

3
(1 + e)nd3

pC(φ)
]
, (12)

where n is the particle number density, T is the granular
temperature, e is the coefficient of restitution, dp is the di-
ameter of the particles, φ is the solid fraction, and C(φ)
is the pair-correlation function at a contact, i.e., the proba-
bility density to find another particle at a distance dp from
a particle center. For a dilute or moderately dense sys-
tem (i.e., ndp

3 ∼ 1), the Carnahan-Starling expression holds,
i.e., C(φ) = (2 − φ)/2(1 − φ)3 [27], where Carnahan and
Starling [27] assume that binary collisions dominate. This
assumption might become inaccurate for denser systems, in
which empirical pair correlation functions C(n) that con-
sider multiple particle contacts (as opposed to binary contacts
in a granular gas) are required [36,37]. However, for our
model, the exact form of Eq. (12) is not relevant as we only
utilize the finding that there is a relationship P = P(n, T ), and
P = P(n, T ) can be reformulated as

n = n(P, T ). (13)

Taking the total differential yields

dn =
(

∂n

∂T

)
p

dT +
(

∂n

∂ p

)
T

dP = − αndT +kpndP, (14)

where α is the thermal expansion coefficient and kp is the
compressibility coefficient, given by

α = −1

n

(
∂n

∂T

)
P

(15)

and

kp = 1

n

(
∂n

∂P

)
T

. (16)

Placing an intruder in the reference shear flow system
changes the granular pressure and temperature at position r
from (T0, P0) to (T1, P1). Assuming α and kp to be constant
and integrating Eq. (14), we obtain

n1 = n0e(−α�T +kp�P), (17)

where n0 = N0/Vc is the number density in the reference case
(N0 is the number of particles in the imaginary control volume
Vc). The density of the control volume can be expressed as
ρ0 = (N0mp)/Vc = n0mp, where mp is the mass of a bed par-
ticle. Using the equivalent expression for ρ1, i.e., ρ1 = n1mp,
we can rewrite Eq. (17) yielding

ρ1 = ρ0e(−α�T +kp�P). (18)

Hence, transitioning from state “0” to “1” leads not only
to a change in the granular temperature and pressure (�T
and �P) at position r, but also to a change in density, i.e.,
�ρ = (ρ0 − ρ1). We now make the further assumption that
the bulk density outside the control volume region [Fig. 4(a)]
is unaffected by the pressure/temperature perturbation (i.e.,
it is ρ0). Following Archimedean’s principle, we define the
net buoyancy force acting on the imaginary control volume in
Fig. 4(a) as

Fnb = (ρ0 − ρ1)VIgy. (19)

As our derivation starts from Eq. (12), which only holds for
monodisperse particle systems, the net buoyancy force given
in Eq. (19) that is acting on the imaginary control volume in
Fig. 4(a) is not expected to be the exact equivalent of the lift
force acting on the intruder, but it is expected that there exists
a strong correlation between Fnb and Fnet-lift , which will be
demonstrated in the following.

Substituting Eq. (18) into Eq. (19), and replacing ρ0 with
ρpφ, we obtain the following expression for the net buoyancy
force:

Fnb = (1 − e−α�T +kp�P ) ρpφVI gy. (20)

Further, in a steady-state, dense, granular shear flow, the
granular pressure at a given height y is given by [39,40]

P(y) = (∂P/∂y) (y − hc) =ρpφgy(hc − y), (21)

where hc is the height of the flowing layer. The linear relation-
ship between P and y is confirmed in Fig. 5(a). Substituting
now φ = nVp in Eq. (21) and combining it with Eq. (16), we
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FIG. 5. (a) Granular pressure along the y direction: ( ) granular pressure as determined by coarse-graining (CG), ( ) hydrostatic
pressure, i.e., Py = ρpφgy(hc − y) [Eq. (21)] with φ = 0.55; (b) solid fraction along the y direction. The solid fraction is nearly constant
across the bed (φ = 0.55) except in the regions close to the surface and bottom (distances of approximately 5dp); (c) ( ) granular temperature
[Eq. (11)] as determined by CG, ( ) linear fit of the CG data, suggesting a linearity between T and y [Eq. (23)] in the core region of the
dense, granular, shear flow; (d) velocity in the x direction as a function of y/dp: ( ) DEM data and ( ) Bagnold velocity profile [38], i.e.,
u(y) = 2

