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Wide use of magnetic nanoparticles in modern technologies and biomedical applications requires reliable
theoretical models capable of predicting physical properties. Solidification of a ferroparticle suspension under
the action of permanent magnetic field allows us to obtain a ferrocomposite, characterized by some orientational
texture of the nanoparticle easy magnetization axes. The static magnetic response of this ferrocomposite differs
from that of the parent magnetic suspension due to “freezing” of nanoparticle translational and rotational degrees
of freedom. Here the superparamagnetic fluctuations of the nanoparticle magnetic moments play a key role in the
formation of the ferrocomposite magnetic response depending on the degree of orientational ordering, obtained
during synthesis of a ferrocomposite. With the help of statistical mechanics we calculate the magnetization
and the initial magnetic susceptibility of the textured ferrocomposite for various temperatures and magnetic
field strengths. The easy axis texturing leads to a significant increase of the magnetic properties, and the effect
intensifies with the growth of nanoparticle magnetocrystalline anisotropy. Theoretical predictions are supported
by Monte Carlo simulations. The obtained results evidence that the texturing of a ferroparticle suspension and
transforming it into a textured ferrocomposite are a real way to enhance the magnetic response of these magnetic
soft materials.
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I. INTRODUCTION

So-called magnetic soft matter includes polycomponent
materials consisting of magnetic particles embedded in some
liquid or elastic carriers. These particles play the part of el-
ementary magnetic units; embedding a large number of such
particles into a matrix makes it possible to control the proper-
ties of a composite material using an external magnetic field
[1], and it is this control which is exploited in modern tech-
nologies and biomedical applications. Examples of magnetic
soft materials include ferrofluids, magnetorheological suspen-
sions, magnetic elastomers and ferrogels, ferronematic liquid
crystals, and various biocompatible magnetic suspensions.

The fundamental properties of liquid suspensions of su-
perparamagnetic and/or ferromagnetic particles have been
studied in detail experimentally [2–9] and theoretically
[10–18] and in computer simulations [3,18–24]. Now both
the static and dynamic magnetic properties of bulk magnetic
liquids are well understood, including the effects of interpar-
ticle interactions. In such systems, whether the particles are
superparamagnetic or ferromagnetic is unimportant, as long
as the particles are free to rotate.

In this work, the response of weakly interacting single-
domain superparamagnetic nanoparticles (SNPs) with a
typical diameter ∼10 nm, immobilized in a solid matrix, to
an applied magnetic field is studied using statistical mechan-
ical theory and computer simulations. SNPs of this size are
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typically used in ferrofluids [1]; these particles are involved in
intensive Brownian motion, which prevents particle sedimen-
tation and provides a high colloidal stability of ferrofluids.
The particles are considered to be spherical and are smaller
than the minimal size of a single magnetic domain in the bulk
material. Hence, a SNP should be described with the help of
a core-shell model, in which each SNP contains an inner, uni-
formly magnetized spherical core, the magnetization of which
is equal to the bulk magnetization of the material. The core is
surrounded by a so-called dead magnetic layer, the presence
of which can be explained by the frustration of the spin order
close to the particle surface. Usually, the particles are also
covered with an adsorbed layer of surfactant molecules, which
provides steric stabilization against irreversible coagulation
[1].

A crystalline lattice of a ferro- or ferrimagnetic material
of SNPs is characterized by the presence of some axes along
which the spontaneous alignment of atom spins has an en-
ergy advantage. This lattice axis is commonly called an “axis
of easy magnetization” or simply an “easy axis” [25]. In
the simplest case, the crystalline structure of the magnetic
material has only one axis of easy magnetization (uniaxis
magnetization), meaning that there is only one easy axis of
spin alignment. Uniaxis anisotropy is typically used for mag-
netite SNPs (see, for example, [1]). The single-SNP magnetic
properties are therefore controlled by the energy barrier sep-
arating the two degenerate alignments of a SNP magnetic
moment with respect to its easy axis and the interaction energy
between the SNP dipole and the field. Here we focus on the
ferrocomposite, in which the SNPs are dispersed uniformly
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throughout the matrix while the orientations of the easy axes
are subjected to texturing. The SNP’s easy axes can be aligned
in a liquid precursor solution using a strong magnetic field
before initiating a chemical reaction of polymerization or
physical process that solidifies the suspending medium. In
what follows, we call this field the “polymerization field.” The
probing field can then be applied at any angle with respect to
the polymerization field direction. The isotropic distribution
of the SNP’s easy axes is, of course, the default situation
without any field applied during synthesis of a ferrocomposite.

The synthesis of these ferrocomposites is now a well-
developed technique, as described in many experimental
works [26–34]. The alignment of easy axes and the ferrocom-
posite physical properties were also the subject of theoretical
studies [32,35–37] and computer simulations [31,37,38]. A
general description of the magnetoactive composites can also
be found in reviews [39,40]. Additionally, it is worth mention-
ing that more ordered SNP structures, such as the location of
SNPs in the nodes of an ordered lattice [41,42], were stud-
ied theoretically. Liquid matrix solidification is also used in
the synthesis of multicore micron-sized particles comprising
several dozen or hundreds of SNPs [43–45]. The magnetic
response of multicore particles is dependent on the degree of
easy axes alignment [46–51]. The synthesis of the polymer
beads, covered with a textured magnetic layer, is also worth
mentioning [52–54].

