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Transport and phase separation of active Brownian particles in fluctuating environments
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In this work, we study the dynamics of a single active Brownian particle, as well as the collective behavior
of interacting active Brownian particles, in a fluctuating heterogeneous environment. We employ a variant of the
diffusing diffusivity model where the equation of motion of the active particle involves a time-dependent motility
and diffusivities. Within our model, those fluctuations are coupled to each other. Using analytical methods, we
obtain the probability distribution function of particle displacement and its moments for a single particle. We
then investigate the impact of the environmental fluctuations on the collective behavior of the active Brownian
particles by means of extensive numerical simulations. Our results show that the fluctuations hinder the motility-
induced phase separation, accompanied by a significant change of the density dependence of particle velocities.
These effects are interpreted using our analytical results for the dynamics of a single particle.
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I. INTRODUCTION

Transport of a tracer particle in complex heterogeneous
environments such as biological media [1,2], porous mate-
rial [3], or polymeric networks [4] can widely differ from
the normal diffusion of a passive particle in a simple fluid.
Normal diffusion is characterized by a Gaussian probability
distribution of the particle displacement and a mean-squared
displacement (MSD) which grows linearly in time, yielding
a constant long-time diffusion coefficient. An often observed
phenomenon in complex, crowded environments is anoma-
lous diffusion of a (passive) tracer particle, described by a
nonlinear MSD associated with either a Gaussian or non-
Gaussian probability distribution [5]. To explain the observed
anomalies, a variety of stochastic models, mainly based on
generalization of Einstein’s and Langevin’s works on nor-
mal diffusion, have been proposed (for a review, see, e.g.,
Ref. [6]).

In many heterogeneous systems, however, a tracer particle
experiences varying diffusivities over time. This is either due
to the dynamical evolution of the surrounding medium by its
own or the motion of the particle in regions with different
diffusivities. Such situations have been observed in numer-
ous single-particle tracking experiments, for widely different
types of (passive) tracer particles and environments [7–10],
as well as in several simulation studies [11,12]. In these
studies, it was shown that, while the MSD of the passive
particle remains linear in time, its displacement probability
density function (PDF) deviates from the Gaussian form at
short times. These observed deviations were in contradiction
with Fick’s second law, where the displacement PDF obeys
the standard diffusion equation and has a Gaussian form at
all times. These observations motivated the development of
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a new class of stochastic processes, that is, “Brownian yet
non-Gaussian” [13].

This new dynamics was first theoretically explained by
the concept of superstatistics [14], where a single Gaussian
distribution is averaged over an exponential distribution of
diffusivities, p(D) [9]. Afterwards, another approach termed
as “diffusing diffusivity” was put forward [15–17] assuming
that the diffusivity constantly changes in time according to
a specific stochastic process. The diffusing diffusivity model
was further studied with respect to time averages and er-
godicity breaking properties [18]. It was also compared with
the concept of the generalized Grey-Brownian motion with
random diffusivity [19]. An elegant derivation of the diffusing
diffusivity model using the subordination approach was later
introduced in Ref. [20], which connected the superstatistics
approach with the diffusing diffusivity model. We note that
the dynamics of the “Brownian yet non-Gaussian” process
can also be reproduced by the continuous-time random-walk
model in equilibrium with a truncated, heavy-tailed waiting
time PDF [21].

The aforementioned studies mainly focus on the transport
of passive tracer particles. Here we are rather interested in
active particles (AP), such as bacteria or self-propelled col-
loids. Indeed, similarly to the case of passive particles, active
particles are also often found in heterogeneous environments.
Examples include molecular motors inside a “crowded” en-
vironment of cells [22], bacteria in highly complex tissues
[23], or herds of animals migrating in the forest [24]. Most of
the nonequilibrium features of the collective behavior of APs
and their individual dynamics are strongly affected when they
take place in heterogeneous media [25–27]. Recent studies
discussed different phenomena, such as anomalous diffusion
of AP in a random Lorentz gas [28], trapping of APs in
the presence of obstacle arrays [29], avalanche dynamics
transport of run-and-tumble bacteria [30], or clogging and
depinning of ballistic active matter [31] at the macroscale.
These phenomena can vary depending on the type of APs as
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well as on the characteristics of the heterogeneity in the envi-
ronment, see Ref. [32] for a review. From a theoretical point of
view, it is therefore quite relevant to include the environmental
heterogeneities in modeling the collective behavior of APs as
well as their individual dynamics.

Inspired by the aforementioned theoretical works which
are restricted to systems with passive particles, we investi-
gate dynamics of APs in temporarily evolving heterogeneous
systems. In particular, we explore the impact of fluctuations
on the transport properties of an active Brownian parti-
cle (ABP) [33,34], which is often considered as a minimal
model describing many experimentally observed dynamics
of self-propelled particles [34–36] and the collective behav-
ior of active colloids and bacteria [32]. In the first part
of the paper, we consider noninteracting ABPs in a fluctu-
ating medium, focusing on the behavior of the MSD and
the PDF of particle displacement as compared to the dy-
namics of ABPs in a homogeneous medium. For those
quantities we calculate general formulas by assuming that
fluctuations are encoded in a random process with certain
properties. We then specialize on square Ornstein-Uhlenbeck
process to represent those fluctuations and calculate ex-
plicit results for the MSD and the PDF of the particle
displacement.

Some related studies on APs in the presence of fluctua-
tions can be found in Refs. [37–39]. These articles study the
dynamics of APs by considering that the activity, rotational
diffusivity, or both experience particular forms of fluctuations.
However, fluctuations in those quantities are assumed to be
independent from each other. In the present paper we consider
a different situation, where fluctuations of the motility and
diffusivities are correlated. Such a situation can occur when
the origin of the fluctuations is external, in the sense that they
arise from the surrounding environment. Thus, they affect the
activity and diffusivities of the ABP simultaneously and in
the same way. Therefore, our results vastly differ from those
in Refs. [37–39].

In the second part of the paper, we proceed by studying
the effect of fluctuations on the collective behavior of inter-
acting ABPs. We focus in particular on the phenomenon of
the motility-induced phase separation (MIPS). From previous
studies (see, e.g., Ref. [40]), it is known that the rotational
diffusion and the motility play essential roles in the emergence
of MIPS. Introducing fluctuations of these parameters, one
therefore expects a considerable impact on the occurrence of
MIPS. Here we explore these modifications by obtaining the
nonequilibrium phase diagram and the connection between
the particle velocity and the local density. To indicate the rel-
evance of our findings, we support our results by calculating
an effective free energy of the system as a function of local
density.