3 Iθ
√

P/(ρpdp)hc{1 − [1 − (y/hc )]1.5}, where Iθ = γ̇ dp/(P/ρp)0.5 (e.g., in this work Iθ = 0.17 for θ = 25◦), P is the pressure at the
bottom of the system, and hc is the height of the shear flow system. All data are extracted from a shear flow system with an inclination angle
θ = 25◦.

obtain the compressibility coefficient:

kp = 1

n

1

mp gy(hc − y)
= 1

P
. (22)

In a steady-state, dense, shear flow system, the solid frac-
tion (and hence also the number density) is constant in the
core region [29,39,41] as demonstrated in Fig. 5(b). Following
Eq. (12), i.e., P = nT f (e, φ), the granular temperature is also
expected to vary linearly with y in regions where n and φ

are constant. This behavior is confirmed in Fig. 5(c). It is
worth noting that both the granular pressure and temperature,
Figs. 5(a) and 5(c), as determined by coarse-graining, deviate
from their linear dependences with y close to the bottom wall
(i.e., at y < 5dp).

This wall-induced deviation is in agreement with previous
reports, e.g., [42]. However, in our work the intruder is placed
well away from the bottom plate, and hence the linear rela-
tionship of both the granular pressure and temperature with y
is assumed to hold. Thus, combining Eqs. (12) and (21) yields

T = P

n f (e,φ)
= ρpφ gy(hc − y)

n f (e,φ)
. (23)

As n, e, φ are constant along y (and away from the bound-
aries), we obtain

∂T

∂y
= 1

n f (e,φ)

∂P

∂y
= − ρpφ gy

n f (e,φ)
. (24)
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FIG. 6. Linear relationship between the net buoyancy force, Fnb,
as given by Eq. (28) and the net lift force Fnet-lift . Each data point
represents a DEM simulation of a different dI/dp ratio (denoted by
the marker symbol) and inclination angle (θ = 24◦, 25°, 26°, 27°,
and 28° denoted by the color scheme). The density ratio ρI/ρp = 1
was used in the simulations.

Rearranging Eq. (24) and combining it with Eq. (23) yields

∂P

∂T
= ∂P

∂y

/
∂T

∂y
= n f (e,θ ). (25)

In addition, from Trujillo and Hermann [13] we have

α

kp
=

(
∂P

∂T

)
n

. (26)

Combining Eqs. (22), (23), and (26) gives

α = kp

(
∂P

∂T

)
n

= 1

P
n f (e,φ) = 1

T
. (27)

Here, following Trujillo and Hermann [13], we have as-
sumed that kp and α are constant when integrating Eq. (14).
Hence, setting kp = 1/P0 and α = 1/T0, we obtain the follow-
ing expression for the net buoyancy force acting on the control
volume Vc in the reference case [Fig. 4(a)]:

Fnb=(1 − e− �T
T0

+ �P
P0 )ρpφ gyVI . (28)

IV. RESULTS AND DISCUSSION

A. Lift force model

In the following, we first establish the correlation between
the net lift force Fnet−lift = –Fs acting on the intruder (i.e., Fs

is the spring force that prevents the intruder in the DEM sim-
ulations from migrating to the top of the shear flow system)
and the derived net buoyancy force acting on the imaginary
control volume in Fig. 4(a), i.e., Eq. (28). Figure 6 plots the
normalized net lift force on the intruder, Fnet−lift/mI gy, over
the normalized net buoyancy force, Fnb/mI gy, for a series
of DEM simulations in which the inclination angle and the
size ratio dI/dp were varied. From Fig. 6 we obtain a linear
correlation between Fnet−lift and Fnb, i.e.,

Fnet-lift = Fs=1

a
Fnb, (29)

with a = 0.55 ± 0.035. The bulk solid fraction of our shear
flow system is φ = 0.55, hence φ/a ∼= 1. Substituting Eq. (28)
into Eq. (29):

Fnet−lift = (1 − e− �T
T0

+ �P
P0 )ρp gyVI . (30)

Figure 6 shows that the inclination angle has only a very
minor influence on the magnitude of the spring force, in agree-
ment with previous reports [15,17,20]. On the other hand, the
size ratio dI/dp affects the buoyancy force and hence also
the spring force appreciably, i.e., with increasing dI/dp the
normalized buoyancy force (and the spring force) decrease.
To compare our buoyancy model to previously proposed mod-
els, we calculate a lift force Flift = − (Fnet−lift + Fg) = −
(Fnb/a + Fg). The lift force is the sum of all forces that act in
the opposite direction of gravity on the intruder (e.g., Saffman
and buoyancy forces). For our buoyancy model, the lift force
in the specific shear system studied here is given by

