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During the past decade, there has been a hot debate about the physical mechanisms that determine when a
colloidal dispersion approaches the gel transition. However, there is still no consensus on a possible unique route
that leads to the conditions for the formation of a gel-like state. Based on gel states identified in experiments,
Valadez-Pérez et al. [Phys. Rev. E 88, 060302(R) (2013)] proposed rigidity percolation as the precursor of
colloidal gelation in adhesive hard-sphere dispersions with coordination number 〈nb〉 equal to 2.4. Although this
criterion was originally established to describe mechanical transitions in network-forming molecular materials
with highly directional interactions, it worked well to explain gel formation in colloidal suspensions with
isotropic short-range attractive forces. Recently, this idea has also been used to account for the dynamical
arrest experimentally observed in attractive spherocylinders. Then, by assuming that rigidity percolation also
drives gelation in spherical colloids interacting with short-ranged and highly directional potentials, we locate
the thermodynamic states where gelation seems to occur in dispersions made up of patchy colloids. To check
whether the criterion 〈nb〉 = 2.4 also holds in patchy colloidal systems, we apply the so-called bond-bending
analysis to determine the fraction of floppy modes at some percolating clusters. This analysis confirms that the
condition 〈nb〉 = 2.4 is a good approximation to determine those percolating clusters that are either mechanically
stable or rigid. Furthermore, our results point out that not all combinations of patches and coverages lead to a
gel-like state. Additionally, we systematically study the structure and the cluster size distribution along those
thermodynamic states identified as gels. We show that for high coverage values, the structure is very similar for
systems that have the same coverage regardless the number or the position of the patches on the particle surface.
Finally, by using dynamic Monte Carlo computer simulations, we calculate both the mean-square displacement
and the intermediate scattering function at and in the neighborhood of the gel-like states.
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I. INTRODUCTION

Colloidal dispersions are found in daily commercial prod-
ucts, like food, medicines, and construction materials, and
in nature, like biological systems, for example, blood, cells,
bacteria, among others, which exhibit both equilibrium and
nonequilibrium thermodynamic phases, see, e.g., Ref. [1] and
references therein. Thus, the understanding of the static prop-
erties and the transport phenomena of colloidal dispersions
is of great importance in both science and technology [2–4].
Furthermore, colloids serve as model many-body systems,
i.e., the interaction potential between colloids can be finely
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tuned in such a way that allows us to modify completely
the macroscopic properties of the whole dispersion [1]. In
particular, this manipulation at molecular level enables us to
direct or to guide the shape and size of the main building
blocks that define the organization or structure of the colloidal
dispersions at large length scales [5].

Colloidal gels and glasses are the most prominent examples
of dynamically arrested states, i.e., nonequilibrium states of
matter [6], that exhibit a heterogeneous structure [1,7]. De-
spite the intensive research on colloidal gels [7], there is still
an important discussion about the mechanisms that drive a
colloidal dispersion into a gel-like state [8–15]. Of course, it
is hard to think in a general or unique definition of gel that
includes all possible kinds of colloidal systems. For example,
from a macroscopic point of view, a gel exhibits a well-known
rheological behavior [16]. However, nowadays, there is no a
consistent and well-defined set of microscopic properties that
allows us to establish a single criterion or route to determine
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if a colloidal dispersion can be considered as a gel or not. In
fact, some important properties of colloidal gels, such as their
elastic behavior and multiscale dynamics, have been recently
unraveled [17,18] and, obviously, should be taken into account
to specify all the ingredients that define a gel-like state.

Depending on the strength of the bonding, gels are clas-
sified as chemical or physical gels [7]. Chemical gelation,
also called irreversible gelation, is well described in terms
of percolation theory; one example is the case of polymeric
chains, which grow by chemical reactions establishing a
branched structure that spreads throughout all the available
space [19]. However, in physical gels, the strength of the
attraction is of the order of the thermal energy, therefore,
bonds are continuously broken and formed in relatively short
periods of time. Different routes of physical gelation have
been proposed, they include the interruption of the spinodal
decomposition [10,13] and the formation of a percolationlike
state [11–13,15]. However, as mentioned above, there are spe-
cific conditions required to characterize a state as a physical
gel [8,11,13,20].