To the best of our knowledge, a study of the collective
behavior of ABPs with (correlated) fluctuations of motility
and diffusivity has not been done so far. To some extent
the present model, where the fluctuations are assumed to be
externally induced, could be considered as a minimal model
to describe the collective bahavior of APs in disordered media
[41]. In fact, as we will show in the second part of the paper,
our external fluctuations have a similar effect as disordered
media, that is, a hindrance of MIPS.

II. ACTIVE BROWNIAN PARTICLE
WITH FLUCTUATIONS

In this section, we start with a brief review of the ABP
model in homogeneous environment (which we refer to as
the conventional ABP model). We continue by building up
a modified ABP model by introducing fluctuations into the
conventional description. We then analytically investigate the
effect of these fluctuations on the PDF of the displacements
and the MSD, using the subordination approach. To complete
the discussion of the single-particle dynamics, we support our
theoretical predictions by numerical results.

A. Conventional active Brownian particle

In the ABP model, each (spherical) particle displays di-
rected motion in addition to the Brownian motion. This
directed motion arises from a self-propulsion force, F0, which
is (typically) directed along an anisotropy axis of the par-
ticle, i.e., the heading vector. Due to thermal fluctuations,
the particle experiences translational [ξT (t )] and rotational
[ξR(t )] noises, which affect its position (r) and orientation
(φ), respectively. The two-dimensional ABP model is thus be
described by the Langevin equations [42]

γT ṙ(t ) = F0ê(t ) +
√

2kBTT γT ξT (t ), (1a)

γRφ̇(t ) =
√

2kBTRγRξR(t ), (1b)

where the vector ê(t ) := (cos φ, sin φ) determines the heading
direction of the particle within the plane. The parameters γT

and γR denote the translation and rotational Stokes friction
coefficients, respectively [32], that is,

γT = 6πηR, (2a)

γR = 8πηR3, (2b)

with η being the viscosity and R the radius of the particle. The
noise terms are Gaussian white noises satisfying 〈ξT (t )〉 = 0,
〈ξR(t )〉 = 0, 〈ξT, j (t1)ξT,i(t2)〉 = δ(t1 − t2)δi, j [with i, j being
Cartesian components of ξT (t )], and 〈ξR(t1)ξR(t2)〉 = δ(t1 −
t2). The parameters kBT and kBTR are the thermal energies
quantifying the strength of the translational and the rotational
noises, respectively [43]. In many applications [44–47], it is
assumed that T = TR. The rotational and translational diffu-
sion coefficients then follow as

DT (R) = kBT

γT (R)
. (3)

Further, the motility of the ABP is defined as

v0 = F0/γT = F0/(6πηR). (4)

As implied by Eqs. (2b), (3), and (4), both diffusivities and the
motility are proportional to η−1 and constant in time.

B. Modelling active Brownian particle with fluctuations

We now relax the conditions of constant translational
and rotational diffusivities. Specially, we consider a situation
where the environment of the particle causes fluctuations af-
fecting both the motility and the diffusivities.

As a justification, we consider an evolving heterogeneous
environment whose viscosity in an arbitrary position r varies
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in time, that is, η = η[r(t )]. In such an environment, the
diffusing particle experiences different viscosities either by
discovering different parts of the medium or due to the evo-
lution of the medium itself. To “sample” the heterogeneity,
the particle needs a certain time. Thus, measurements with
time lags longer than the medium fluctuation time recover
the conventional ABP model with averaged, i.e., constant,
parameters. However, when the measurement time interval
is shorter, the temporal variation of η needs to be taken into
account in the equation of the motion of the particle.

One approach to describe such a situation is diffusing
diffusivity model [15–17], that is, the spatial heterogeneity
of an evolving medium is mimicked by a time-dependent
stochastic process. In our case, the characteristic parameter
is the viscosity, η[r(t )], which we assume to be described by
a random process, ϒ−1(t ) [where ϒ (t ) is constrained to be
positive]. This implies [see Eqs. (2b)] that the friction coeffi-
cients become time-dependent quantities that are proportional
to this process, i.e., γT,R(t ) ∝ ϒ (t )−1. Rewriting the Langevin
equation in the following form:

ṙ(t ) = F0

γT (t )
ê(t ) +

√
2kBT

γT (t )
ξT (t ), (5a)

φ̇(t ) =
√

2kBT

γR(t )
ξR(t ), (5b)

it becomes evident that the environmental fluctuations affect
the motility and diffusivities, given by the time-dependent
analogs of Eqs. (4) and (3), simultaneously and in the same
way. As a consequence one has

DR(t )/D	
R = DT (t )/D	

T = v0(t )/v	 = ϒ (t ), (6)

where the quantities with star denote reference values.
Combining Eqs. (5) and (6), we obtain the following mod-

ified Langevin equation of the ABP:

ṙ(t ) = v	ϒ (t )ê(t ) + √
2D	

T ϒ (t )ξT (t ), (7a)

φ̇(t ) = √
2D	

Rϒ (t )ξR(t ). (7b)

These equations have to be supplemented by an equation
determining the time dependence of the process ϒ (t ). This
will be done at a later stage, see Sec. III. A direct consequence
of Eq. (6) is that, despite the time dependency of the motility
and the diffusion coefficients, the Peclet number assigned to
the motion of the particle is a constant and does not vary in
time, i.e.,

Pe = v0(t )√
DR(t )DT (t )

= v	√
D	

RD	
T

.

With these assumptions, the rotational diffusion coefficient
and the motility are synchronized and, consequently, the per-
sistence length of the ABP remains constant. Thus, on a
coarse-grained level, i.e., at times longer than the charac-
teristic time of the environmental fluctuation, the fluctuating
model exactly reproduces the dynamics of the ordinary ABP
model.

An equivalent representation of Eq. (7) is provided by the
Fokker-Plank equation for the PDF of the particle displace-

ment and orientation, P(r, φ, t ), which is given by

∂t P(r, φ, t ) = −ϒ (t )v	ê(t ) · ∇P + ϒ (t )D	
T �P

+ϒ (t )D	
R∂2

φP, (8)

with ∇ = (∂x, ∂y) and � = ∂2

∂x2 + ∂2

∂y2 . Equations (7) and (8)
provide our toolbox for studying the motion of an ABP in
an evolving environment whose dynamics is governed by the
stochastic process ϒ (t ).

