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Topological phase transitions in two-dimensional bent-core liquid crystal models
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Two-dimensional liquid crystal (LC) models of interacting V-shaped bent-core molecules with two rigid
rodlike identical segments connected at a fixed angle (6 = 112°) are investigated. The model assigns equal
biquadratic tensor coupling among constituents of the interacting neighboring molecules on a square lattice,
allowing for reorientations in three dimensions (d = 2, n = 3). We find evidence of two temperature-driven
topological transitions mediated by point disclinations associated with the three ordering directors, condensing
the LC medium successively into uniaxial and biaxial phases. With Monte Carlo simulations, temperature de-
pendencies of the system energy, specific heat, orientational order parameters, topological order parameters, and
densities of unbound topological defects of the different ordering directors are computed. The high-temperature
transition results in topological ordering of disclinations of the primary director, imparting uniaxial symmetry
to the phase. The low-temperature transition precipitates simultaneous topological ordering of defects of the
remaining directors, resulting in biaxial symmetry. The correlation functions, quantifying spatial variations of
the orientational correlations of the molecular axes show exponential decays in the high-temperature (disordered)
phase, and power-law decays in the low-temperature (biaxial) phase. Differing temperature dependencies of the
topological parameters point to a significant degree of cross coupling among the uniaxial and biaxial tensors of
interacting molecules. This simplified Hamiltonian leaves 6 as the only free model parameter, and the system

traces a 0-dependent trajectory in a plane of the phenomenological parameter space.

DOLI: 10.1103/PhysRevE.104.064701

I. INTRODUCTION

The self-organizing property of soft matter leads to myriad
applications in the fields of optics, biosensors, and elec-
tronics. The formation of liquid crystal (LC) phases on
two-dimensional (2D) surfaces is the key to many nanotech-
nological applications [1,2]. It is established that continuous
symmetries cannot be spontaneously broken at finite temper-
ature in systems with sufficiently short-range interactions in
dimensions d < 2 [3]. However, low-temperature phases with
quasi-long-range order (QLRO) are still realizable in such
systems in the presence of stable topological defects, made
permissible through a choice of nontrivial topology of the cor-
responding order parameter (OP) space (R)—a phenomenon
detected in the 2D-XY (d = 2) magnetic model through the
Berezinskii-Kosterlitz-Thouless (BKT) mechanism [4,5]. LCs
with global SO(3) symmetry and a local site symmetry of Z,
(uniaxial systems) have R which is not simply connected.
This OP geometry leads to the presence of point defects in
2D uniaxial as well as biaxial nematics. The fundamental
group of R for uniaxial nematics (with Dy point-group
symmetry) is isomorphic to the two-element Abelian group
[T, (R) = Z;. In two dimensions, this provides for stable point
disclinations with topological charge (winding number) with
a value £ 1/2, corresponding to rotation of the order director
by 180° (in R) for a closed path in the physical space. For
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biaxial nematics which have a global point group symmetry
D,, the OP space is R = SO(3)/D,. Taking the homomor-
phic correspondance between SO(3) and SU(2), this becomes
R =SU(®2)/Q where Q is the lift of D, in SU(2). Thus
the fundamental group of biaxial nematics is I1{(R) = Q,
the eight-element quarternion group which is discrete and
non-Abelian. The eight elements can be grouped into five
conjugacy classes Cp, Co, C,, C,, and C;. The class Cy =
[1] contains removable defects, Cy = [—1] contains 360°
disclinations and classes Cy = [%ioy], C, = [%ioy] and C, =
[£io.] (where oy, oy, 0, are Pauli matrices) contain defects in
which the rotation is through 4+ 180° about each of the dis-
tinct symmetry axes. Thus stable defects of both integer and
half-integer charges exist in biaxial nematics [3]. The above
criterion for the condensation of QLRO phases applies read-
ily to lattice models of LC systems, since the corresponding
Hamiltonians engage only angular displacements of the inter-
acting constituents, decoupled from translational degrees of
freedom [6].

The BKT disclination unbinding scenario in the (n = 2,
d = 2) uniaxial lattice model (Lebwohl-Lasher interaction
[7]), wherein the reorientations of molecules on the 2D-lattice
sites (d = 2) are restricted to a plane (n = 2), is formally
equivalent to the 2D-XY model, as verified through simula-
tions. This model exhibits a low-temperature nematic phase
(of uniaxial symmetry) with a QLRO phase. Similar obser-
vations were made earlier on other (d = 2, n = 2) models,
like ensembles of hard rods [8,9], spherocylinders [10], and
hard bent needles [11]. These studies indicated evidence of
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disclination unbinding, leading to transitions from isotropic
to quasinematic phase.