The connectivity percolation is seen as a necessary but
not a determining condition for gelation [21]. As mentioned
above, in that thermodynamic state particle bonds are contin-
uously formed and broken by the competition between the
attractive forces and the thermal agitation, thus not being
a sufficient condition to observe one of the fingerprints of
gelation: the solidlike response when the material is under
the action of mechanical perturbations. Therefore, colloidal
gelation has to be linked to the formation of a mechanically
stable network. This idea was proposed by two of us following
the pioneering contribution of He and Thorpe [22], where
a network-forming molecular material undergoes a covalent
glass transition at the so-called rigidity percolation thresh-
old and this occurs when the average number of bonds per
particle, or coordination number 〈nb〉, is equal to 2.4. More
specifically, Valadez-Pérez et al. proposed that gelation in
adhesive hard-sphere (AHS) dispersions is also the result of
rigidity percolation [11]. This proposal was corroborated with
gel states identified in experiments of colloids interacting with
isotropic and short-ranged attractive forces [20,23]. Basically,
Eberle et al. [20,23] determined the gel boundary in model
nanoparticle dispersions with thermoreversible adhesive in-
teractions with the assistance of small-amplitude dynamic
oscillatory shear rheology and fiber-optics quasielastic light
scattering experiments; the gel transition was defined using
the Winter-Chambon rheological criterion [16] extended to
colloidal systems, which states that the gel transition occurs
when the slopes of the storage, G′, and loss, G′′, moduli as
a function of the shear frequency become 1/2 and equal.
At this point, the dispersion experiences a transition from
a Newtonian-like fluid to a Hookean-like solid; this is an
important feature that defines the nature of a gel and its rela-
tionship with the formation of mechanically stable structures
that should be observed when the dispersion reaches the gela-
tion threshold.

Interestingly, in the case of weakly charged colloids im-
mersed in a polymeric bath, i.e., a model for competing
interaction systems, it has been shown that the gel state is also
preceded by continuous and directed percolation (special case
of connectivity percolation), which can also be linked with the

bond distribution and a resulting coordination number that, in
fact, is very near to 2.4 [12]. A recent study on the dynamical
arrest in adhesive hard rod dispersions [14], another model
system that has an interaction dependent on the shape of the
particle, presented experimental evidence that gelation is also
originated by rigidity percolation and basically occurs when
〈nb〉 = 2.4. As well as in the case of adhesive hard-sphere
and hard-rod dispersions, the gel-like states are found at inter-
mediate densities and above the gas-liquid coexistence curve,
which means that they can be considered as homogeneous gels
[20,23]. With this experimental corroboration, it is valid to
ask whether rigidity percolation can drive colloidal gelation
in systems with short-range and highly directional attractive
forces.

In this contribution, we are interested in identifying those
gel-like states in patchy colloidal dispersions by assuming
that the criterion 〈nb〉 = 2.4 also holds regardless the number
of patches and coverage. Although this is a pure heuristic
criterion, we here discuss in detail the rich physical sce-
nario that emerges under this assumption. Strictly speaking,
we have located states that can be potentially considered as
homogeneous gels of patchy particles. Once these states are
estimated, it will be much easier to study their dynamical and
mechanical properties. However, as we discuss further below,
the validity of this a priori heuristic criterion is corroborated
by implementing the so-called bond-bending analysis [24],
which allows us to determine whether the percolating clus-
ters generated by the condition 〈nb〉 = 2.4 are rigid or not,
and thus to establish rigidity percolation as the precursor of
colloidal gelation in attractive colloidal dispersions.

The use of patchy colloids in this work is twofold. First, the
degree of anisotropy in the interaction potential, as discussed
in the following section, can be easily adjusted [25]. Second,
dynamical arrest and, in particular, gelation in a patchy col-
loidal system has not been investigated in detail. Nevertheless,
in recent years, the effect of the surface heterogeneity on both
the percolation threshold and gel formation has been studied
by means of computer simulations [26,27]. Furthermore, due
to the directional dependence of the potential, it has been
predicted that this type of system exhibits an interesting ther-
modynamic behavior not observed in those systems composed
of particles with only isotropic interactions [28] and new
phases have emerged, for example, the so-called empty liquids
[29–32]. The lack of experimental results on the gel formation
in patchy colloids is mainly due to the synthesis of such kind
of particles. However, recent advances in this direction have
led the development of strategies to synthesize patchy colloids
[33–35]; the most common difficulties related to the synthesis
are the scalability, tunability and large-scale production [36].