III. THEORETICAL RESULTS FOR A SINGLE PARTICLE

In what follows, we perform a through analysis of the
dynamics of the particle based on the Fokker-Plank equation
Eq. (8). To this end, we employ the subordination method
[48].

1. Subordination

Subordination is a powerful mathematical technique to
treat complex stochastic processes [48]. The essence of the
subordination method is to associate a random variable with
the time unit of the subordinated process (see Refs. [49,50]
for examples). Recently, Chechkin et al. [20] extended this
concept to the problem of a passive Brownian particle with
diffusing diffusivity. This was done by connecting the diffu-
sivity to the random time increment of the original Brownian
motion. Inspired by this work, we rewrite the Eq. (8) in the
subordinated form

∂uP(r, φ, u) = −v	ê(u) · ∇P + D	
T �P + D	

R∂2
φP, (9a)

∂u

∂t
= ϒ (t ), (9b)

where we introduced a new, random variable u, whose time
derivative is given by ϒ (t ). We refer to u as the subordinator.

The Fokker-Plank equation (9) corresponds to the set of
Langevin equations,

ṙ(u) = v	ê(u) + √
2D	

T ξT (u), (10a)

φ̇(u) = √
2D	

RξR(u), (10b)

∂u

∂t
= ϒ (t ). (10c)

In the next paragraph, we will use Eqs. (9) and (10) to calcu-
late the PDF of particle displacement (and its moments).

2. Distribution of displacement and its moments

As demonstrated in the previous section, the subordination
technique allows one to transform the complicated [due to the
stochastic parameter ϒ (t )] form of the Fokker-Plank equation
(8) into a set of simpler equations given in Eqs. (9). Indeed,
Eq. (9) has the form of the Fokker-Plank equation for an ordi-
nary ABP where the diffusivities and the motility are constant
[51]; however, the regular time variable t is now replaced
by a random variable u in Eq. (9b). Therefore, formally the
PDF G(r, φ, u), satisfying Eq. (9), has the same form as the
PDF of an ordinary ABP. The subordinator u is calculated
by u(t ) = ∫ t

0 ϒ (t ′)dt ′ whose PDF is denoted by U (u, t ). To
obtain P(r, φ, t ), one has to perform an average of G(r, φ, u)
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over all the possible subordinator values with the correspond-
ing probabilities. Therefore one has

P(r, φ, t ) =
∫ ∞

0
U (u, t )G(r, φ, u)du. (11)

Here we focus on the coarse-grained PDF involving only the
particle displacement. Integrating both sides of Eq. (11) over
φ, one obtains

P(r, t ) =
∫ 2π

0
dφP(r, φ, t ) =

∫ ∞

0
duU (u, t )G(r, u),

where G(r, u) is the coarse-grained PDF of an ordinary ABP
as a function of the subordinator u.

Fourier transformation yields

P̂(k, t ) =
∫ ∞

0
U (u, t )Ĝ(k, u)du. (12)

An analytical form of G(r, u) and Ĝ(k, u) over the whole
span of u is not available, which hinders the calculation
of the full function P(r, t ). However, one can obtain the
asymptotic, long-wavelength, behavior by inserting Ĝ(k, u)
for corresponding results for the Fourier transform of the PDF
of displacement of an ordinary ABP. From Ref. [51], it is
known that Ĝ(k, u) has the following form: Ĝ(k, u) ≈ e−D′k2u

as k v	

D	
R

→ 0 with D′ = v	2

2D	
R

+ D	
T and k = |k|. Inserting this

result into Eq. (12) we obtain

P̂(k, t ) ≈
∫ ∞

0
U (u, t )e−D′k2udu

= Û (D′k2
, t ), (13)

with Û being the Laplace transform, that is Û (s, t ) =∫ ∞
0 U (u, t )e−sudu with s = D′k2. We recall that Eq. (13) has

been obtained under the assumption k v	

D	
R

→ 0. This implies
that the result for P(r, t ) obtained by taking the inverse Fourier
transform will be valid only at distances larger than the per-
sistence length, i.e., for r 
 v	

D	
R
.

The aforementioned long-wavelength approximation is
not required if one focuses only on the moments of func-
tion P(r, t ). To this end, we recall that the mth moment
of the PDF can be calculated from the relation 〈rm(t )〉 =
(−i)n∇m

k P̂(k, t )|k=0. Applying this relation on Eq. (12), and
defining 〈rm

OABP(u)〉 = (−i)n∇m
k Ĝ(k, u)|k=0, one arrives at

〈rm(t )〉 =
∫ ∞

0
U (u, t )

〈
rm

OABP(u)
〉
du, (14)

where the subscript OABP indicates that the moments stem
from the PDF of an ordinary ABP. Equation (14) is an exact
relation between the positional moments of the fluctuating and
those of the ordinary ABP model. Here we are interested in the
second moment which equals the MSD by setting the initial
position to zero. For an ordinary ABP it is given by [51]

〈r2
0(u)〉 = 4v	2

D	
R

2

[(
D	

RD	
T

v	2 + 1

2

)
D	

Ru

− 1

2
(1 − e−D	

Ru)

]
, (15)

where u here plays the role of time. This MSD exhibits
two crossover: the first occurs from diffusive behavior at short
times to a ballistic regime due to activity-induced directed
motion. The second crossover to a another diffusive regime
occurs at times longer than rotational relaxation time, where
the directed motion is randomized.

Inserting Eq. (15) into Eq. (14), we obtain for the MSD of
the fluctuating ABP

〈r2(t )〉 = 4v	2

D	
R

2

{(
D	

RD	
T

v	2 + 1

2

)
D	

R

[ ∫ ∞

0
U (u, t )udu

]

− 1

2

[ ∫ ∞

0
U (u, t )du −

∫ ∞

0
U (u, t )e−uD	

R du

]}

= 4v	2

D	
R

2

{(
D	

RD	
T

v	2 + 1

2

)
D	

R〈u(t )〉

− 1

2
[1 − Û (D	

R, t )]

}
. (16)

The first integral on the right-hand side of Eq. (16), 〈u〉 =∫ ∞
0 U (u, t )udu, which represents the first moment of U , is

calculated using the first derivative of the Laplace transform
Û (s, t) with respect to s at s = 0, i.e., 〈u〉 = − ∂Û (s,t )

∂s |s=0. The
result of the second integral is unity, due to the normaliza-
tion of the PDF. Finally the third integral

∫ ∞
0 U (u, t )e−uD	

R du
equals essentially the local value of the Laplace transform of
the kernel at s = D	

R. In the same manner, one can continue
these calculations for higher moments to study the impact of
the fluctuations on the dynamics.