In this paper, we investigate the phase behavior of a system
of LC molecules with a bent-core geometry (V shape) located
on a square lattice, and enjoying a three-dimensional degree
of freedom for reorientations (d = 2, n = 3). This paper is
motivated by a recent investigation of a general biquadratic
Hamiltonian [12—-14] with a D, site symmetry (d =2, n =
3) with certain simplifying conditions [15]. Therein it was
assumed that the biaxial model has minimal coupling in-
teractions, with no cross interaction among uniaxial tensors
of an interacting site with biaxial tensors of its neighbors.
Further, the biaxial model parameter is tuned to result in a
strong and direct (thermally driven) transition from disordered
to the biaxial phase. A detailed Monte Carlo (MC) study
demonstrated a topological transition to a low-temperature
phase with D,;, global symmetry, characterized by the contin-
ual presence of equilibrium states with self-similar structures
(power-law behavior of spatial correlations of molecular ori-
entations), with variation of temperature (often described as
a phase exhibiting a line of critical points over the relevant
temperature region). These observations are supported by
the computed topological variables and their low-temperature
limits. This work in Ref. [15], besides confirming a BKT-
type topological transition in a 2D biaxial phenomenological
model, also provided independent evidence supporting the
conjecture made to explain the observed crossover in the
2D-LL system [16]. The requirement to add a suitable bi-
axial perturbation to the 2D uniaxal model to avoid the
crossover reported, explicitly pointed to the prerequisite con-
dition to reduce the topological symmetry of R so as to
make its fundamental group discrete and non-Abelian, making
it a necessary criterion for this interesting defect-mediated
transition. In the current paper, we examine this conjecture
further by choosing a biaxial lattice model (with bent-core
molecules) with a local site symmetry different from the
known global symmetry of the low-temperature (biaxial)
phase. The model is based on a microscopic molecular-level
prescription of interactions, which facilitates explicit choices
regarding the molecular geometry and the degree of different
interactions.

To develop an appreciation of the chosen bent-core model
within the context of the well-established phenomenological
models, and with the objective of making a correspondence
with their parameters, it is useful to briefly introduce the
general biquadratic Hamiltonian for biaxial systems account-
ing for the interactions among the molecular tensors with
uniaxial and biaxial symmetry, along with the phenomenolog-
ical model parameters. Its phase diagram in three dimensions
was extensively investigated earlier [12—14,17], specifically
providing insights into the role of the two types of biaxial cou-
pling hosted in the Hamiltonian. The recent 2D-biaxial study
mentioned above [15] is a particularly simplifying choice of
these parameters.

The interaction between two lattice sites, each possess-
ing in general a biaxial symmetry, is expressed in terms of
the two orthogonal and traceless molecular tensors associ-
ated with each site: ¢ :=m @ m — % (uniaxial symmetry) and
b:=e®e—e, ®e, (biaxial symmetry). Here (e, e;,m) is
an orthonormal set of vectors representing the molecular

axes (in the notation of Ref. [12]). The system Hamiltonian,
inclusive of the biaxial symmetry, is expressed in terms of
a general interaction between two lattice sites (i, j) : H;; =
—Uléq;-q;+v(q;-bj +q;-bi)+ 1b; - bj]. The Lebwohl-
Lasher (LL) model corresponds to limiting this expression
to uniaxial symmetry by setting £ =1, y =0, A = 0. The
2D-LL model (with d = 2, n = 3) was extensively studied
both with Metropolis algorithm [18,19] and recently with
entropic sampling method [16]. The phenomenological 2D
biaxial model referred to earlier [15] corresponds to setting
E=1, y=0, A=1/3. It is expected that the bent-core
model could be a promising candidate to provide insight
into the phase behavior of a general model with contribu-
tions from all three terms. In this context, the bent-core
model in its general form [20] facilitates effective varia-
tion of the parameters y and XA in the phenomenological
model.

The paper is organized as follows. In Sec. II, we present the
Hamiltonian model and the simulation details. The data are
presented and results of their detailed analysis are discussed in
Sec. III. We conclude with a summary of the salient features
of this work in Sec. IV.