In all the mentioned theoretical and simulation works the
orientational ordering of the SNP easy axes is considered as
originally given. Unlike these approaches, here we trace the
dependence of the ferrocomposite magnetic properties on the
orientational texturing obtained in the initial ferrofluid under
the condition of the fast solidification of the liquid carrier.
As a result, we calculate the magnetization and initial mag-
netic susceptibility of the ferrocomposite as a function of the
polymerization field strength and polymerization temperature
as well as a functions of magnetic field and temperature, set
during magnetic measurements.

The rest of this article is organized as follows. The theoreti-
cal approach is detailed in Sec. II, including the noninteracting
ferrofluid (Sec. II B), the orientation structure of the textured
ferrocomposite (Sec. II C), and its static magnetic properties
(Sec. II D). The Monte Carlo simulation protocol is described
in Sec. III. Section IV contains the results, and Sec. V con-
cludes the article.

II. THEORY

A. Model of a superparamagnetic nanoparticle

Let us consider the spherical single-domain SNPs sus-
pended in some liquid or polymer solution. Each SNP has a
magnetic core of diameter x ∼ 10–15 nm and volume vm =
πx3/6; this core is uniformly magnetized, and its magnetic
material is characterized by the bulk saturation magnetization
Ms and the magnetic anisotropy constant K . So the abso-
lute value of the SNP magnetic moment is m = Msvm; we
consider a uniaxial magnetocrystalline structure of the SNP
material. The particles are covered with surfactant shell to
prevent colloidal coagulation; thus, the SNP hydrodynamic
diameter d exceeds its magnetic core size: d = x + 2l , where

l stands for the nonmagnetic layer thickness. The SNP number
concentration is ρ, and the volume fraction is ϕ = ρπd3/6.
The center position of each ith SNP is defined by its radius
vector ri, and the direction of the SNP easy magnetization axis
is determined by the unit vector n̂i.

For common nanosize particles, as considered before, the
anisotropy energy barrier Kvm may be comparable to the
thermal energy kBT , and so thermal fluctuations result in
stochastic reorientations of the magnetic moment inside the
SNP. The mean value of the SNP magnetic moment, measured
over a long time, will be equal to zero. This behavior is known
as Néel superparamagnetism, and it is a characteristic feature
of only nanosize particles [37]. Superparamagnetic fluctu-
ations are commonly described as the thermally activated
rotations of the magnetic moment inside the SNP. Importantly,
this mechanism means that even if particle positions and ori-
entations (easy axes) are frozen, the magnetic moments are
still able to rotate, subject to the potential energy UN and
the magnetic energy Um of the interaction with an external
magnetic field:

UN (i) = −Kvm(m̂i · n̂i )
2, (1)

Um(i) = −μ0(mi · H) = −μ0mH (m̂i · ĥ). (2)

Here m̂i = mi/m is the unit vector of the ith SNP magnetic
moment orientation, μ0 is the vacuum magnetic permeability,
the applied static uniform magnetic field H has strength H ,
and the orientation ĥ = H/H .

In addition to volume fraction ϕ, two dimensionless pa-
rameters are associated with these potentials, which measure
the corresponding energies with respect to the thermal energy
kBT ,

σ = Kvm

kBT
, α = μ0mH

kBT
, (3)

where σ is the magnetocrystalline anisotropy parameter and
α is the Langevin parameter characterizing the particle-field
interactions. Concerning the interparticle magnetic interac-
tion, it should be mentioned that the characteristic energy
μ0m2/4πd3 of interaction of two magnetite (for example)
SNPs with a magnetic core diameter of 10–12 nm, a bulk
magnetization of magnetite of 480 kA/m, and a nonmagnetic
layer thickness of 3 nm [1–3] does not exceed a value of
∼2 × 10−21 J. At the same time the thermal energy at room
temperatures is of the order of ∼4 × 10−21 J. So we may
conclude that the interparticle magnetic energy is at least two
times lower than the thermal energy; thus, the interparticle
interaction can be neglected.