Flift = |−(Fnet-lift+Fg)|
= (1 − e− �T

T0
+ �P

P0 )ρp gyVI + ρp gyVI

= (2 − e− �T
T0

+ �P
P0 ) ρp gyVI . (31)

Normalizing the lift force by the gravitational force of the
intruder (ρp = ρI ) yields

Flift

ρI gyVI
= 2 − e− �T

T0
+ �P

P0 . (32)

In the following, we performed a series of DEM simu-
lations with varying ratios of dI/dp, and we determined the
lift force acting on the intruder through Flift = − (Fs + Fg).
The differences in the granular pressure and temperature be-
tween the reference and the intruder cases, as required for our
buoyancy model Eq. (32), were obtained from the Lagrangian
DEM data through coarse-graining.

Figure 7 plots the lift force determined by the virtual
spring, our proposed buoyancy model [Eq. (32)], the Saffman-
based lift force model [Eq. (5)], and the Archimedean-type
buoyancy model given by Eq. (7). Concerning the gen-
eral trend of the lift force, starting from dI/dp = 1, where
Flift/(ρIVI gy) = 1, the normalized lift force reaches a max-
imum at dI/dp ∼ 1.5. The existence of a maximum in the
(normalized) lift force with dI/dp has been observed previ-
ously. For example, Guillard et al. [17] observed a maximum
in the lift force at dI/dp ∼ 2 in a 2D plane driven shear flow.
Similarly, van der Vaart et al. [15] and Jing et al. [20] observed
a maximum in the lift force at dI/dp = 1.5 in a 3D shear
chute flow. The reason for the maximum in the lift force is
currently unclear, but further below we provide a tentative
explanation. For intruder sizes dI/dp > 4, Flift/(ρIVIgy) < 1,
i.e., the intruder sinks. In several experimental works, the
sinking of large intruders (dI/dp > 5 for ρI/ρp = 1) has been
observed, e.g., in rotating cylinders [19,44].

Our lift force model, Eq. (32), predicts the lift force
determined by a virtual spring very accurately, while the
Archimedean-type buoyancy model [Eq. (7)] of Jing et al.
[20] captures the overall trend well but tends to overpredict
the DEM data for dI/dp < 6. The difference between our
modeling results and the buoyancy model of Jing et al. [20] is
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FIG. 7. Normalized lift force as a function of the size ratio dI/dp

with ρI/ρp = 1: ( ) Lift force acting on the intruder as determined
directly from the DEM simulations via a virtual spring. The error
bars give the standard deviation obtained from five simulations (each
50 s simulation time in the steady state); ( ) lift force as determined
by the proposed buoyancy model, i.e., Eq. (32); ( ) predictions
of the buoyancy model of Jing et al. [20], i.e., Eq. (7); ( ) in-
clined shear flow simulation results (Hertzian contact model) of [43];
( ) Saffman force-based lift force model Flift = Fsaff + Fb = −
a0b0Iθμ–0.5(dp/dI − 1)dI

2dp
−1s(γ̇ ) + (φ/φI )ρpgyVI using a0 = 0.24

and b0 = 130.0 as the fitting parameter as given by van der Vaart
et al. [15]; ( ) inclined plane flow simulation results (linear spring-
dash contact model) of [15]. The black dashed line is a prediction
of Eq. (5) that uses a0 = 0.24 and b0 = 93 as obtained from our
simulation data. The solid, horizontal black line is a guiding refer-
ence for Flift/(ρIVI gy ) = 1, i.e., below this reference line an intruder
sinks, while values above the reference line indicate a rising intruder.
( ) Normalized lift force in the continuum limit (dI/dp � 1), i.e.,
Flift/(ρIVI gy ) → φ ∼ 0.55. In the DEM simulations, the inclination
angle was varied in the range θ = [24◦, 28◦], with ρI/ρp = 1.

likely because the empirical buoyancy model of Jing et al. [20]
is based on a perfect linear shear system (different from the
Bagnold velocity profile obtained in this work). In addition,
Fig. 7 includes the lift force data of inclined plane shear
flow simulations (Hertzian contact model) [43], which show
overall a good agreement with our simulation data. Also, the
van der Vaart et al. [15] model, Eq. (5), captures very well
the overall shape of the lift-force dependency on dI/dp, but
it also tends to overpredict the DEM data. We speculate that
the difference between the simulation results of van der Vaart
et al. [15] (Hertzian contact model) and our simulation data
(linear spring model) is due to the different contact models ap-
plied. Indeed, differences in predicted velocity profiles, solid
fraction, etc., due to differences in contact models have been
reported [24]. When adjusting the fitting parameters of the
model of van der Vaart et al. [15] to a0 = 0.24 and b0 = 93,
a very good agreement with our DEM data is obtained, as
illustrated by the dashed line in Fig. 7.