3. Explicit results

So far we did not specify the process ϒ (t ), which encodes
all the information regarding the fluctuations of the environ-
ment, see Eqs. (7). Following the suggestions by Jain et al.
[16] and Chechkin et al. [20], we consider the ϒ (t ) to be the
square of a n-dimensional Ornstein-Uhlenbeck process, i.e.,
ϒ (t ) = Y2

n(t ), where Yn can be interpreted as the position
vector of a n-dimensional harmonic oscillator that performs
Brownian motion. With this in mind, the process ϒ (t ) is
determined by the Langevin-like equations,

ϒ (t ) = Y2
n(t )

Ẏ(t ) = − 1

τo
Y(t ) + σζ(t ), (17)

where ζ is a Gaussian white noise with zero mean and correla-
tion function 〈ζi(t1)ζ j (t2)〉 = δi jδ(t1 − t2) for i, j = 1, . . . , n.
The parameters τo and σ denote the relaxation time and noise
strength of three dimensional (auxiliary) variables Y with
physical dimensions [σ ] = s−1/2 and [τo] = s. Fluctuations
become dominant for t � τo.

a. Equilibrium initial conditions. In the following, we
present results for the dynamics starting from two different
initial conditions for the process Y . These are particularly
important for short times [19]. Equilibrium initial conditions
describes a situation where the measurement starts long after
the process Y has reached its stationary state. To model this
situation, the initial value Y0 is randomly taken from the equi-
librium Boltzmann distribution of the process Y. The mean
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FIG. 1. Comparison of the MSDs for the ordinary ABP and the
modified one with different dimension n for Ornstein-Uhlenbeck pro-
cess. The parameters used here are v	 = 1, D	

R = 1, and D	
T = 0.1.

The qualitative behavior of the MSDs does not change in the pres-
ence of fluctuations. The short- and long-time behavior of MSDs are
in quantitative agreement, although a small quantitative deviation at
intermediate times (the ballistic regime) is observed. The inset shows
the ratio of the MSDs of the modified ABPs and the conventional
one.

value of ϒ is then determined by the stationary autocorre-
lation function of Y st, 〈ϒst〉 = 〈Y2

st〉 = nσ 2τo
2 for t 
 τo. For

such a choice of the initial conditions, the equilibrium PDF,
U eq

n (u, t ), of the process u(t ) = ∫ t
0 ϒ (t ′)dt ′ is given in the

Laplace domain [52] by

Û eq
n (s, t ) = exp

(
nt

2τo

)
/

[
1

2

(√
1 + 2sσ 2τ 2

o + 1√
1 + 2sσ 2τ 2

o

)

× sinh

(
t

τo

√
1 + 2sσ 2τ 2

o

)

+ cosh

(
t

τo

√
1 + 2sσ 2τ 2

o

)]n/2

. (18)

The quantity 〈u〉 can now be readily calculated as 〈u〉 =
− ∂Û eq

n (s,t )
∂s |s=0= nσ 2τo

2 t which leads to the following expres-
sion for the MSD of the fluctuating ABP:

〈r2(t )〉 = 4D̄T t + 2
v̄2

D̄2
R

[D̄Rt − 1 + Û (D	
R, t )]. (19)

In Eq. (19) D̄T = nσ 2τo
2 D	

T , D̄R = nσ 2τo
2 D	

R, and v̄ = nσ 2τo
2 v	

represent the stationary values of the diffusivities and the
motility.

Figure 1 shows the MSD according to Eq. (19) for the set of
parameters of v	 = D	

R = σ = τo = 1 and D	
T = 0.1, and for

two values of n = 1 and 3, together with the corresponding
simulation results. To this end, we here solved Eqs. (6) and
(7) with the Euler’s first-order method. The simulation details
can be found in Sec. IV. As seen in Fig. 1, the behavior
of the MSDs at very short and long times (with respect to
τ̄R = 1

D̄R
) matches with corresponding long- and short-time

behavior of the MSD of the conventional ABP, that is, linear
growth of the MSD with respect to time. This finding, that the
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FIG. 2. Comparison of the MSD of the fluctuating ABP with
different D	

R values (with the equilibrium initial conditions). The gray
symbols represent the simulation results and the lines represent the
predictions of Eq. (19). The inset shows the exponent of the MSD
calculated as α = d log MSD/d log t as a function of time.

linear part of MSD remains unchanged under fluctuations, is
in agreement with the case of the passive Brownian particle,
widely studied in the context of diffusing diffusivity problem.
At intermediate times, however, a slight difference between
the MSD of the fluctuating and that of the conventional ABP
is observed. Qualitatively, one observes that the ballistic be-
havior of the MSD of the conventional ABP is replaced by a
smooth crossover when the fluctuations are introduced. The
difference between two MSDs is, however, rather small and
can be neglected in the presence of whatever experimental
noise. The ratio of these two MSDs is plotted as the inset in
Fig. 1. This graph suggests that, for higher dimensions of the
subordinator process, n > 1, the observed difference becomes
even less significant.

As we proceed to show, the MSD changes when the
timescales corresponding to the fluctuations and rotational re-
lation time deviate from each other. In Fig. 2, we plot the MSD
of the fluctuating ABP according to Eq. (19) for different
values of D̄R = 1

τ̄R
(through changing the value of D	

R) to fulfill
the following limiting cases: (i) τ̄R � τo, (ii) τ̄R = τo, and (iii)
τ̄R 
 τo. The first two cases are very similar and contain no
ballistic regime. However, the emergence of a ballistic regime
at times τo � t � τ̄R is evident in the latter case.

In what follows, we investigate the asymptotic behavior of
the MSD for the case when D̄R � 1/τo. To do so, we separate
the relevant timescales in the U eq

n (D	
R, t ). For D̄R � 1/τo,

using the Taylor expansion as t
τo

√
1 + 4D̄Rτo

n � t
τo

+ 2D̄Rt
n , for

the arguments of sinh and cosh functions in Eq. (18) and with
some algebra we can obtain the asymptotic behavior of the
MSD in different timescales for n = 1 as follows:

〈r2(t )〉 ∼
⎧⎨
⎩

4D̄T t t � τo � τ̄R

v̄2t2 τo � t � τ̄R

4(D̄T + v̄2

2D̄R
)t τo � τ̄R � t

. (20)

According to Eq. (20) the well-known behavior of the MSD
of the ordinary ABP [see Eq. (15)] is preserved when the
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FIG. 3. Comparison of PDFs of the conventional ABP model and
the modified one, corresponding to the MSDs depicted in Fig. 1 with
n = 3.

fluctuations are introduced in the equations of the motion.
Nevertheless, the fluctuations only affect the crossover from
the linear regime at short times to the ballistic regime in the
intermediate times. Our result here is complementary to the
case where the fluctuations arise internally which results in
more complex dynamics [37].