II. MODEL AND SIMULATION DETAILS

A. Model and Hamiltonian

We investigated the 2D phase behavior of a simplified
V-shaped bent-core system with identical rodlike arms bent at
angle 8 = 112° and with equal inter-arm coupling strengths.
To assign an orthonormal triad fixed to the molecule, the
symmetry axes of the molecule (x,y,z) are chosen as (i)
X axis corresponds to the direction orthogonal to the molecular
plane at the vertex, (ii) y axis is the direction bisecting the
angle between the two arms of the molecule, and z axis is
mutually perpendicular to these two directions, completing
a right-handed triad. When the arms are orthogonal to each
other (6 = 90°), the interaction tensor for these molecules
is cylindrically symmetric about the x axis (perpendicular
to the arms). The molecule is disklike for angles 90° <
6 < 109.47° and rodlike for angles 109.47° < 6 < 180°; 0 =
109.47° (i.e., cos(f) = —1/3) being the angle of tetrahedral
geometry for the molecule. As the interarm angle increases
from 90° to 180°, the molecular interaction tensor acquires
contributions from both uniaxial and biaxial tensorial compo-
nents, the relative importance of which impacts the formation
of the respective phases. The simulation studies of phase
behavior of these molecules in three dimensions (d = 3) in-
teracting through an attractive biquadratic potential revealed
an isotropic (I)-uniaxial nemtatic (Ny)-biaxial nematic (Np)
phase sequence for various interarm angles and different in-
teraction strengths between the arms. A direct isotropic to
biaxial transition is also predicted for the interarm angle of
6 = 109.47°, for unit interaction strength [20]. In this paper,
we chose the 6 value so as to lead to a prolate uniaxial
phase on condensation from the isotropic phase by the ori-
entational ordering of the major molecular axes associated
with the primary director (z axes). On further condensation, a
biaxial phase forms induced by the ordering of the two minor
molecular axes (x and y axes). The nontrivial topological
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symmetry of R of this system results in its fundamental group
IT;(R) = Q, and hence to the existence of stable topologi-
cal defects with differing charges (winding numbers) in the
medium. We expect, from earlier 2D work, this model to host
thermally induced topological transitions, with an underlying
BKT-type unbinding mechanism primarily involving half-
charge disclinations associated with the three director axes.
The topologically ordered phases that the system may form
depending on the chosen model parameters, are evidenced by
their corresponding characteristic microscopic structures with
QLRO and by sharp variations of the respective topological
variables which quantify the degree of binding of the point
defects.

The V-shaped LC system is modeled as a simple extension
of the uniaxial LL lattice model [20]. Here, a lattice site hosts
a mesogenic molecule made up of two rodlike constituents
A and B joined at a fixed angle 6. These two constituents
interact with those of the four nearest-neighboring molecules
on the square lattice. The interaction potential between two
neighbors (with identical constituents) at two such lattice sites
i and j is expressed as

Uli)=— Y Y eapPr(cos(vup)), (1)

a=A,B B=AB

where the indices o and B run over the two constituent seg-
ments of each molecule on the sites at i and j, respectively.
Here y,p is the angle between the arm « of molecule at site
i and arm B of molecule at j. For symmetric molecules, the
degree of anisotropy of interaction is the same among all
arms and is given by €4y = €45 = €pp = €p4 = €. The system
energy is expressed in units of €, and the reduced temperature
for simulation purposes is specified as T = K”ET,, where T is
the laboratory temperature (in Kelvin).

B. Simulation details

Simulations were carried out using both the Metropolis-
based MC sampling and entropic sampling methods. The
Metropolis algorithm [21] (Markov chain MC sampling) fa-
cilitates an otherwise perfectly random walk of the system in
the (ergodic) configuration space, but for making the criterion
of the acceptance, or otherwise, of each such random step
respect the Boltzmann equilibration condition at the chosen
temperature 7. The underlying algorithm ensures that the
system, starting from an arbitrary initial state, converges to a
sequence of equilibrated microstates in the asymptotic limit
of a long enough walk. A large enough set of equilibrated
states follows the canonical distribution at 7', constituting the
Boltzmann ensemble (B ensemble). The averages of relevant
physical observables are computed as averages over these
microstates.

Entropic sampling, on the other hand, is geared to make
the system representatively visit regions of the configura-
tion space, with a distribution which is reasonably uniform
with respect to the system energy (entropic sampling). The
Wang-Landau (WL) algorithm [22] is an an efficient pro-
cedure to achieve this objective, in the process estimating
representative density of states (DoS) of the system g(E)
(with respect to energy). This algorithm is now generalized
to be applicable in different areas of research, like finite den-

sity quantum field theories [23], complex magnetic systems
[24], polymers and protein folding [25], and spin crossover
systems [26] and is being continually updated with parallel
processing algorithms on multiple nodes using, for example,
replica exchange protocol [27]. The original WL algorithm
[22] was modified for different model systems, for example,
for lattice systems with LL interaction potential [7], which
requires continuous molecular reorientations in LC models
[28]. It was further augmented by the so-called frontier sam-
pling technique [29,30]. The latter is an interesting algorithm
to force the system to visit progressively lower energy states
(with extremely low probability), by setting up energy barriers
at chosen points on the energy axis (referred to as frontiers),
thereby discouraging temporarily access to higher energy
regions (where the DoS has been already estimated approx-
imately) until the system samples the lower energy states in
the neighborhood of the barrier sufficiently. This process is
continued till the desired energy range is covered. The under-
lying guiding distribution function generated by continuous
upgrades during this walk provides an approximate estimate
of g(E). At this stage, the random walk is allowed to proceed
according to the normal WL algorithm with no more energy
barriers. The updating of the distribution function is continued
while gradually reducing the algorithmic guidance, till g(E)
is determined to the desired accuracy, normally limited by
the cumulative computational errors. This limit of g(E) is
considered as the representative DoS of the system. A large
entropic ensemble of microstates (~10%) is then collected
by performing a random walk in the configuration space
with an acceptance probability based on the inverse of g(E).
The ensemble of states so collected for a well-converged
g(E) is reasonably uniformly distributed with energy typi-
cally to within 15-20% (despite humongous change in the
entropy over the energy). The relevant equilibrium averages
of observables are computed at the desired temperature by
extracting equilibrium ensembles from the set of states in
the entropic ensemble by the standard reweighting procedures
[31,32] (RW ensembles). Further details of this modified WL
algorithm augmented by frontier sampling can be found in
Refs. [17,30].