To assess also the dependence of the lift force acting on the
intruder on the vertical position of the intruder, the position
of the intruder was varied from ymin = 7dp to ymax = 34dp.
According to the velocity profile in the shear flow system

FIG. 8. Lift force acting on the intruder determined directly from
the virtual spring as a function of intruder position in the y direction
(varied from ymin = 7dp to ymax = 34dp). From the velocity profile
given in Fig. 5(d) the shear rates vary from 186.0 s–1 (at y = 7dp) to
55.5 s–1 (at y = 34dp).

under investigation, Fig. 5(d), the shear rates vary between
186.0 s–1 (at y = 7dp) and 55.5 s–1 (at y = 34dp). Figure 8
shows that the lift force acting on the intruder is not sensitive
to the vertical position at which the intruder is placed, sug-
gesting that the lift force acting on the intruder is not sensitive
to the shear rate, in agreement with previous observations
[15,17,20].

B. Cooling effect of the intruder

To elucidate the contributions of the variations of pres-
sure and temperature field upon the addition of an intruder
on the lift force, Fig. 9 plots �T/T0 and �P/P0 as a func-
tion of dI/dp. We observe that �T/T0 is negative, i.e.,
the introduction of an intruder leads to a local cooling
of the granular temperature. As the ratio dI/dp increases,
the cooling effect becomes stronger. In the following, we
provide a tentative explanation for the cooling effect of
the intruder in dense, shear flows. Concerning the granu-
lar system at hand, the major contribution to the granular
temperature arises from velocity fluctuations along the shear
direction x, i.e., Tx ∼ 10–5 J, Ty, Tz ∼ 10–6 J for dI/dp = 8.
Hence in the following we focus on the velocity along
the x direction. In the reference case, Fig. 10(a), assum-
ing a constant shear rate γ̇0 in a coarse-graining (CG)
volume, the granular temperature can be written as T0 ≈∑y0+w

y=y0−w[1/(3N )]mp{[γ̇0(y–y0) + u0] − u0}2, where u0 is the
average particle velocity in the CG volume [dashed circle
in Fig. 10(a)], N is the number of particles in the coarse-
graining volume, mp is the mass of the bed particles, and
y0 is the vertical position of the center of the CG volume.
As �

y0+w
y=y0−w(1/N )[γ̇ 2

0 (y − y0)2] = γ̇ 2
0 〈(y − y0)2〉, T0 can be

rewritten as T0 ≈ (1/3)γ̇ 2
0 mp〈(y − y0)2〉, where 〈·〉 denotes

the average operation in the CG volume (located at y0 with
radius w). From Fig. 3(b) we observe that the granular tem-
perature indeed grows quadratically with w, i.e., T0 ≈ γ̇ 2

0 w2.
Hence, two main factors affect the magnitude of granular
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FIG. 9. Variation of �P/P0 (�P = P1 − P0) and �T/T0

(�T = T1 − T0 ) as a function of dI/dp. Both the granular pressure
and temperature are determined through coarse-graining of the
DEM data (simulation performed with an inclination angle θ = 25◦

and ρI/ρp = 1). P0 is the hydrostatic pressure, which could be
determined by coarse-graining or analytically [P0 = ρpgy(hc–y0 )
with y0 = 0.1 m].

FIG. 10. Velocity (in the shear direction x) of individual particles
at t = 399 s that are located in the coarse-graining volume centered at
y0 = 0.1 m. The black dashed circle denotes the CG volume of radius
w = rI + dp where rI = 8dp. ( ) Particle velocities in the reference
case [inset in (a)] with ( ) fitting assuming a constant shear rate
in the CG volume, i.e., γ̇0 = 59.5 s–1 ( ). Particle velocities in the
intruder case [inset in (b)] with ( ) being the constant shear rate
fitting, i.e., γ̇1 = 37.1 s–1 in the CG volume. System parameters are
dI/dp = 8, ρI/ρp = 1, and θ = 28◦. Inset (a): coarse-graining (CG)
volume of the reference case. The CG volume is a spherical space
of radius w. Here, u0 denotes the average velocity of the particles
that are in the CG volume and γ̇0 is the shear rate in the CG volume.
Inset (b): CG volume of the intruder case; the dark gray area denotes
the intruder, γ̇1 is the shear rate in the CG volume, and u1 is the
average velocity of the particles in the CG volume. The blue particles
at the top of the intruder indicate a reduced velocity compared to the
reference case, while the red particles at the bottom of the intruder
denote faster particles compared to the reference case.