We now proceed by investigating the behavior of the PDF
of particle displacement. Considering the PDF of the subordi-
nator process as in Eq. (18), and using Eq. (13), we obtain the
asymptotic behavior of the PDF for t 
 τ̄R as

P̂(k, t ) ∼ Û eq
n (D′k2

, t ). (21)

Following the discussion in Sec. III 2, our asymptotic result
for the PDF of the particle displacement is identical to the
case of a passive Brownian particle under fluctuations [20],
while the diffusion coefficient is substituted with the coarse-
grained one being D′ = v	2

2D	
R

+ D	
T . Therefore, our analysis of

the PDF is relevant only at times t > τ	
R. For the case of n = 1,

τ 	
R diverges. Therefore, Eq. (21) cannot sufficiently describe

the PDF of the particle displacement. However, for n > 1, τ 	
R

has a finite value and Eq. (21) becomes relevant.
Nevertheless, if the characteristic time for the environmen-

tal fluctuations is longer than τ 	
R, then one can still capture the

effect of fluctuations on the behavior of the PDF. In Fig. 3,
we compare the form of the PDF for the conventional and the
fluctuating ABPs. The form of the PDF for the conventional
ABP remains Gaussian at all times. However, an exponential
behavior of the PDF of displacement for the fluctuating ABP
is observed at short times, despite the linear behavior of the
MSD. This is the signature of the diffusing diffusivity model.
For times longer than τo the emergence of the Gaussian form
of the PDF is evident. For a comprehensive asymptotic analy-
sis of the PDF of particle displacement in the passive case, we
refer the reader to Ref. [20].

b. Nonequilibrium initial conditions. We now consider a
situation where the process Y at t = 0 is not in its stationary
state. For an example, one could imagine that the measure-
ment starts just when the particle is inserted into the medium.
Then the PDF of the particle displacement differs at short
times from the corresponding PDF for the equilibrium ini-

0.01 1 100 10000
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0.01 1 100 10000
1
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4
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D*R = 10
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106

FIG. 4. Comparison of the MSD of the fluctuating ABP with
different D	

R values (with nonequilibrium initial conditions). The
gray symbols represent the simulation results and the lines represent
the predictions of Eq. (23). The inset shows the exponent of the MSD.

tial condition. Nevertheless, as time evolves, the process Y
reaches its stationary state and one expects an identical be-
havior of the PDFs. Here, without loss of the generality, we
assume the initial condition Y0 = 0. In this case, the nonequi-
librium PDF, U neq

n (u, t ), for the process u(t ) = ∫ t
0 ϒ (t ′)dt ′ in

the Laplace domain reads [52]

Û neq
n (s, t ) = exp

(
nt

2τo

)/[
1√

1 + 2sσ 2τ 2
o

× sinh

(
t

τo

√
1 + 2sσ 2τ 2

o

)

+ cosh

(
t

τo

√
1 + 2sσ 2τ 2

o

)]n/2

, (22)

whose first moment is 〈u〉 = nσ 2τo
2 [t − 1

2τo(1 − e
−2t
τo )]. This

leads to a complex form for the MSD which strongly differs
from that for an ordinary ABP:

〈r2(t )〉 = bigg(4D̄T + 2
v̄2

D̄R

)[
t − 1

2
τo

(
1 − e

−2t
τo

)]

− 2
v̄2

D̄2
R

[1 − Û (D	
R, t )]. (23)

Figure 4 shows the MSD according to Eq. (23) for different
values of D	

R.
In analogy to the case of equilibrium initial condition, we

perform the asymptotic analysis of the MSD, yielding

〈r2(t )〉 ∼

⎧⎪⎨
⎪⎩

4D̄T
t2

τo
t � τo � τ̄R

v̄2t2 τo � t � τ̄R

4
(
D̄T + v̄2

2D̄R

)
t τo � τ̄R � t

. (24)

Clearly, the dynamics of the MSD at times shorter than
τo is now ballistic. This is explained by the initial accelera-
tion due to the nonequilibrium initial condition. Apart from
that, at longer times, t 
 τo, the expected ballistic behavior
arising from the persistent motion of the ABP reappears, as
the timescales associated with the environmental fluctuations
and the rotational relaxation deviate from each other. At even
longer times t 
 τo 
 τ̄0 linear behavior of the MSD at times
emerges.
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FIG. 5. PDF of the particle displacement at times longer and
equal to the characteristic time for the fluctuations.

We further proceed by calculating the PDF of the particle
displacement according to Eq. (22), P̂(k, t ) ∼ Û neq

n (D′k2
, t ),

at times longer and equal to the characteristic time for the en-
vironmental fluctuations (τo = 1). As seen in Fig. 5, the PDF
at long times (t 
 τo) has a Gaussian form which exhibits
a strong non-Gaussianity at shorter times (t ∼ τo) which has
widely been discussed in Ref. [19]. We note that the agree-
ment between the theory and simulation results is expected, as
we have chosen the small values for the rotational relaxation
time.

Furthermore, the behavior of the PDF of particle ori-
entation, P(φ, t ), is independent of the activity. Under the
aforementioned fluctuations with an equilibrium initial con-
ditions, it was shown [53] that P(φ, t ) exhibits exponential
behavior at times shorter than the characteristic time of the
fluctuations and a Gaussian behavior at longer times is recov-
ered. In what follows, we will study the collective behavior
of an ensemble of fluctuating ABPs. Then we will show
how these short-time behaviors of PDFs of the rotational
and translational displacements can alter the dynamic of the
system.