Besides the richness of the configuration space in terms
of accessible states in such LC models due to the continuous
nature of the random steps of the system, another factor which
significantly puts a huge demand on the computational time
is the shape of the molecule, as well as the prescription set
by the Hamiltonian. In the present model, the computational
effort is considerably enhanced due to the fact that the di-
rections of the interacting constituents of the mesogenic unit
at the lattice site do not coincide with the orthonormal triad
representing the orientation of the molecule, the latter being
a necessity to effect tractable reorientations. This requires an
intermediate Euler transformation to be performed during the
calculation of energy, every time a reorientational random step
is taken by the molecule, resulting in a significant increase
in the computational effort. For example, the typical time for
estimating the DoS of this system with size 60 x 60 is of the
order of 10-12 weeks on a single processor (as a serial job),
which is about an order of magnitude more than what is re-
quired for a similar computation, but without the intermediate
transformations.
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We attempted to reduce the computing time by adopting a
parallel computation of the DoS in different subsegments of
the total energy range, based on the concept suggested in the
replica-exchange MC algorithm [27]. Accordingly, the energy
range of interest is divided into k equal, and significantly over-
lapping, segments. The DoS in each segment is determined to
the required accuracy employing the above procedure through
separate computations simultaneously on k processors. These
components of the DoS corresponding to the different energy
segments, computed on a logarthmic scale, differ from each
other by an arbitrary constant, which is specific to each of
the overlap regions. This allows for synthesizing the total
DoS over the entire region by stitching them suitably, which
can then be used for constructing entropic ensemble of the
system over the total energy range, as outlined above. Alter-
natively, one can also determine the equilibrium properties of
the system corresponding to each energy segment from its
independently generated entropic (sub)ensemble, and finally
obtain their variation over the total temperature range by a
similar stitching process for each observable. We find the
latter procedure to be more practical for our current applica-
tion. Determination of the DoS over the total energy range is,
however, necessary if a study of the free-energy profiles in
the space of relevant observables is desired. For large system
sizes, entropic sampling-based simulations were performed
with this parallelization scheme, choosing k= 4, and an over-
lap of 70% between contiguous energy segments. With this
choice, we have large regions of overlap making the stitching
process seemless and reliable, and we observed nearly 40%
reduction in the computing time. We compared this composite
data obtained through segmental computations with a single
energy-window result for consistency, and the results matched
extremely well.

It is known from earlier MC simulations on 2D-LC sys-
tems that conventional Metropolis-based sampling procedures
may sometimes lead to qualitatively different conclusions,
relative to those derived from data based on reweighted en-
sembles (entropic sampling procedure). In the 2D-LL model,
the two methods resulted in qualitatively different outcomes:
averages of observables from the B ensembles indicated con-
vincing evidence for a transition to a topologically ordered
low-temperature state, while the entropic sampling-based
RW ensembles pointed to an intervening crossover denying
topological ordering of the low-temperature phase [16]. On
the other hand, in a biaxial system exhibiting a direct tran-
sition from the isotropic to biaxial phase (simultaneously
engaging all the spin degrees in the mediation of the transi-
tion), both these sampling procedures led to identical results
(within computational errors) [15]. It is thus not a priori clear
which sampling procedure is sufficient, or necessary, to obtain
reliable inferences on a system with well-separated uniaxial
and biaxial transitions, and its phenomenological model is
possibly rich with all three interaction terms. Thus we need
to construct both B and RW ensembles for this model for
comparison, and evaluation of its utility. To have comparable
sampling errors between these two procedures, the Metropolis
averages are computed, after due equilibration, over a produc-
tion run of 10® MC lattice sweeps. RW ensembles are obtained
through reweighting procedure from an entropic ensemble of
~10® microstates.

Simulations were carried out on square lattices of size
L x L (L =40, 60, 80, 100), embedded in, say the laboratory
YZ plane, with periodic boundary conditions enforced in the
two orthogonal directions. Each lattice site hosts a symmet-
ric V-shaped molecule with a fixed interarm angle 6 = 112°
and the molecules at each lattice site interact through the
nearest-neighbor interaction in Eq. (1). The observables de-
rived from both types of ensembles were indistinguishable
for sizes L = 40 and 60 (within errors). Considering the fact
that the computational cost of the entropic procedure does not
scale linearly with the number of molecules in the sample—
unlike the Metropolis method—we opted for the Metropolis
procedure for the two higher sizes. We chose to present mixed
data from both sampling processes in different figures on
purpose to stress the equality of the two procedures in this
model.