The sample container is taken as a highly elongated
cylinder aligned along the laboratory Oz axis, and the ap-
plied magnetic field ĥ = (0, 0, 1) is in the same direction.
This means that demagnetization effects can be neglected,
and the internal magnetic field can be taken to be the
same as the external applied field H . The ith SNP radius
vector is ri = ri(sin θi cos φi, sin θi sin φi, cos θi ), θi is the po-
lar angle with respect to the laboratory Oz axis, and φi

is the azimuthal angle with respect to the laboratory Ox
axis. The orientation (easy axis) of the ith SNP is the unit
vector n̂i = (sin ξi cos ψi, sin ξi sin ψi, cos ξi ), where ξi and
ψi are, respectively, the polar and azimuthal angles in the
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FIG. 1. Laboratory coordinate system. The orientation of the
particle is given by the body-fixed, magnetic easy axis vector n̂ =
(sin ξ cos ψ, sin ξ sin ψ, cos ξ ), where ξ and ψ are, respectively, the
polar and azimuthal angles. The orientation of the particle magnetic
moment m̂ = (sin ω cos ζ , sin ω sin ζ , cos ω) can be different from
the easy axis vector due to superparamagnetic fluctuations (ω and ζ

are, respectively, the polar and azimuthal angles).

laboratory frame. The ith SNP magnetic moment orientation
is m̂i = (sin ωi cos ζi, sin ωi sin ζi, cos ωi ), and ωi and ζi are,
respectively, the polar and azimuthal angles. These vectors are
shown in Fig. 1.

The described ferrofluid is magnetized in equilibrium with
field strength Hp at temperature Tp, and then the SNP posi-
tions and orientations become fixed if the liquid carrier of
the suspension is solidified. The possibility of quasiequilib-
rium transformation of a ferrofluid into a solid substance by
means of carrier liquid polymerization, for example, has been
experimentally verified many times [26,27,33,34]. Ferrofluid,
polymerized in the presence of an external field, forms a
texture, the anisotropy degree of which is a function of the
polymerization field Hp and the polymerization temperature
Tp. Thus, the SNPs lose their translational and rotational
degrees of freedom, and the ferrofluid transforms into a tex-
tured ferrocomposite. In what follows, we describe the static
magnetic properties of these immobilized SNPs at various
magnetic field strengths H and temperatures T .

B. Noninteracting SNP ferrofluid

The orientation structure of a noninteracting SNP ferrofluid
at a static applied magnetic field is described by the one-
particle distribution density WFF [35],

WFF (m̂i, n̂i ) = exp [σ (m̂i · n̂i )2 + α(m̂i · ĥ)]

ZFF (α, σ )
, (4)

ZFF =
∫

dn̂i

∫
dm̂i exp

[
σ (m̂i · n̂i )

2 + α(m̂i · ĥ)
]

= sinh α

α
R(σ ), R(σ ) =

∫ 1

0
exp(σ t2)dt,

∫
dm̂i = 1

4π

∫ 2π

0
dζi

∫ 1

−1
d cos ωi,

∫
dn̂i = 1

4π

∫ 2π

0
dψi

∫ 1

−1
d cos ξi. (5)

Here ZFF stands for the partition function of a gas of nonin-
teracting SNPs [10], representing the exponential Boltzmann-

type distribution (4) averaged over all possible degrees of
freedom, specifically here over all possible orientations of the
SNP easy axes dn̂i and the SNP magnetic moment dm̂i, so
that

∫
dn̂i · 1 = 1 and

∫
dm̂i · 1 = 1. Obviously, the magneti-

zation ML of this noninteracting SNP suspension is defined as
the averaged projections of the SNP magnetic moment onto
the magnetic field direction:

ML = ρm
∫

dn̂i

∫
dm̂i(m̂i · ĥ)WFF (m̂i, n̂i )

= ρm
∂ ln ZFF

∂α
= ρmL(α), (6)

and it is determined by the Langevin function L(α) =
coth α − 1/α. The initial magnetic susceptibility is defined by
the Langevin expression χL = μ0ρm2/3kBT .

The orientation distribution fFF of noninteracting SNP
easy magnetization axes is given by function (4) averaged over
only the magnetic moment direction [35,37],

fFF (n̂i ) =
∫

dm̂iW0(m̂i, n̂i ) = ZFC (n̂i, α, σ )

ZFF (α, σ )
, (7)

ZFC (n̂i, α, σ ) ≡ ZFC (ξi, α, σ )

=
∫

dm̂i exp [σ (m̂i · n̂i )
2 + α(m̂i · ĥ)]

= 1

2

∫ 1

−1
exp(σ t2 + αt cos ξi )

× I0(α
√

1 − t2 sin ξi )dt, (8)

where I0(z) is the modified Bessel function of zeroth order.
After integration over dm̂i this n̂i distribution appears to be
dependent on only the polar angle ξi due to the cylindrical
symmetry around the field direction. In the absence of field
this function is equal to unity, which corresponds to uniform
random distribution of SNP easy axes. With field strengthen-
ing, two symmetric peaks start growing at angles ξi = 0 and
π , demonstrating the alignment of the SNP easy axes.

C. Orientation structure of the textured ferrocomposite

Let us consider the “rapid” solidification (or polymeriza-
tion) of the ferrofluid liquid carrier at some field Hp||Oz
(Fig. 1) and temperature Tp. By “rapid” solidification we mean
here that the SNP orientational structure, created by the mag-
netic field Hp, is not affected by the change in the phase state
of the carrier matrix, which has lost its fluidity. For example,
the fast freezing of the ferrofluid was described in Ref. [55]
after cryogenic TEM images of the aggregated ferroparticles
were obtained. A more detailed description of the synthesis of
textured ferrocomposites can be found in Refs. [26–34].