The study of systems with nonisotropic interactions has
been particularly relevant in the field of associating fluids
where particles are limited to form only single bonds through
association sites, see, for example, Ref. [37]. This kind of
interaction eases the associating fluids description through
theoretical approaches, such as the Wertheim perturbation
theory [38]. This theory can also describe the behavior of
particles with multiple interaction sites. In this work, we con-
sider a more general interaction potential that allows multiple
bonds between particles. The motivation for this choice is
that particles with several number of patches, and different
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coverages, present a variety of states not observed in simpler
colloidal systems [29]. Besides, the experimental realization
of those systems has become possible in the last years [30,39],
which make them interesting colloidal model systems.

We have performed extensive Monte Carlo computer
simulations for patchy colloidal dispersions to identify ther-
modynamic states where the condition 〈nb〉 = 2.4 is achieved.
As we explain in detail further below, this is done by com-
puting the mean energy per particle, which is proportional to
the coordination number; the mathematical form of the inter-
action potential between patchy colloids allows us to properly
define when two particles form a physical bond. However, for
the identification of potential candidates of gel-like states, the
existence of a cluster that spans the whole available volume is
also necessary. Thus, algorithms capable of identify clusters
have been also implemented. We have explored and located
the boundary of gelation above the expected gas-liquid coex-
istence, and carried out an analysis of the structure and the
particle dynamics along the gel-like states. The latter have
been identified with rigidity percolation (RP), as suggested in
various experiments of attractive colloidal systems [11,14]. In
this contribution, rigidity percolation is also identified with the
bond-bending analysis using the pebble game algorithm [24],
which allows one to compute the fraction of floppy modes
in the resulting percolating cluster. We should point out that
this kind of analysis provides a mean-field approach to deal
with the location of either rigid or gel-like states, therefore,
we here use the concepts “mean-field rigidity” and “gel-like
state” indistinctly. The results show evidence that the states
near the 〈nb〉 = 2.4 curve are close the rigidity percolation
threshold, giving to our assumption a very strong support.

Our findings show that the rigidity percolation threshold
does not depend considerably on the number of patches and
that not all patch coverages produce gel-like states; this infor-
mation has important technological implications, for example,
it is desired that some drugs remain in a liquid state to be
injected into the bloodstream. We also find that systems of
particles with the same patch coverage but different number
of patches present a quite similar structure but their cluster
size distribution is, in general, different. In fact, it is quite
interesting that a simple criterion given by the coordination
number provides a rich physical scenario that can explain both
connectivity and rigidity percolation thresholds. Thus, our
main findings point toward the rigidity percolation might be
considered as the precursor mechanism of gelation in colloids
with short-range attractive (isotropic and anisotropic) interac-
tions. Furthermore, the transport properties, i.e., mean-square
displacement and intermediate scattering function, along the
RP curve do not show a glassy dynamics scenario, consistent
with the physical picture observed in homogeneous gels [18].

II. POTENTIAL MODEL, COMPUTER SIMULATION
DETAILS, STATIC AND DYNAMICAL PROPERTIES,

AND SINGLE-BOND ANALYSIS

A. Kern-Frenkel potential

We have studied a system of patchy particles interacting
through the so-called Kern-Frenkel potential [28]. The phase
diagram and the structure of this kind of particles have been

investigated using theoretical and simulation approaches for
different number of patches, coverages and attraction ranges;
see, e.g., Ref. [36] and references therein. In this model, the
interaction potential ui j (�r) between particles i and j is given
by the product of an isotropic potential and an angular modu-
lation as follows [28]:

ui j (ri j ; �̃i, �̃ j ) = ui j (ri j ) × f (�̃i, �̃ j ). (1)