The computed physical observables of interest are the
average energy < E >, specific heat < C, >, the uniaxial
(R%,), and biaxial (R3,) order parameter of the LC phase
[30]. Further, we computed topological properties related to
the dominant charge 1/2 defects associated with the three
order directors. The topological densities di (k = x, y, z) are
measures of the abundance of the isolated unbound charge 1/2
defects in the lattice, associated with the respective directors.
Their averages < dy > o exp(—Ey/T) at low temperatures,
where < Ey. > is the activation energy required to break
a bound defect associated with the respective kth director
to create a pair of oppositely charged defects [33]. Another
quantity of interest is the topological order i which measures
the degree of pairing of defects in a lattice configuration at
that temperature, averaged over the production run. u takes
values 0 < u < 1, where . = 0 denotes the presence of only
free defects and u = 1 denotes complete pairing. A related
derived quantity § = (1 — p)/2 is computed and takes val-
ues 0 < § < 0.5 [18]. We calculated the topological densities
(dy,dy, d;) and the topological order parameter (8, dy, J;)
of the (X, Y, Z) directors, respectively, where the subscript
denotes the defects associated with each of the ordering direc-
tors. These calculations are described in detail in Ref. [15].
The above data are computed as a function of temperature
in the range [0.05, 1.5] with a resolution of 0.005. Spatial
variations of orientational pair correlations (correlation func-
tions) G(r;;) =< P> (cos ¢;;) >, are computed for the three
molecular symmetry axes (x,y,z) (at L = 100), denoted as
G.(r), Gy(r), and G,(r). The correlation functions are com-
puted at 60 temperatures representatively covering this range.
Statistical errors, estimated with the jack-knife algorithm [34],
in E, RS, R3,, 8;y,; and dy , , are typically of the order of 1 in
103, while higher moments (C,) and Binder’s energy cumulant
E4 [35] are relatively less accurate (about 5 in 10%).

III. RESULTS AND DISCUSSION

We present data for different sizes choosing WL-ensemble-
based results at L = 40 and 60, and B-ensemble results at
L = 80 and 100 to explicitly indicate the equivalence of the
two sampling procedures for the model at this 6. Figure 1
depicts the temperature variation of C, (per site) for system
sizes L = 40, 60, 80, 100. As the temperature is lowered from
the isotropic phase (at a given system size), the specific heat
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FIG. 1. Temperature variation of specific heat (per site) at lattice
sizes L = 40, 60, 80, 100. Inset shows the temperature variation of
size-independent energy per site for different L. The data for sizes L
= 40, 60 is from RW ensembles while data for L = 80, 100 is from
B ensembles.

shows two cusps at temperatures 77 and 75, indicating two
phase transitions, and these are found to be independent of
size. The inset shows the size independence of the energy
per site. In a normal disordering transition, the specific-heat
peak is a measure of the energy fluctuations and the (per site)
peak scales with the system size. The size independence of the
peak heights as well as of the profiles of their cusps are early
pointers to a nonconventional, and possibly topological, origin
for the occurrence of the transition [18,36]. Our results on the
Binder’s energy cumulant [35] at size L = 100 (not shown
here) indicate that both transitions appear continuous. We note
that a continuous transition is to be expected, for example, if
it has an underlying topological mechanism [37].

While discussing the other observables, we note that the
site symmetry of this chosen model (with identical arms)
Gy, though distinct from other more commonly adopted site
symmetries (like D, or Dy;), is not distinguishable as far as
second rank tensor properties of the system are concerned
(like orientational orders, for example) [38,39]. The char-
acteristic properties, which are associated with the stable
topological defects, are consequences of the symmetry (D5j,)
of the R space (phase) symmetry only specified by the first
fundamental group of the medium, and the site and phase
symmetries could qualitatively differ. In the present model, for
example, C;, is Abelian without inversion symmetry, whereas
the phase symmetry Dy is non-Abelian and includes inver-
sion. The topological variables observed are commensurate
with the phase symmetry of the medium, which in turn flows
from the symmetry of the terms in the Hamiltonian. The
biquadratic interactions thus do not leave any room for the
specific site-symmetry Cy, of this model to impact the observ-
able topological observables.

Figure 2 shows the temperature variation of the unixial
order parameter R, and the biaxial order parameter R3, for
different system sizes. At a given size, the sharp increase of
uniaxial order near the high-temperature transition followed
by a similar increase in the biaxial order at a lower temper-
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FIG. 2. Temperature variation of orientational order parameters
at lattice sizes L = 40, 60, 80, 100. The data for sizes L = 40, 60 is
from RW ensembles while data for L = 80, 100 is from B ensemb]es.
(The arrows indicate increase in the size of the system).

ature signals changes of symmetry of the medium to a LC
phase of uniaxial symmetry followed by biaxial symmetry.
It is seen that the onset temperatures of both Rj, and R3,
shift to lower temperatures and their magnitudes decrease as
the system size increases. The decrease of low-temperature
orientational order with size is also not in line with the
expected size dependence in conventional order-disorder tran-
sitions. Such unusual variations of order parameter are known
to point typically to the topological character of the two
transitions [40]. They betray the lack of long-range order
in the low-temperature orientationally ordered phases due to
the continuing presence of topological defects. Under the
circumstances, these media do not strictly correspond to
the conventional uniaxial and biaxial nematic phases owing
to their qualitatively differing underlying microstructures.
However, for convenience during discussion, they will con-
tinue to be still referred to, with this caveat in place.