temperature: (i) the size of the CG volume, i.e., w [Fig. 3(b)],
and (ii) the magnitude of the shear rate.

Introducing an intruder into the shear system [Fig. 10(b)]
affects the average velocity in the coarse-graining volume
(new average velocity u1). Similar to the reference case (as-
suming again a constant shear rate in the coarse-graining
volume), we can write the granular temperature in the intruder
case as T1 = (1/3)γ̇ 2

1 mp〈(y − y0)2〉. Figure 10 plots the veloc-
ity of particles (in the shear direction x) for the reference and
the intruder case, including fits for the shear rate assuming
a constant shear rate in the coarse-graining volume. For the
reference and the intruder case, shear rates of γ̇0 = 59.5 s–1

and γ̇1 = 37.1 s–1 (at y = 0.1 m) are obtained, respectively.
The shear rate in the intruder case is significantly lower than
in the reference case, resulting in a lower granular temperature
(cooling) in the intruder case. Overall, it appears that the
presence of an intruder leads to a reduced particle velocity
at its top and a higher particle velocity at its bottom when
compared to the reference case.

As a consequence, we observe that the intruder flattens the
velocity profile in the CG volume, which results in an overall
cooling effect and hence a negative value of �T/T0 in partic-
ular for large intruders. The cooling effect of large intruders
as observed in our dense, shear flow system is to some extent
in contradiction to the work of Trujillo and Hermann [13], in
which the intruder behaves like a heating source in a granular
gas. Yet, the system studied in [13] is very different from
our system, as it considers a dilute granular gas system under
strong vibrations. In the system of Trujillo and Hermann [13],
a binary collision dominates (with a long free path length),
whereas in our system multiple and enduring contacts prevail.

C. Continuum limit

From Fig. 9 we observe that for dI/dp > 4, �P/P0 → 0.
This asymptotic behavior of �P/P0 is an indication that for
dI/dp � 1 the system approaches a continuum limit, i.e., the
lift force acting on the intruder approaches the value given by
an Archimedean-type description of the buoyancy force, i.e.,
Fb = φρpgyVI , or Fb/ρpgyVI → φ (Fig. 7). This trend has also
been reported by Jing et al. [20] and van der Vaart et al. [15].
In the continuum limit, i.e., dI/dp � 1, the intruder behaves as
if being immersed in a fluid with density ρpφ. Jing et al. [20]
argued that for dI/dp � 1, a large number of bed particles are
surrounding (and hence in contact) with the intruder, leading
to a high number of particle collisions and in turn a uniform
stress transmission (similar to a continuum fluid). Therefore,
for large values of dI/dp, �P = P1 − P0 approaches zero (as
confirmed in Fig. 9).

To explore in more depth the change in P when an intruder
in the size range 1.5 < dI/dp < 4 is introduced into the sys-
tem, we calculated the pressure at the location of the intruder
over 100 s and plot its distribution as a function of dI/dp in
Fig. 11. For dI/dp = 1.5, the modal value of the pressure is
800 Pa (mean value 987 Pa), which is significantly smaller
than the hydrostatic pressure of 1153 Pa. The difference be-
tween the mean value of the pressure distribution and the
hydrostatic pressure is reflected in the positive pressure con-
tribution to the upward-directed lift force acting on intruders
with dI/dp < 4. In addition, the large deviation between the
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FIG. 11. The distribution of the pressure at the location of the
intruder, P(r(t),t), as a function of the size ratio: (a) dI/dp = 1, (b)
dI/dp = 1.5, (c) dI/dp = 2, and (d) dI/dp = 4. The setup used an
inclination angle of θ = 24◦ with ρI/ρp = 1. Pressure data were
sampled over 100 s in steps of 0.1 s. The hydrostatic pressure P0 =
1153 Pa is denoted by the black, solid vertical line, given by P0 =
ρpgy(hc–y0 ) with hc = 0.192 m and y0 = 0.1 m. The mean pressure
value is denoted by the red, dashed vertical line. The modal pressure
value is denoted by the blue, dashed vertical line: (a) Pmodal = 500 Pa,
Pmean = 944 Pa; (b) Pmodal = 800 Pa, Pmean = 987 Pa; (c) Pmodal =
500 Pa, Pmean = 1097 Pa; (d) Pmodal = 1210 Pa, Pmean = 1230 Pa.