The functional form of this potential allows us to tune the
directional interaction, f (�̃i, �̃ j ), independently of the radial
interaction, ui j (ri j ); ri j is the relative distance between parti-
cles i and j, and �̃ is the particle orientation. We consider as
the isotropic part the usual square well (SW) potential, uSW

i j ,
between spheres of diameter σ [40],

uSW
i j (r) =

⎧⎨⎩∞ for r < σ

−ε for σ � r � λσ

0 for r > λσ

, (2)

where λ and ε are the range and depth of the attraction,
respectively. The attraction depth is controlled by the reduced
temperature defined as T ∗ = kBT/ε, with kB and T being the
Boltzmann’s constant and the absolute temperature, respec-
tively. The angular modulation between any patches α and
β on the surface of particles i and j, respectively, has the
following mathematical form:

f (�̃i, �̃j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if

⎧⎪⎨⎪⎩
êα · r̂i j � cos δ for some patch
α in i
and êβ · r̂ ji � cos δ for some patch
β in j

0 otherwise,

(3)

where r̂i j is the unitary vector that connects these two parti-
cles, êα and êβ are the unitary vectors in the normal direction
to the patches α and β, respectively, and δ is called the aper-
ture angle. The latter is related to the coverage fraction χ by
Ref. [28],

χ = n sin2

(
δ

2

)
, (4)

where n is the number of patches on a colloid. The schematic
representation of the Kern-Frenkel potential is given in
Fig. 1(a). For this interaction potential, the reduced sec-
ond virial coefficient, i.e., normalized with the second virial
coefficient of hard-spheres; B(HS)

2 = 2π
3 σ 3, has an analytic

representation given by Ref. [28],

B∗
2 = 1 − χ2(λ3 − 1)(e1/T ∗ − 1). (5)

We focus on particles with short-range attractions, namely,
λ = 1.1 and 1.2, and different number of patches, n =1, 2, 3,
4, and 18. We have considered the following arrangements:
for n = 2, patches are on the poles; for n = 3, patches form
an equilateral triangle on a maximum circle around the par-
ticle; for n = 4, patches form a regular tetrahedron and for
n = 18, patches are symmetrically distributed over the particle
surface, see Fig. 1(b). Particles with 18 patches resemble the
isotropic interaction, while particles with only one patch de-
scribes the most directional interaction. We have particularly
chosen a few coverage sizes, ranging from 0.2 to 0.8. This
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FIG. 1. (a) Schematic representation of patchy particles. Patches
are modeled as spherical sections with radius λσ and aperture angle
δ in the direction of the normal unitary vector ê. Two particles attract
each other if the volumes of their patches overlap, otherwise the
interaction is the usual hard core. (b) Representation of the five
patchy geometries considered in this work. Here, patches cover 50%
of the particle surface.

is related with the fact that the number of bonds per particle
is relatively high, so small coverages never permit a large
number of bonds because the geometric constriction and the
short range nature of the potential, as we will discuss it below.
For n = 3, the case χ = 0.8 is discarded because the patches
on the same particle slightly overlap due to their distribution
on the particle surface. Therefore, for the sake of clarity, we
have excluded the cases where patches overlap.

B. Monte Carlo computer simulations

We have carried out standard Monte Carlo (MC) computer
simulations in the NV T ensemble with periodic boundary
conditions. We simulated systems of particles with diameter
σ inside a cubic simulation box. Systems consist of N =
1000–2744 spheres. and the size L of the simulation box was
set according to the reduced bulk density ρ∗, which is defined
as ρ∗ = Nσ 3/L3. The initial configuration for all simulations
was a simple cubic crystalline arrangement with the appropri-
ate constant spacing between particles.

A simulation run consists of Natt attempts of displacing
particles and Matt attempts to rotate them. During the simu-
lation, the probability of displacing or rotating a particle is the
same. The initial displacement is chosen within the interval
−0.1σ � �l � 0.1σ and the rotation angle takes the values
−0.1 rad � �θ � 0.1 rad. Both �l and �θ are adjusted sepa-
rately to have an acceptance ratio of 50%. A typical simulation
run consists of 4 × 106 MC steps to reach the equilibrium
and 6 × 106 MC steps to gather statistics and perform the
ensemble averages.

FIG. 2. Local density probability for a patchy colloidal system
with n = 3 and χ = 0.6 with a reduced bulk density ρ∗ = 0.4 and
an attraction range λ = 1.2 for different reduced temperatures. The
brown circles correspond to a state above the binodal.