The frozen orientation texture of the SNP easy axes is
dependent on the corresponding values of the dimension-
less parameters αp = μ0mHp/kBTp and σp = Kvm/kBTp. This
fixed distribution fp is given in accordance to expression (7),

fp(n̂i, αp, σp) ≡ fp(ξi, αp, σp) = ZFC (ξi, αp, σp)

ZFF (αp, σp)
. (9)

It is worth mentioning that the ferrofluid magnetization (6)
is independent of the value of magnetic anisotropy σ . At the
same time, the easy axis orientation distribution (9) is a robust
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function of σp. Obviously, an external static uniform magnetic
field influences the SNP magnetic moments only orientation-
ally. Meanwhile, expression (9) evidences the formation of
the easy axis orientation texture. The physical reason for this
formation is the energetic interaction between the magnetic
moment and the easy magnetization axis (1). The “strength”
of this interaction is controlled by the parameter σ . So the
larger σ is, the more pronounced the texture is. For the case
of negligibly weak magnetocrystalline anisotropy, no easy
axis orientational texture can be obtained with the help of
equilibrium magnetization: fp(ξi, αp, σp = 0) = 1.

It is convenient to describe the degree of alignment of the
SNP easy axes, i.e., the degree of ordering of the textured
ferrocomposite, with the help of the distribution moments Qk :

Qk = 1

2

∫ 1

−1
fp(ξi, αp, σp)Pk (cos ξi )d cos ξi, (10)

where Pk (z) are the Legendre polynomials. The zero moment
Q0 stands for the simple normalization, that is, unity, Q0 = 1.
The first moment Q1 has the same meaning as the magnetiza-
tion, and it describes the degree of coalignment of vectors n̂i.
Obviously, Q1 is zero at any αp and σp since orientations ±n̂i

are equally probable.
The degree of SNP easy axis parallelism is described by

the second moment Q2, which is zero for uniform random
configuration and is equal to unity for the complete parallel
alignment. This moment can be calculated analytically:

Q2(αp, σp) = A‖(σp) − 1

2
L3(αp), (11)

where the function L3(z) = 1 − 3L(z)/z is known as the third
Langevin function, L3(0) = 0, L3(∞) = 1. The function

A‖(σ ) = 3
d ln R(σ )

dσ
= 3

2σ

[
exp(σ )

R(σ )
− 1

]
(12)

was introduced in Refs. [37,56]; it describes the initial mag-
netic susceptibility of immobilized SNPs, the easy axes of
which are directed parallel to the field. For magnetically soft
SNPs, A‖(σ = 0) = 1, it increases monotonously with grow-
ing σ [51],

A‖(σ ) ≈ 1 + 4σ

15
+ 8σ 2

315
− 16σ 3

4725
− 32σ 4

31185
, σ < 3, (13)

asymptotically reaching the value A‖(σ → ∞) → 3:

A‖(σ ) ≈ 3

(
1 − 1

σ
− 1

2σ 2

)
, σ > 3. (14)

So, the second moment Q2 is the increasing function of both
αp and σp.

It is worth mentioning that the maximum achievable paral-
lelism of SNP easy axes at αp → ∞ is not unity:

Q2(αp → ∞, σp) = A‖(σp) − 1

2
. (15)

Moreover, at low anisotropy σp � 1 the second moment is
close to zero; this means that this ferrofluid cannot be textured
even at the condition of magnetic saturation.

D. Textured ferrocomposite: Static magnetic properties

Now we have a sample with a textured ferrocomposite, the
SNPs of which are immobilized and the easy magnetization
axes of which are directed according to the orientation distri-
bution fp(ξi, αp, σp) (9). The magnetic moments are still able
to rotate within SNPs, and the static magnetic properties of the
sample are determined by the response of single SNPs since
we neglect the interparticle correlations. Here the ferrocom-
posite one-particle distribution density WFC differs from WFF

(4) since the easy axis orientation is not the degree of freedom,
and the normalization partition function ZFC does not include
the averaging over dn̂i:

WFC (m̂i, n̂i ) = exp [σ (m̂i · n̂i )2 + α(m̂i · ĥ)]

ZFC (n̂i, α, σ )
. (16)

The angle n̂i dependence of ZFC is given in Eq. (8).
Let us examine first the magnetic response to a static

magnetic field H , applied along the same direction as the
polymerization field Hp, H||Hp; we call it the “parallel” case.
Here the magnetization M‖ of the textured ferrocomposite is
defined similarly to expression (6) but includes the orientation
distribution of the SNP easy axes (9):

M‖ = ρm
∫

dn̂i fp(ξi, αp, σp)
∫

dm̂i(m̂i · ĥ)WFC (m̂i, n̂i )

= ρm

2ZFF (αp, σp)

∂

∂α

∫ 1

−1
ZFC (ξ, αp, σp)

× ln ZFC (ξ, α, σ ) d cos ξ . (17)

The magnetization curve, described by this expression, ex-
hibits an interesting feature in the case when parameters α and
σ of the magnetization measurement coincide with αp and σp

of the liquid solidification. At this point both magnetizations
(17) and (6) match exactly, M‖(αp, σp) = ML(αp). This fea-
ture is easy to understand because the following relation holds
true: ∫ 1

−1
ZFC (ξ, αp, σp) d cos ξ = ZFF (αp, σp).