modal and hydrostatic pressure is likely the reason for the
large fluctuations in the DEM-determined values of the lift
force for smaller ratios of dI/dp (Fig. 7). Such fluctuations
in DEM-determined lift forces have been reported previously
[15,17,20]. For dI/dp = 4, the pressure distribution becomes
more symmetric with the modal (Pmodal = 1210 Pa), mean
(Pmean = 1230Pa), and hydrostatic (P0 = 1153 Pa) pressures
being very close to each other [Fig. 11(d)], explaining both
the small lift force and the small fluctuations in the DEM-
determined lift force for dI/dp � 4 (Figs. 7 and 9). The
smaller fluctuations in the DEM-determined lift force for
larger values of dI/dp are in agreement with previous works
[15,17,20].

D. Effect of density differences on segregation

So far, we have only considered cases in which the density
of the intruder and the bed particles are equal. From Eq. (31),
when scaling the lift force with the intruder weight (ρI gyVI ),
the following relationship is obtained for ρp �= ρI :

Flift

ρI gyVI
= (2 − e− �T

T0
+ �P

P0 )
ρp

ρI
. (33)

When Flift/(ρIVI gy) < 1 the intruder sinks, and for >1 the
intruder rises. Similar to the model of Jing et al. [20], also
Eq. (33) shows a decoupling of the effects of the intruder size
and density ratios. Figure 12 plots Flift/(mI gy) as a function of
ρp/ρI for dI/dp = 2 and 4. Similar results to those in Fig. 12
also occur for dI/dp = 1, further confirming the model. The

FIG. 12. The normalized lift force as a function of the density
ratio ρp/ρI for different intruder sizes ( ) dI/dp = 4. ( ) dI/dp = 2.
The blue and red straight lines are Eq. (33).

linear trend predicted by the lift force model, Eq. (33), agrees
very well with the DEM data and with experimental obser-
vations that show that light intruders migrate upward while
heavier intruders sink [19,44], which have been further pre-
sented in Fig. 13.

From Eq. (33) it is also possible to extract the neutral

buoyancy limit, which is given by (2 − e
−�T

T0
+ �P

P0 ) ρp

ρI
= 1 and

plotted in Fig. 13. It is worth noting that the experimental data
(solid black symbols) are extracted from multiple intruder sys-
tems. For some systems, the neutral buoyancy limit deviates
from that of the single intruder simulation results, particularly
for size ratios between 1 and 3. It is not surprising, however,

FIG. 13. Neutral buoyancy limit of a single intruder in a
dense, granular shear flow as a function of dI/dp and ρI/ρp. The
black solid curve denotes the neutral buoyancy limit given by

(2 − e− �T
T0

+ �P
P0 ) ρp

ρI = 1. DEM data using an inclination angle of θ =
25◦. intruder sinks, intruder rises. The solid black symbols are
neutral buoyancy limits obtained in ( ) plane shear driven flow [20],
(•) heap flow, ( ) chute flow, and ( ) rotating drums [44].
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that the intruder concentration effects the segregation process;
see, e.g., [45].

V. CONCLUSIONS

In this work, we propose a lift force model for intruders in
dense, granular shear flows by extending the work of Trujillo
and Hermann [13]. The lift force is interpreted as a buoyancy
force whereby the density difference arises both from granular
temperature and granular pressure contributions. We observe
that the presence of an intruder leads to a cooling effect and a
local flattening of the shear velocity profile (lower shear rate).
For large intruders, i.e., dI/dp > 4, the local pressure distur-
bance (and hence contribution to the lift force) is very small
as the system approaches a continuum limit, in which the
pressure acting on the intruder equals the hydrostatic pressure

of the system. On the other hand, for 1 < dI/dp < 4 the local
granular pressure at the location of the intruder is lower than
the hydrostatic pressure, leading in turn to a positive lift force.
The cooling effect due to the presence of an intruder increases
with intruder size, leading ultimately to the sinking of large
intruders. The modified model predicts DEM-determined lift
forces very well and allows the description of a neutral buoy-
ancy limit.
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