The topological parameters (unbound defect density and
topological order) provide direct evidence to infer about the
transition more quantitatively. They show sharp changes at
the onset of transition, clarifying the role of distinct classes
of defects that the medium hosts. The temperature variation
of the topological densities (dy, dy, d;) of the directors corre-
sponding to (x,y,z) axes at different lattice sizes (L = 40,
60, 80, 100) is depicted in Fig. 3. These are found to be
size independent over the temperature range, but for small
neighborhood regions near the two transitions. As the tem-
perature is increased, d, and d, increase sharply near the
lower temperature transition, whereas such an increase in d,
is in the vicinity of the higher temperature transition. Their
minor size dependencies near the two transition regions are
magnified in the insets for lattice sizes L = 40, 100. These size
dependencies of the defect densities are reflective of the effect
of the system size on the process of onset of the BKT-type
mechanism of the respective transitions.

Figure 4 shows the C, plotted along with derivatives of
the topological densities (Ad,, @« = x,y,z) as a function of
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FIG. 3. Temperature variation of topological densities d., dy, d,
at lattice sizes L = 40,60, 80, 100. The insets show the slight size
dependance for sizes L = 40,100 in (a) the biaxial phase near 7, for
d, and (b) the uniaxial phase near T; for d..

temperature. The cusps of Ad, (o« = x,y, z) associated with
the major and minor axes bear striking correlation with those
of the specific heat, near the transitions from the disordered
phase initially to the uniaxial, and followed by biaxial phases,
respectively. The derivative cusps are indicative of the rate
of progression of the proliferation of the unbound defects
immediately after the onset of the unbinding mechanism of
the respective transitions. They drive the sharp changes in the
specific heat variation, indicating absorption of energy due
to the unbinding process [4,5,18,33,41]. The two cusps are
separated in temperature (by ~ 0.16) which is large enough to
distinguish the two transitions, but not sufficient to decouple
and provide data on G(r, T') which is free from pre-transitional
effects. Starting from the low temperature end, we note that
the temperature variations of Ad, and Ad, are practically
coincident at the onset of the lower transition at 7. They tend

3 3.0
T,=0.545 T, = C
T,=0325 T, s o Ad,
l‘ll. ': -'. o Ady |
LI | n
_ON 2F . E ‘.I. : .. a Adz O>
< I | L
- L. | "
-c>‘ L] 1 : . —41.5
4.\ e : : "
< \ ]
3 : ™
FIG. 4. Temperature variation of the specific heat C, super-
posed on the temperature derivatives of topological densities

(Ady, Ad,, Ad,) at lattice size L = 100.
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FIG. 5. Plot of natural logarithm of defect density d, versus the
inverse temperature at lattice size L = 100. A straight line fit to the
curve gives an estimate of activation energy for z defects. Insets show
similar plots for (a) d, and (b) d,.

to differ significantly with the onset of the high temperature
transition (in the vicinity of 7), i.e., at the onset of the pro-
liferation of the major axis defects. In the disordered state,
Ad, and Ad, converge in the high temperature limit, and
their limiting values are smaller than the saturation value of
Ad,. These densities are measures of mean distances between
the corresponding unbound defects, and determine relative
characteristic lengths associated with spatial variations of the
corresponding oritentational correlations [18].

Focusing on the differing profiles of the production rate
of unbound defects (Fig. 4) of the minor axes above T3, the
rate of proliferation of the y-axis defects appears to be only
marginally affected from its decay profile (with a small cusp
at 77) and is otherwise a continuation of its prior path. The
growth of the unbound defects of the molecular x axis, on the
other hand, are more profoundly influenced at 7;. The rapid
decay of the proliferation rate is temporarily arrested near 7}
before starting to decrease, but at much slower rate. Interest-
ingly, above T; the rates of saturation of the z-axis and x-axis
defect densities seem to be coincident asymptotically in the
high-temperature limit. These subtle qualitative differences in
Ad, and Ad, variations near T} are indicative of the coupling
between the uniaxial and biaxial molecular tensors of the
interacting sites (i.e., y 7 0). For a Hamiltonian with y = 0,
for example, the Hamiltonian treats both the minor axes on
equal footing and their Ad, and Ad, profiles were found
identical at the two transitions through the entire temperature
range. The defect densities are thus very subtle but definitive
indicators of the nature of the tensor-coupling interactions in
the Hamiltonian.