Although the magnetization (17) looks rather complicated
and demands numerical calculations, the initial magnetic sus-
ceptibility can be calculated in a much simpler form. Using
Taylor expansion of ZFC (ξ, α, σ ) over small values of α � 1,
we get [51]

ln ZFC (ξ, α, σ ) = ln R(σ ) + α2

6
{1 + [A‖(σ ) − 1]}P2(cos ξ ).

(18)

So expression (17) transfers to

M‖ = χ‖H, χ‖ ≡ χ‖(σ, αp, σp)

= χL{1 + [A‖(σ ) − 1]Q2(αp, σp)}. (19)

In the case of complete easy axis alignment (Q2 = 1), we
get χ‖ = χLA‖ [37]. Otherwise, for the random orientation of
the SNP easy axes the susceptibility is equal to the Langevin
one, χ‖ = χL.

Calculating the ferrocomposite magnetic properties be-
comes more complicated when a magnetic field is applied
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perpendicularly to Hp, H ⊥ Hp, for example, along the Ox
axis. Ferrocomposite magnetization M⊥ is also defined by
expression (17), making corresponding corrections due to the
field direction. But the initial magnetic susceptibility χ⊥ can
be calculated in a simple form (see the Appendix):

M⊥ = χ⊥H, χ⊥ ≡ χ⊥(σ, αp, σp)

= χL

{
1 − [A‖(σ ) − 1]

2
Q2(αp, σp)

}
. (20)

For the nontextured system the susceptibility evidently
equals the Langevin one, Q2 = 0, χ⊥ = χ‖ = χL. For the
case of complete easy axis alignment we get Q2 = 1, χ⊥ =
χL(3 − A‖)/2; this result coincides with the one presented
in Ref. [37] for the perpendicular texture in the system of
immobilized SNPs.

Expressions (19) and (20) exhibit the interesting feature of
the ferrocomposite:

χ‖ + 2χ⊥
3

= χL, (21)

independent of the presence of an orientational structure and
of the strength of the internal magnetocrystalline anisotropy.

III. MONTE CARLO SIMULATIONS

To test the obtained theoretical predictions canonical
(NVT) Monte Carlo simulations were carried out for an en-
semble of N = 512 superparamagnetic dipolar hard spheres.
Periodic boundary conditions were applied to a cubic box
of volume V . The direction of the external magnetic field
was assumed to be along the Oz axis. To model the SNP
ferrofluid, three equiprobable types of moves were used:
translational movement of the particle, random displacement
of both the magnetic moment and easy axis at the same trial
angle (Brownian rotation), and rotation of the magnetic mo-
ment regardless of the easy axis (Néel rotation). In the last
case, rotations were performed using both a conventional ran-
dom displacement and the flip move m → −m to overcome
the anisotropy barrier, especially for σ 
 1 [37]. After 106

attempted translations and rotations per nanoparticle, the typ-
ical run was extended by another 5 × 105 Monte Carlo steps,
during which Nc independent configurations of SNP positions
and orientations were saved to simulate a new system after the
polymerization of the carrier fluid. Typical examples of easy
axis orientations n̂i in the Oz direction are shown in Fig. 2
for different values of αp and σp. At αp = 1 [Fig. 2(a)] one
can see a uniform distribution of the value cos ξi, while at
αp = 10 [Fig. 2(b)] there is a pronounced tendency to align the
easy axes almost parallel to the applied magnetic field. This
effect is enhanced with increasing σp up to 10 [Fig. 2(c)]. For
textured ferrocomposite modeling, the SNP positions and easy
magnetization axes were fixed in the way described above. In
this case only Néel rotation of the magnetic moment was used
to perform the next Monte Carlo simulations.

The initial susceptibility χ‖ of the textured composite was
determined from the fluctuation formula

χ‖ = μ0
〈
M2

z

〉
V kBT

, (22)

FIG. 2. The value of cos ξi for each particle i in the trial configu-
ration saved during the modeling of SNP ferrofluid with χL = 1, ϕ =
0.125 in an applied magnetic field: (a) αp = 1, σp = 5; (b) αp = 10,
σp = 5; and (c) αp = 10, σp = 10.

where Mz is a z component of the whole magnetic moment,

M =
N∑

i=1

mi. (23)

Obviously, the simulation data are very “noisy” since they are
dependent on the frozen displacement of SNPs at fixed αp and
σp. To avoid these statistical errors, for each case we average
the results over the mentioned number Nc of simulations. Here
there is an important question: What number Nc is sufficient
to obtain the results with sufficient accuracy? To illustrate the
answer we present in Fig. 3 the simulated data for the parallel
susceptibility obtained for different numbers of configurations
Nc = 1, 2, 5, 10, 20, and 30. Starting from Nc = 5 the results
do not depend on the number of considered configurations;
therefore, the value Nc = 10 was chosen as being optimal for
computer simulations. In what follows, all simulation results
were obtained within averaging over 10 independent configu-
rations of the textured ferrocomposite for each set of system
parameters αp and σp. In all cases, the SNP volume concentra-
tion ϕ = 0.125 and the Langevin susceptibility χL = 1 were
fixed during simulations.