We finally note that the limiting behaviors of the system
dynamics, namely the long-time diffusive behavior of the
MSD and Gaussian form of the PDF of the particle displace-
ment, can also be reproduced by choosing other types of
fluctuations. According to Eqs. (13) and (16), those limiting
behaviors can, in fact, be generated with any random process
u(t ) = ∫

ϒ (t )dt , i.e., for any fluctuation ϒ (t ), as long as (i)
its PDF, U (u, t ), possesses a first moment which is linear in
time, 〈u〉 ∝ t , and (ii) its PDF in Laplace domain, Û (s, t ), has
an exponential form at long times as Û (s, t ) ∝ exp[O(−st )].
However, short-time behavior of the PDF of the particle dis-
placement and the crossovers in the MSD can differ from one
to another random process. Therefore, the square Ornstein-
Uhlenbeck process is not a unique model in producing those
general dynamics. In the context of diffusing diffusivity of
passive particles, various random processes have already been
considered that can generate very similar results, see for ex-
ample Refs. [9,14–21].

IV. COLLECTIVE BEHAVIOR

It is well known that active particles show intriguing
collective phenomena, including self-ordered motion [54],
motility-induced phase separation [46,55], dynamic cluster-
ing in presence [56] and absence of chemotaxis [46,55], and
mesoscale turbulence [57–59], to name just a few. Here we
focus on the well-studied phenomenon of motility-induced
phase separation (MIPS). There are a number of earlier stud-
ies where fluctuations of some sort have been investigated
[60–62]. Among these studies, Ref. [61] is most similar to
ours, as in that study a nonconstant motility was consid-
ered. Nevertheless, in Ref. [61] the motility depends on the
interparticle forces such that there is an enhanced positive
feedback between an increase of the density and the reduction
of motility. Contrary to that, here we consider variations of
the motility as a direct consequence of fluctuations of the
environment in which the particles are embedded.

A. Simulation setup

As a special case of a many-particle system of ABP with
fluctuations, we first investigate the infinite dilution limit,
i.e., the case where the interactions between the particles
are negligible. In this limit, which we refer to as the (ef-
fective) single-particle case, the dynamics of the particles
with positions ri(t ), i = 1, . . . , N are governed by Eqs. (7).
With ϒ (t ) given by Eqs. (17), these equations are numeri-
cally integrated via a first-order forward Euler scheme with
time step of δt = 10−3 for N ∼ 106 noninteracting particles
on a two-dimensional plane. Particles are initially placed at
the center of the plane. Then the following equilibrium and
nonequilibrium initial conditions for Y are assigned to the
particles: For the equilibrium case, an Ornstein-Uhlenbeck
process is simulated for each particle for a time range of 10τ0.
The obtained Y values are then used as the initial conditions.
For the nonequilibrium initial conditions (see Sec. III 3), the
initial conditions Y = 0 is used for all particles. Starting from
these initial conditions, Eqs. (7) are integrated to obtain 〈r2(t )〉
and P(r, t ). The results are shown in Figs. 1–5 together with
corresponding analytical calculations.

To study the collective behavior of the system, an interpar-
ticle interaction is introduced in Eqs. (7). A common choice
to model ABPs interactions is the soft, purely repulsive and
isotropic Weeks-Chandler-Andersen [63] (WCA) potential.
This is given by

V (r) = 4ε

[(
σ

|r|
)6

−
(

σ

|r|
)12]

, (25)

for |r| � rc = 6
√

2 and zero elsewhere, where r is the distance
between two particles, σ is the diameter of particle, and ε is
the energy scale of the interaction. The equations of motion
for the ith particle then read as

ṙi(t ) = v	ϒi(t )êi(t ) +
√

2D	T ϒi(t )ξi,T (t ) + D
	T ϒi (t )

kBT Fi,

φ̇i(t ) =
√

2D	Rϒi(t )ξi,R(t ), (26)

where the vector êi(t ) := (cos φ, sin φ) is the heading direc-
tion of the ith particle and Fi is the force on the ith particle
due to its WCA interaction with all other particles.
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For the interacting case, we consider a system of N = 1600
particles in a square box with lengths Lx = Ly = 60σ , where
periodic boundary conditions are implemented along both x
and y directions. Following Refs. [46,47,61,64], we choose
σ = 1, and ε 
 kBT such that the repulsion comes close to
a hard-core interaction. Note that the force, Fi, enters the
dynamics of the particle with a prefactor D	T ϒi(t )/(kBT )
[see Eqs. (26)]. This prefactor does not play a role for a true
hard-core interaction, where the force is either zero (no over-
lap) or infinite (overlap). However, in our case, this prefactor
does play an important role: The particles become effectively
softer when D	T ϒi(t ) becomes small, which is a likely case
for the chosen random process of ϒi(t ).

To avoid this undesired effect, we set the repulsive potential
ε such that D	T ϒi(t )ε/(kBT ) = 100 for all the particles and
for all times. In this way, we avoid the undesired softening
of the particles. It is worth mentioning that with these choice
of parameters, our reduced interaction energy ε/(kBT ) is two
orders of magnitude larger than in previous studies [47,64,65].
The time integration of the resulting equations is performed
using a first-order forward Euler scheme with a much smaller
time step compared to the single-particle simulations, δt =
10−5, to avoid overlap situation of the disks [47]. Initially,
the particles are positioned on a regular square lattice and the
system is simulated for t = 50 in Lennard-Jones time units
to reach its steady state. All the measurements begin after
this transient regime. To obtain reasonable statistics, Ns = 5
independent samples are considered.

To complete this section, we introduce the quantities
needed for our main objective, i.e., the study of MIPS. Most
importantly we analyze the probability distribution of the lo-
cal density across the system. In the coexisting regime (i.e.,
in presence of MIPS), the probability distribution of the lo-
cal density shows a double-peak structure [58,59], where the
coexistence densities correspond to the position of the two
maxima.

To obtain the local density, we first calculate the area asso-
ciated with each particle, Ai, using Voronoi tessellation [66].
The local density associated with the ith particle is ρi = 1/Ai,
which is related to the particle-resolved local packing fraction
defined by φi := πσ 2ρi/4. The probability of having local
density ρ at any chosen point in the plane, r, is proportional
to the number of particles with ρi = ρ weighted by the area
associated with each of those particles (i.e., Ai). In this way
one can obtain a probability distribution of the local density
associated with position (and not particles). This method is
equivalent to the procedure suggested in Ref. [47] with an
infinitesimally small lattice spacing.

We also use ρi to obtain the density dependence of the
particle velocity considered in Sec. IV C. The velocities are
calculated by the displacement of particles, vi(t ) := [ri(t +
�t ) − ri(t − �t )]/(2�t ), where �t is chosen to be 0.01 time
units. This interval is sufficiently large to average out instanta-
neous thermal fluctuations (i.e., during 20 time steps) but still
small enough such that the particles do not move significantly
compared to their size.