The onset of the topological transition is initiated by a
thermal activation process and we estimate this energy for
each category of defects by fitting their data on initial growth
of the unbound defect density to the Arrhenius equation [33].
Figure 5 depicts variation of the three defect densities (on a
log scale) with respect to the inverse of temperature. The data
fit very satisfactorily to straight lines in each case, and the
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FIG. 6. Temperature variation of topological order parameters
Oy, 8y, 6, at L = 100. The dotted curves are the temperature deriva-
tives of §, and 8, having peaks at at Tys, and Tys,.

magnitudes of the slopes are measures of the activation
energies associated with the unbinding mechanisms of the
respective transitions. This energy value for the transition at
T, due to z-axes defects is Eyp, = 2.75 £ 0.023 (Fig. 5). The
unbound defects of x and y axes are activated with identi-
cal energy and the corresponding values are : Ey, = Epy, =
2.08 £ 0.017 (insets of Fig. 5).

Figure 6 depicts the temperature variation of the topo-
logical variables of the (x,y,z) axes (4, d,, 8;) related to
the corresponding topological orders and their temperature
derivatives, at L = 100. As the system is cooled starting
from the isotropic phase, §, sharply decreases from a constant
value of 0.5 at the onset of the high-temperature transition,
and in the completely (topologically) ordered state (of z-axes
defects), its value is zero. We note that the corresponding
parameters of x and y axes (Jy, 8,) are unaffected by this tran-
sition. They show, however, similar changes with temperature
at the second transition. These sharp changes in § variables are
definitive markers identifying the category of defects associ-
ated with the particular transition. The inflexion point of their
decay is the transition temperature where the unbinding mech-
anism is formally initiated. We calculated the corresponding
transition temperatures for this system size (L = 100) as
TUzSz(L) =043 (:l: 0005) and Tygx(L) = TU,Sy(L) =0.27 (ﬂ:
0.005), as indicated in Fig. 6. The size dependence of the
topological order profiles is shown in Fig. 7. The lowering
of transition temperatures with increase in size is in accord
with similar size variation of the onset of orientational order
parameters (Fig. 2).

Correlation functions G(r, T') of the (X, Y, Z) directors
at L = 100 at certain chosen temperatures (out of the data
collected at 60 temperatures) are shown in Fig. 8, covering
all three phases of the model. These follow specific ana-
Iytically expressible decays in the isotropic (above 77) and
biaxially symmetric (below T;) phases. These fit very well to
exponential decays with a different 7-dependent correlation
lengths for each director, as G(r, T) = Aexp (—r/&,(T)) +
C, (0 =x, y, z) in the isotropic phase. In the biaxial
phase, they follow power-law decays, each with its own

0.50 L
N 0.25[0
2]
0.00
0.50
>
© -
>
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0.25
1
0.0 0.5 1.0

T

FIG. 7. Temperature variation of topological order parameters
8y, 8y, 8, at lattice sizes L = 40,60, 80, 100 (the arrows indicate the
increase in system size).

T-dependent exponent, as G(r, T) ~ r~ 1) (a =x, y, z).
For temperatures in the range 0.3 < 7T < 0.555 (uniaxial
symmetry), correlation functions of X and Y directors do not
fit satisfactorily to either a power law or an exponential decay,
whereas the correlation function of the Z director fits very well
to a power law.

The temperature variation of the power law exponents in
the uniaxial and biaxial phases is depicted in Fig. 9. n,(T") and
ny(T) [Fig. 9(a)] decrease linearly with temperature as T — 0
in the biaxial phase with different slopes. They are expected
to vanish at T = 0 in large enough samples approximating
the thermodynamic result. In the present case (L = 100), they
tend to a nonvanishing value in this temperature limit, which
is an artifact of the finite size of the system. We note that
nx(T)=0.26 and 1,(T) = 0.31 at the unbinding temperatures
Tysx = Tysy = 0.27, reasonably close to the mean-field ex-
pected value of 0.25 (for 2D-XY and planar LL model [40]).
Figure 9(b) depicts variations of 1,(T) over the temperature
range covering uniaxial and biaxial symmetric phases, with a
value n, = 0.25 at Tys, = 0.43.

Temperature dependencies of the three correlation lengths
in the isotropic phase, &.(T'), §,(T'), and &.(T'), are depicted
in Fig. 10. We observe the anticipated correspondence of
the magnitudes of the unbound defect densities associated
with the three directors above the high-temperature transition
(Fig. 3), with their respective correlation lengths. The y-axis
defects have a lower correlation length &,(T) value (until
their divergences set in) than the others. The x- and z-director
defects have comparable values, with £,(7") marginally be-
coming greater than &,(T) particularly as the transition point
is reached from above. This is also in accord with the obser-
vations from their defect densities, and establishes clearly the
origin of length scales in this phase.