An example of the averaging of the angle distribution
density fp(ξi) is shown in Fig. 4. For each configuration
this function fluctuates around some basic dependence (light
gray lines), the existence of which is clearly demonstrated
by the averaged curves [blue (dark gray) lines]; the averaged
curves have much weaker noise than the results for separate
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FIG. 3. The static initial magnetic susceptibility χ‖ of the tex-
tured ferrocomposite (χL = 1, ϕ = 0.125), simulated for different
numbers of configurations Nc, used for averaging the results: (a) αp =
5, σp = 10 and (b) αp = 10, σp = 5.

configurations. With increasing αp and/or σp values, the dif-
ference between the results for distribution density fp for the
individual configurations decreases.

IV. RESULTS

We start with portraits of the textured ferrocomposite at
various parameters αp and σp of the liquid solidification. It
is clear that the polymerization field strengthening leads to
more pronounced orientational alignment. Typical easy axis
distributions fp(ξi ) are shown in Fig. 5. Obviously, at rather
weak magnetic field [Fig. 5(a)] the orientational distribution
is close to the uniform one. However, the distribution remains
rather wide even at strong applied polymerization field, αp =
10, [Fig. 5(b)]. This value of αp means that the ferrofluid
magnetization reaches the vicinity of 90% of the magnetic

FIG. 4. The distribution density fp of easy axes over the polar
angle ξi for 10 configurations saved during simulations of the SNP
ferrofluid with χL = 1, ϕ = 0.125 in an applied magnetic field:
(a) αp = 5, σp = 5 and (b) αp = 10, σp = 10. Light gray lines show
the results for the 10 different configurations separately; blue (dark
gray) lines represent the averaged results.

FIG. 5. The easy axis distribution fp over the polar angle ξi

for the textured ferrocomposite with χL = 1, ϕ = 0.125, and fixed
σp = 5. Symbols are from the MC simulations with (a) αp = 1 (blue
squares) and (b) αp = 10 (orange diamonds). Theoretical predictions
(9) for the same parameters are given by the solid lines.

saturation state at the solidification. At the same time, the
orientational distribution is far from the δ function alignment.

Varying the polymerization value of the magnetocrystalline
parameter σp at fixed αp, we get qualitatively similar orienta-
tional distributions. The SNPs with a higher anisotropy barrier
demonstrate a more pronounced orientational texture for the
same values of the dimensionless polymerization field. This
effect is demonstrated in Figs. 6(a)–6(c).

FIG. 6. The easy axis distribution fp over the polar angle ξi

for the textured ferrocomposite with χL = 1, ϕ = 0.125, and fixed
polymerization field strength αp = 5. Symbols are from the MC
simulations with (a) σp = 1 (blue squares), (b) σp = 5 (green tri-
angles), and (c) σp = 10 (orange diamonds). Solid lines present the
theoretical predictions (9).
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FIG. 7. The orientational distribution second moment Q2 of the
textured ferrocomposite (χL = 1, ϕ = 0.125, σ = σp) as a function
of the polymerization field αp. Solid lines are from the theory (11);
symbols are from simulations with σp = 0 (red circles), σp = 2 (blue
squares), σp = 5 (green triangles), and σp = 10 (orange diamonds).

It is worth mentioning here that the simulation data look
rather noisy, especially in the cases in Figs. 5(a) and 6(a),
where the orientation texture is not expressed well. Presum-
ably, more accurate data demand a larger number of particles
in the simulation box and a larger number of configura-
tions over which the averaging is to be performed. Despite
fluctuating data on orientation distribution density, the mean
characteristics appear to be rather smooth, like the second
moment Q2, shown in Fig. 7 as a function of dimensionless
field strength αp, applied during liquid solidification, for vari-
ous values of the anisotropy parameter σp. Clearly, negligibly
weak anisotropy (σp = 0) allows magnetic moments to rotate
freely inside SNPs, and so no SNP body oriented texture is
formed at any applied field. The stronger the anisotropy is,
the more pronounced the effect of the orientational texturing
is. But the second moment is far from unity even for a very
high anisotropy barrier and rather strong polymerization field,
σp = 10, αp = 10. This means that the orientational easy
axis structure cannot be considered perfectly coaligned for the
really achievable SNPs parameters.