B. Motility-induced phase separation

In this section, similarly to Refs. [47,65], we investigate
MIPS by obtaining the coexistence local densities in the

FIG. 6. Coexistence densities in the (v̄, �) plane for D	
R = 0.1,

D	
T = 0.001, v	 = 10, n = 1, σo = 1, at mean area fraction �̄ = 0.44

for the conventional ABP model (red circles) and the fluctuating
model (blue triangles). Included are two simulation snapshots within
the phase-separated regime. The color code in the snapshots reflects
the local density obtained by Voronoi tessellation; the darker color
indicates larger density.

(v̄,�) plane. Our main findings are presented in Fig. 6, where
we compare the coexistence densities � at different mean
motilities v̄ for the fluctuating ABP model with those for
the conventional one. For illustration, we have included two
simulation snapshots. The results indicate that introducing
fluctuations to the APBs system yields two major effects.
The first impact of fluctuations on the system is a general
increase of the density values on the dilute side, while the
coexistence densities on the high-density side remain unaf-
fected. Consequently, the coexistence region is narrower than
in the conventional model, suggesting that fluctuations tend to
hinder MIPS. Second, by increasing the mean motility in the
fluctuating ABP system, the density of the dilute regime tends
to increase as well. This counterintuitive effect, which is ab-
sent in the system constituted of conventional ABPs, indicates
that at high mean motilities, MIPS is excessively interrupted.
In what follows, we discuss those two observations in detail.

The general hindrance of MIPS due to fluctuations can un-
derstood as follows. The basic mechanism for MIPS to occur
[46] is that two particles “block” each other’s path over a time
interval which is large enough for the other particles to reach
this configuration. This induces a clustering process [46].
The aforementioned time interval during which two particles
are facing each other can be obtained from the short-time
behavior of the PDF of particle orientational displacements.
While for conventional ABPs, this distribution is governed
by a Gaussian PDF, for fluctuating ABP, it was shown in
Ref. [53] that the short-time distribution of the rotational dis-
placements is an exponential function. This means that, in the
same time interval, fluctuating ABPs explore larger angles. As
a consequence, collisions between fluctuating ABPs are less
effective in slowing down the particles, leading to a hindrance
of MIPS. As discussed in the next section, this is also in line
with our observation that for any local density, the ABPs have
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larger velocities in the fluctuating model as compared to the
conventional ones.

So far, we have discussed the possible microscopic effect
of the fluctuations on the cluster formation. Interestingly, the
snapshots in Fig. 6 further suggest that when the dense phase
is formed in presence of fluctuations, the structure of its
boundary is less sharp compared to the boundaries of the clus-
ters formed in the corresponding conventional ABP system.
This can be explained again by considering the short-time be-
havior of the translational and rotational displacements PDFs.
We focus on the behavior of the particles which are right at
the boundary or, alternatively, the particles inside the cluster
which are close to the boundary. These are the particles which
might find their way out of the cluster. Roughly speaking,
by rotating faster and performing larger displacements (as
reflected in the exponential distributions of the rotational and
translational displacements at short times), the particles in the
fluctuating model find their way out of the cluster faster com-
pared to the ABPs in the conventional model. This explains
why the boundary of the dense phase is less sharp.

The second observation, in which by increasing the mean
motility v̄ beyond a value of v̄ ∼ 5 the v̄-φ curve tends to
incline to the right, indicates a “reentrant” phenomenon, that
is, the big clusters already formed at smaller v̄ tend to disap-
pear when v̄ is further increased. This effect is in contrast to
the conventional model where further increase in the motility
results in formation of even bigger clusters until, eventually,
almost all the particles are found in the dense regime. To
elucidate the origin of the observed phenomenon, we note
that, according to Eq. (6), any increase in the mean motility in
our system can be done only at the cost of a higher rotational
diffusivity. Therefore, particles with higher motilities can also
rotate fast enough to escape from the cluster, according to
the mechanism explained in the previous paragraph. Those
escaped particles in the vicinity of the large clusters can
form small, disordered, and transient clusters, which leads
to a higher value of the density at dilute regime. In other
words, the reason for the reentrant MIPS at high v̄ is the fact
that, on average, fast rotation of ABPs interrupts the classical
MIPS. Similar results on the interruption of MIPS due to the
dynamical clustering of rotating or attractive ABPs have been
reported in Refs. [67,68].

C. Density-dependent velocities and effective free energy

Further insight into the effect of the fluctuations on MIPS
can be gained by analyzing the dependence of particle veloc-
ities on the local density. This dependency is shown in Fig. 7
for systems in then presence and absence of fluctuations.

For both systems, v generally decreases with ρ (apart from
the local minima at high densities) due to the increasing
packing effect. To better understand the shape of v(ρ), one
has to note that the curve shows the velocity averaged over
the whole space, including groups of particles with the same
local density. In the presence of phase separation, where the
system displays dilute and dense regimes, the groups of parti-
cles with the same ρi can have different local environments.
In particular, the local minima can be traced back to point
defects in a cluster with nearly vanishing velocity. Altogether,
both curves exhibit a more complex shape compared to the

FIG. 7. Velocity as a function of local particle density for D	
R =

0.1, D	
T = 0.001, v	 = 10, n = 1, and �̄ = 0.44.

nearly linear behavior observed in earlier studies [55,69–71].
However, as in Fig. 7, the linear behavior of v(ρ) is evident at
small densities, as the contribution of those particles in dense
areas is insignificant at these densities. Partially, this can be
explained by our choice of ε and DT ; see the Appendix.

An important aspect in the present context is that the
decrease of v with ρ is much less prominent in presence
of fluctuations, particularly in the low-density regime. This
confirms our picture that the trapping effect in the modified
ABP model is hindered.