C. Calculation of the phase diagram of patchy colloidal systems

In the literature, the calculation of the phase diagram
of patchy colloids has been carried out using a perturba-
tion theory [41], as well as computer simulations [42,43].
The most common simulation technique to study the phase
equilibrium of particles with short-ranged interactions is the
Gibbs-ensemble method [44] along with the well-known
parallel tempering technique [45]. We are aware of the com-
plications of using the Gibbs ensemble method for particles
with short-ranged attractions, we expect the complications to
increase for particles with nonisotropic interactions. Then, we
here use a different approach based on the use of an NV T
simulation and the calculation of the local density across the
simulation box [46].

Once the simulation reaches thermodynamic equilibrium,
random points are generated inside the simulation box, which
are at the center of spheres with an arbitrary radius, usually
five times smaller than the box length. The number of parti-
cles inside those spheres are counted and the local density is
calculated as ρloc = Ns/vs, where Ns is the number of parti-
cles inside the sphere with volume vs. During the simulation,
we compute a density histogram, which behaves as follows:
for a system above the coexistence region the distribution is
centered around the reduced bulk density, ρ∗; for a phase
separated system, the histogram exhibits two peaks, one at the
gas and the other at the liquid density [46]. Figure 2 displays
the histogram for colloidal particles with three patches; the
critical temperature for this system is 0.425.

D. Determination of the structural and dynamical properties
of patchy particles

To determine the structural properties of a patchy colloidal
system, we have computed some structural quantities. (1) The
average number of bonds per particle, also called the mean
coordination number, 〈nb〉. The bonding between particles is
defined without ambiguity; particles that lie within the attrac-
tive part of the Kern-Frenkel potential are bonded, then 〈nb〉
is proportional to the average energy per particle. (2) The
radial distribution function, g(r); despite this quantity does
not provide information about the orientation of the particles,

064606-4



LOCATION OF THE GEL-LIKE BOUNDARY IN PATCHY … PHYSICAL REVIEW E 104, 064606 (2021)

it is useful to measure the spatial distribution of particles
inside the volume and to estimate, in a rough way, how sim-
ilar, structurally speaking, are two colloidal systems. (3) The
cluster size distribution, Pr(s), is related to the probability of
finding a cluster with s-particles. This is obtained by listing
connected particles by direct bonds and after that comparing
recursively element by element of the list, erasing and adding
new elements until complete the list of particles connected via
indirect bonds. A similar technique can be done using a bond
matrix method [47]. From that distribution, one can compute
the average cluster size as

S =
∑

s s2n(s)∑
s sn(s)

, (6)

where s is the number of particles in a given cluster and n(s)
is the mean number of cluster of size s [47].

The percolation threshold could be defined in different but
equivalent ways, however, the results obtained via different
methods do not agree because they are highly dependent on
the system size. Instead, we calculate the percolation thresh-
old as it is done by Bug et al. [48]. At a given reduced
temperature, we search for the density at which the probability
of finding at least one percolating cluster in the system is Ep =
0.5. This method is a good approximation for determining the
percolation threshold, which should be located at the inflexion
point of the Ep(ρ) curve [49].

The transport properties of patchy particles are accounted
for in terms of the so-called mean-square displacement,
��r2(t ) = 〈(�r(t ) − �r(0))2〉, and the intermediate scattering
function, Fself(q, t ) = 〈exp [−i �q · ��r(t )]〉, where the brackets
denote an ensemble average and �q is the wave vector [50].
We have chosen q∗ ≡ qσ = 6.18; this value is close to the
characteristic length given by the main peak of the static struc-
ture factor. Both quantities are obtained by using the so-called
dynamic Monte Carlo technique, which will be explicitly dis-
cussed further below.

E. Single-bond condition analysis

As we mentioned in the Introduction, the single-bond con-
dition between patchy particles is usually imposed with the
aim of comparing the simulation results with theoretical pre-
dictions based on the Wertheim perturbation theory [28]. In
this contribution, we have relaxed that condition. However,
one would ask whether such a condition limits the number
of bonds that each particle can form. This is a crucial aspect
since our main conjecture is that patchy particles should reach
a coordination number equal to 2.4 at the gel state.