At the same time the textured ferrocomposite demonstrates
much stronger static magnetic response in comparison with
the ferrofluid, characterized by the same physical parameters
as the ferrocomposite. This effect is most strongly manifested
in the static parallel initial magnetic susceptibility χ‖, whose
the dependence on the polymerization field strength is pre-
sented in Fig. 8 for various values of the anisotropy parameter.
The susceptibility, simulated using expression (22), is given
by the symbols, and the theoretical predictions (19) are shown
by solid lines. In both Figs. 7 and 8, we show only the case
when the temperature T coincides with the temperature Tp of
the liquid solidification; this means that σ coincides with σp.
Obviously, the temperature decrease results in an increase of
the susceptibility in comparison with the one shown in Fig. 8.

Formation of the orientational texture appears to influence
strongly the parallel susceptibility. For example, the values
σp = 5, αp = 5 are not accompanied by well-developed easy
axes coalignment, as shown in Fig. 6(b). But the ferrocom-

FIG. 8. The static initial magnetic susceptibility χ‖ of the tex-
tured ferrocomposite (χL = 1, ϕ = 0.125, σ = σp) as a function
of the polymerization field αp. Solid lines are from the theory (19);
symbols are from simulations with σp = 0 (red circles), σp = 2 (blue
squares), σp = 5 (green triangles), and σp = 10 (orange diamonds).

posite parallel susceptibility exceeds the ideal paramagnetic
gas Langevin susceptibility by 50% (see the green triangles
in Fig. 8). The largest simulated coalignment, achieved for
σp = 10, αp = 10 in Fig. 7, is only Q2 = 0.62. At the same
time, this nonperfect orientation structure results in two time
increase of the parallel susceptibility (see Fig. 8, orange dia-
monds).

Equilibrium magnetization curves of the ferrocomposite
were simulated on the basis of described method for the
parallel geometry using expression (23), and the theoret-
ical magnetization (17) was calculated numerically. Both
magnetization curves are shown in Fig. 9 in comparison
with the ferrofluid magnetization curve. Four ferrocompos-
ite structures are investigated; they were simulated with
different pairs of polymerization parameters (σp, αp) =
(5, 5), (5, 10), (10, 5), (10, 10). For each pair (each ferro-
composite sample) the magnetization curves M‖(α) were
simulated for 10 different configurations of particle displace-
ment and easy axis orientations. The results were averaged
over these 10 simulation variants, and the averaged data are
shown in Fig. 9. Evidently, in weak field the magnetiza-
tion curve of the textured ferrocomposite grows with the
field strength more rapidly than the ferrofluid magnetiza-
tion, shown in black. At the coincidence point of an applied
field with the polymerization field, α = αp, the magnetization
curves cross each other. In stronger fields the ferrocomposite
reaches the magnetic saturation slower than the ferrofluid.
This effect, discussed theoretically in Sec. II D, is clearly seen
in Fig. 9, and it appears to be more pronounced for SNPs with
higher values of the magnetocrystalline anisotropy barrier.

V. CONCLUSION

The magnetic properties of a textured ferrocomposite con-
sisting of immobilized SNPs were described here for the case
of weakly interacting SNPs under the condition the interpar-
ticle magnetic interaction can be neglected. Unlike known
theoretical models, developed for the ideal alignment of the
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FIG. 9. The magnetization M‖ as a function of the dimensionless
magnetic field, expressed in Langevin units α, for both a ferrofluid
and ferrocomposite with χL = 1, ϕ = 0.125, and (a) σp = 5 and
(b) σp = 10. The ferrofluid magnetization curves are given by black
squares and black solid lines. The magnetization curves for the tex-
tured ferrocomposite are shown for two values of the polymerization
field: αp = 5 (dashed lines and red circles) and αp = 10 (dot-dashed
lines and blue diamonds). Theoretical magnetization curves (17)
were calculated numerically.

SNP easy magnetization axes, for example, the one in [37],
we consider a more realistic situation in which the textured
ferrocomposite is obtained after fast solidification (or poly-
merization) of the ferrofluid liquid matrix at some temperature
in the presence of an external permanent magnetic field (poly-
merization field). During this solidification some equilibrium
distribution of the SNP easy axes is established as a result of
the balance between the Zeeman magnetic moment–magnetic
field interaction energy and the thermal energy (thermal fluc-
tuations). We suppose that the SNP positions and orientations
become fixed after solidification of the matrix, but the SNP
magnetic moments are still able to rotate inside the SNP
bodies due to superparamagnetic fluctuations. Texturing of the
composite means that there is a highlighted line along which
the SNP axes are mainly directed. Since the SNPs lose the
rotational degrees of freedom as structural units, the applica-
tion of a static magnetic field results in a different magnetic
response of the ferrocomposite in comparison with the initial
ferrofluid.