In fact, using the function v(ρ) one can obtain, in the sprit
of earlier works on conventional ABPs [72], an effective free
energy of the system as a function the density f (ρ). This func-
tion is composed of two contributions, the bulk contribution,
f0, and a contribution due to the repulsive interaction of the
particles, frep, yielding

f (ρ) = f0(ρ) + frep(ρ), (27)

with

f0(ρ) = ρ(lnρ − 1) +
∫ ρ

0
ln[v(ρ)]dρ (28)

and

frep(ρ) = krep�(ρ − ρt )(ρ − ρt )
4. (29)

In Eq. (29) � is the Heaviside function, krep is a constant,
and ρt is a threshold density. Both of these parameters depend
on the systems considered. Here we set krep = 10 000 and
ρt = 0.65. The value of krep is chosen such that it is larger
than the values chosen in Ref. [69], as the potential used
here is closer to hard-core interaction. Nevertheless, it has
the same order of magnitude as the values in Ref. [69]. The
choice of ρt is guided by the largest local density values
occurring in the system (see Fig. 6). Using these parameters,
we have calculated the free energy as a function of density,
see Fig. 8. From these functions, we obtain the coexistence
densities via the common tangent construction. The resulting
coexistence densities show that the density associated with the
dense phase is not affected by the fluctuations. In contrast, the
density of the dilute phase is shifted to larger values due to
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FIG. 8. The effective free energy as a function of the density for a
modified ABP system with D	

R = 0.1, D	
T = 0.001, v	 = 10, n = 1,

and the corresponding system without fluctuations. The dashed lines
represent the common tangent line. One should note that for clarity
the free energies are shifted by adding linear terms in ρ. These shifts
are irrelevant for the common tangent construction.

the fluctuations. This is in line with the numerical findings in
Fig. 6.

V. CONCLUSIONS

In the present paper, we studied the impact of fluctuations
on the dynamics of single ABPs, as well as their collective
behavior. Fluctuations are introduced to model a dynami-
cally evolving environment in which the particle diffuses
and explores regions with different viscosities. This corre-
sponds essentially to the idea of diffusing diffusivity model.
More specifically, we assumed that the motility, rotational,
and translational diffusivities fluctuate simultaneously accord-
ing to a random process that mimics the heterogeneity of
the system. Using the subordination concept, we obtained
the exact form of the MSD and the asymptotic behavior of
the PDF of particle displacement for a general random pro-
cess. We continued by calculating explicit forms of the MSD
and the PDF of particle displacements, assuming a square
Ornstein-Uhlenbeck process. We considered two different ini-
tial conditions of the fluctuating process, namely equilibrium
and the nonequilibrium initial conditions. We showed that,
similarly to the case of passive particles, the PDF of particle
displacements exhibits an exponential behavior at short times
compared to the characteristic time of the fluctuation. At
longer times, the Gaussian form of the distribution is recov-
ered. The MSD of the fluctuating ABP preserves the ballistic
and linear regimes familiar from the ordinary ABP. However,
complicated crossover effects appear when the characteristic
time for the fluctuations is much shorter than the rotational
relaxation time. Our analytical results for a single particle are
fully confirmed by numerical calculations.

The second part of our study was devoted to the im-
pact of the fluctuations on the collective behavior of the
system, using particle-based simulations. We focused on the
motility-induced phase separation phenomenon, which is well
established for ordinary ABPs. To this end, we calculated the

FIG. 9. The dependence of the local velocity on the local density
for conventional ABP systems. All of the considered systems have
DR = 0.05, v0 = 10, and �̄ = 0.44 . These systems differ from each
other in their values of DT and the hardness of their interparticular
interactions.

phase diagram in the motility-density plane and compared it
with that for the ordinary ABP system. The structure of the
formed clusters contain more roughness on the boundaries
as well as disorders in the body of the formed clusters in
the modified ABP system. Using our theoretical results, we
argued that these observations in the collective system are
mainly due to the short-time behavior of the PDF of the
translational and rotational displacements. To support our dis-
cussion, we studied the density dependence of the particle
velocity. We demonstrated that a trapping effect of particles
due to collisions becomes less effective when fluctuations are
introduced to the system.

Our main result in studying the collective behavior of
the system, namely the hindrance of the MIPS, displays a
similarity to the effect of environmental disorders on the col-
lective dynamics of ordinary ABPs [41]. Such an emerging
similarity, thus, suggests that environmental disorders can,
to some extent, be modeled by including fluctuations in the
equations of motion of ABPs. In our model, different features
of the fluctuations can be manually controlled by adjusting the
characteristic parameters of the subordinator process, such as
noise intensity and correlation time and its dimension. There-
fore, a quantitative study on the impact of these parameters on
the collective behavior of ABPs, on the one hand, and that of
different densities or types of disorders, on the other hand, will
be interesting. Furthermore, it will be very interesting to study
the collective behavior of ABPs with rotational diffusing dif-
fusivity alone. In this case, the effect of dynamical clustering
that interrupts MIPS can be investigated via stability and
can be compared with the similar phenomenon in a system
constituted of chiral repulsive ABPs [68].
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APPENDIX: EFFECT OF POTENTIAL HARDNESS
AND THE TRANSLATIONAL DIFFUSION CONSTANT

ON THE FUNCTION v(ρ)

In this Appendix we explore in more detail the dependency
of the velocity on the local density, where Fig. 7 reveals the
commonly described behavior, that is, a decrease of v with ρ.
It is, however, not linear in ρ, thus deviating from the behavior
observed in Refs. [55,69–71]. The main reason behind this
discrepancy is the fact that, in calculating v(ρ), we average
over different regions in space where the MIPS has already
occurred. In other words, we consider both the dilute and
dense areas. In contrast, in other studies one considers only
the dilute regime.

To support our argument, we repeat our calculation by
simulating a situation where the MIPS is significantly hin-
dered. In order to manually prevent MIPS, one can reduce

the hardness of the particles by modifying the parameter ε

and/or increasing the translational diffusion coefficient, D	
T .

In both cases, the trapping effect becomes less pronounced
and thus the MIPS is hindered. We present the results for v(ρ)
by considering different values of ε and D	

T in Fig. 9.
The bottom curve in Fig. 9 corresponds to a very small

value of D	
T = 0.0005 together with a large ε = 100. These

values are associated with a strong occurrence of MIPS, yield-
ing an extreme nonlinearity, even a nonmonotonicity of v(ρ)
at high densities. By increasing the translational diffusion
coefficient to D	

T = 0.0194 and keeping ε = 100, a tendency
toward a linear behavior is observed in the middle curve. In
fact, more particles are found in the dilute regime, as they
can easily scape from the transiently formed clusters. Finally,
making particles softer by reducing ε yields a bulk system
of a uniform density where the v-ρ curve becomes almost
linear. In this case, averaging over different regions in space
does not lead to a discrepancy between our result with that
in Refs. [55,69–71], as no persisting dense regime is present.
We also observe that v(ρ) decays almost linearly at small
densities in all cases, as expected.
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