For the transition observed at Tj, the critical behavior of
&,(T) alone is obviously relevant. The differing divergences
of the other two correlation lengths are reflective of the
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FIG. 8. Spatial variation of the correlation functions G(r) of the
X, ¥, z directors (L = 100) at chosen temperatures in the isotropic,
uniaxial, and biaxial phases. G(r) fits to exponential decays in the
isotropic phase (black solid line fit superposed on the data), power
law decays (red dotted line fit superposed on the data) in the biaxial
phase for all axes, whereas in the uniaxial phase only G, (r) exhibits
power law decay.

differential perturbations that the corresponding unbound de-
fect densities suffer due to this transition. These indicate in
part the manifestation of cross coupling of the uniaxial and
biaxial tensors, in terms of a phenomenological description.
The relevant correlation length &,(T) should show essen-

0.35

0.30 - TX1§

O 0250 o,

= o my
: 0.20 L Linear fit of 1,
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FIG. 9. Temperature variation of the power-law exponents (a)
1,(T), n,(T) in the biaxial phase and (b) 7,(T) in uniaxial and biaxial
phases.

tial divergence near a topological transition, unlike a simple
divergence as in conventional transitions. The mean-field ex-
pression describing this near a topological transition arising
from the sharp disappearance of the unbound defects is given
by £(T) =~ exp [ﬁ] [5,15,16,42,43], where Ty; is the

5L © o &
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S
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Ny
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ol 5
1 1 1
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T

FIG. 10. Temperature variation of the correlation lengths &,(T"),
&,(T), and &,(T') of x, y, and z defects at lattice size L = 100.
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FIG. 11. Temperature variation of the correlation length &,(T")
of z defects at lattice size L = 100. The dash-dotted line is the
divergence fit of &,(T) as indicated in the text.

unbinding temperature determined earlier and v is the asso-
ciated critical index. The fit using the predetermined value
Tys, = 0.43, shown in Fig. 11, yields v = 0.5 (£ 0.025),
which compares very well with the mean-field value. The
close proximity of the two transitions, together with the clear
evidence of cross coupling interaction, prohibits single length
scales for correlation functions associated with the minor axes
in the uniaxial medium as was noted earlier, and hence no use-
ful information could be inferred about the critical properties
of the second transition.

Based on the known symmetry and the interarm angle of
this model, we identify the corresponding representative point
in the parameter space 2 = (&€, y, 1) of the phenomenological
model. Conventionally, the energy scale in these models is
specified in units of £, which sets the degree of dominant cou-
pling interaction among the uniaxial tensors of the interacting
molecules. The choice of identical arms in the current model
along with identical interaction strengths, reduces the space in
the remaining (y, 1) plane to a -dependent trajectory, making
this system a single parameter model, say y (). It was shown
in an earlier analysis [44] that the analytical expression of its
Hamiltonian is identical with the well-investigated dispersion
model [45,46]. Equation (1) then is recast in terms of phe-
nomenological parameters as [44]

H ~ {—G33 +2y(0)(Ga — G11) — y(0)*
x [2(Gy1 + G2) — G33]}. )

Here, y(0)= (cos? 0/2 — sin® 0/2) = cos6. Further,
G;j = P,(f;j), P»(.) denotes the second Legendre polynomial
and f;; = (u;, v;) is the inner product. The sets of vectors
(w;,i=1,2,3) and (v, j = 1, 2, 3) are the two orthonormal
triads associated with molecules on the neighboring
interacting sites. We note that in the absence of biaxial
perturbation (y(6) =0, or & = 90°), the system condenses
into a uniaxial nematic phase only, with the primary director

being determined by the average direction of the major
axes, indexed as 3 (m in phenomenological notation). In the
present molecular model at that angle, the uniaxial nematic
director points along the x axis of the molecular orthogonal
triad, since the two orthogonal segments of the molecule are
contained by construction in its yz plane. The identification
of the remaining phenomenological axes e and e; (indexed
as 1 and 2) with the molecular y and z axes is not unique
and depends on the sign of the model parameter y(6). As
per the convention implied in Eq. (2), e and e, are identified,
respectively, with y and z. Thus this microscopic model is
mapped in Q2 as a point (accurate to within four decimal
places) with (¢, y, 1) = (1, —0.3746, 0.1403), which is close
to the corresponding Landau point (1, —0.3333,0.1111) [14].

IV. CONCLUSIONS

This MC study reports the occurrence of two thermally
driven topological transitions from a disordered phase of
an ensemble of simple V-shaped molecules (bent at 6 =
112°) with a simple biquadratic Hamiltonian. The first tran-
sition leads to a topologically ordered phase involving the
primary director and imparting uniaxial symmetry to the
medium, and the second low-temperature one results in a
fully (topologically) ordered LC medium with biaxial sym-
metry. Temperature variation data on the specific heat and
orientational orders are consistent with the size dependencies
expected in the case of topological transitions. Sharp vari-
ations in the topological parameters d; and §; corroborate
these conclusions, besides determining the transition tem-
peratures accurately. The self-similar structures seen in the
low-temperature phase indicate complete topological order-
ing of the medium. The temperature data on densities of the
unbound defects associated with different directors, besides
providing quantitative information about the activation ener-
gies needed for unbinding processes, also betray differential
coupling-interactions of minor axes with the major axis. In its
phenomenological formulation, this observation corresponds
to the presence of a cross-coupling term with significant y
value. Based on an established procedure for simple V-shaped
models, the molecular-level interaction [Eq. (1)] is identified
with the general biquadratic phenomenological Hamiltonian
[Eq. (2)], with a single tunable #-dependent model parameter.
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