In the present paper we studied the described effect theo-
retically by means of equilibrium statistical mechanics. First,
we calculated the orientation probability density of the SNP
easy magnetization axes in the initial ferrofluid at some

polymerization temperature and some polymerization field
strength. This orientational distribution is defined in (7) as
the Boltzmann probability density for the randomly chosen
SNP, averaged over the magnetic moment rotational degrees
of freedom. Next, we used this orientational density as the
characteristic of the ferrocomposite texture (9), and we calcu-
lated the magnetization of the sample of this ferrocomposite
and its initial static magnetic susceptibility. Finally, simple
analytical expressions for the susceptibility were obtained for
two geometries: (i) the parallel case (19), in which a magnetic
field is applied parallel to the direction of the polymerization
field, and (ii) the perpendicular case (20), in which an applied
magnetic field is turned by 90◦.

We showed that realistic values of the ferrofluid SNP
parameters and strengths of the polymerization field demon-
strate a rather low level of alignment of the SNP easy axes in a
textured ferrocomposite. This is best seen from the data on the
second moment (11), the values of which are far from unity
(Fig. 7), which corresponds to absolutely perfect alignment.
Despite poor alignment the effect on the magnetic suscepti-
bility appears to be rather strong. Due to even poor texture
the parallel susceptibility of the ferrocomposite can be dou-
bled (Fig. 8) compared to the initial ferrofluid susceptibility.
Obviously, the present results can be applied to rather small
nanoparticles, the interparticle magnetic interaction between
which is very weak. But, of course, the interactions play an
important part, especially for concentrated magnetic suspen-
sions. The magnetic response of interacting SNPs, both static
and dynamic, is stronger than for noninteracting ones; this
effect was discovered experimentally [2,3,8,9], substantiated
by means of computer simulations [19–21,23], and justified
theoretically [12,13,37,48,49]. This means that the effect of
enhancing the magnetic response due to the formation of
texture, as discussed in the present paper, will be even more
pronounced in the textured composite of interacting SNPs.

To support the obtained theoretical results and to vali-
date the analytical expressions we performed Monte Carlo
simulations, averaging the data over several microstructural
configurations of SNP positions and easy axis orientations,
equilibrated in the presence of a polymerization field. We
get very accurate quantitative agreement between theory and
simulations for the case of weakly interacting SNPs.

Thus, our results show that the texturing of a ferrofluid and
transforming it into a textured ferrocomposite is a real way
to significantly enhance the static magnetic response of these
magnetic soft materials.
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APPENDIX

We present here an analytical calculation of the initial
magnetic susceptibility for the case when a magnetic field is
applied perpendicularly to Hp, H ⊥ Hp, for example, along
the Ox axis.
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Let us consider the ferrocomposite sample, solidified in the
presence of field Hp||Oz. After liquid carrier solidification this
field is switched off, and the textured ferrocomposite sample

is placed in a uniform constant magnetic field, directed along
the Ox axis of the laboratory coordinate system (Fig. 1). The
magnetization is defined as

M⊥ = ρm
∫

dn̂ fp(n̂, αp, σp)
∂ ln ZFC (n̂, α, σ )

∂α
. (A1)

Paying attention to the field geometry, it is convenient to write the function ZFC here in the following form:

ZFC = 1

2

∫ 1

−1
exp[σ t2 + αt (n̂ · x̂)]I0[α

√
1 − t2

√
1 − (n̂ · x̂)2]dt, (A2)

where x̂ stands for the unit Ox-axis vector and (n̂ · x̂) = sin ξ cos ψ (see Fig. 1). Expansion in a Taylor series over small α � 1
within quadratic accuracy results in

ZFC ≈ 1

2

∫ 1

−1
exp(σ t2)

{
1 + α2

4
[1 − (n̂ · x̂)2] + α2t2

4
[3(n̂ · x̂)2 − 1]

}
dt .

Thus,

∂ ln ZFC (n̂, α, σ )

∂α
= ∂

∂α
ln

{
R(σ ) + α2

4
R(σ )[1 − (n̂ · x̂)2] + α2

12
R(σ )A‖(σ )[3(n̂ · x̂)2 − 1]

}

= α

2

{
1 − A‖(σ )

3
+ (n̂ · x̂)2[A‖(σ ) − 1]

}
. (A3)

Introducing this expression in Eq. (A1), we meet with integration over dψ [dn̂ = (4π )−1dψ d cos ξ ]. Since fp is dependent on
only the angle ξ , we may integrate the last term in brackets over dψ independent of fp:

α

2

∫ 2π

0

{
1 − A‖(σ )

3
+ (n̂ · x̂)2[A‖(σ ) − 1]

}
dψ = α

3

{
1 + [A‖(σ ) − 1]

2
P2(cos ξ )

}
.

Finally, we get for the initial slope of the perpendicular magnetization

M⊥ = ρmα

6

∫ 1

−1
fp(ξ, αp, σp)

{
1 + [A‖(σ ) − 1]

2
P2(cos ξ )

}
d cos ξ = χ⊥H, (A4)

χ⊥ = χL

{
1 − [A‖(σ ) − 1]

2
Q2(αp, σp)

}
. (A5)
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