To check the number of bonds per patchy particle within
the single-bond condition, we consider the case n = 18 and
λ = 1.1 because a particle with a large amount of patches has
a relatively big coverage and satisfies the single-bond condi-
tion, simultaneously. The single-bond condition is reached if
the patch aperture δ obeys the following inequality [51],

sin δ � 1

2λ
. (7)

According to the previous expression, the maximum aper-
ture angle that corresponds to λ = 1.1 is δmax = 0.4719,
which leads to the maximum coverage χmax = 0.9836. For

FIG. 3. Coordination number as a function of the bulk reduced
density at different temperatures for a colloidal system with n = 18
patches. The red horizontal line represents the average number of
bonds per particle equal to 2.4.

this case, patchy particles become almost isotropic and, in
fact, the patches overlap withe their neighbors. A coverage
that still obeys the inequality, avoids the overlapping and
conserves the anisotropy is χ = 0.26053. The latter is con-
sidered within Monte Carlo simulations that guarantee the
single-bond condition for n = 18.

In Fig. 3, the coordination number as a function of the
reduced bulk density is displayed. From the figure, one can
observe that at high and intermediate temperatures, patchy
colloidal systems with low coverages cannot attain the con-
dition 〈nb〉 = 2.4 (horizontal line). Thus, the single-bond
condition does not guarantee the enough number of bonds
per particle required to reach the rigidity percolation state. At
the lowest temperature„ T ∗ = 0.4, and highest concentrations,
ρ∗ > 0.8, here considered the simulations did not reach ther-
modynamic equilibrium (those states were not included in the
corresponding isotherm). Nevertheless, at low temperatures
and high densities, one would expect a kind of attractive-
driven glass transition, as discussed recently in Ref. [52],
which is a topic out of the main goal of this contribution.
Hence, from this analysis, the single-bond condition case is
not longer considered in this work.

Table I shows the maximum coverage for each patchy
colloidal system (n = 18 omitted) that satisfies the single-
bond condition. As can be noticed, all of them have smaller
coverages than the ones studied in this contribution.

TABLE I. Maximum coverage that obeys the single-bond condi-
tion for the different values of the attractive range, λ, and number of
patches, n.

n χmax(λ = 1.1, δmax = 0.4719) χmax(λ = 1.2, δmax = 0.4298)

1 0.0546 0.0455
2 0.1093 0.0905
3 0.1639 0.1364
4 0.2186 0.1819
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FIG. 4. Phase diagram for isotropic square-wells with attraction
ranges λ = 1.1 (yellow) and λ = 1.2 (cyan) [46]. Also, the con-
nectivity percolation threshold and the curves where the following
conditions 〈nb〉 = 2.0 and 〈nb〉 = 2.4 were fulfilled are plotted.

III. PHASE DIAGRAM OF PATCHY COLLOIDS

In previous works, we have pointed out the importance of
the estimation of the binodal as a good indicator of those
thermodynamic states where the formation of a cluster fluid
seems to occur [53]; this includes colloidal systems where the
particles interact with either isotropic short-ranged attractions
or competing interactions. Also, two of us have found that
gelation is preceded by the rigidity percolation [35] at condi-
tions above the binodal line, i.e., homogeneous gelation takes
place. Then, finding the binodal of the system, or the one of a
reference system, is useful to locate the thermodynamic states
that might be associated with clustering and ultimately with
the homogeneous gel formation.

The binodal curve, as well as the connectivity percolation
threshold, for systems with isotropic short-ranged attractions,
λ = 1.1 and 1.2, are shown in Fig. 4. Those curves are con-
sidered as our reference to investigate both the structure and
the gel formation in patchy colloidal systems. In particular, we
focus our attention on thermodynamic states above the binodal
of the reference system because the coexistence curves of
patchy colloids are typically below the isotropic one [10].
We calculated the binodals for some patchy colloidal systems
(data not shown), but in most cases this was not the case
because this represents a high computational cost and besides
those calculations are also out of the scope of this work.

In Fig. 4, the thermodynamic states identified by the con-
dition 〈nb〉 = 2.0 are displayed along with the connectivity
percolation threshold. As it can be noticed, particularly for the
cases with an attraction range λ = 1.2, the curves associated
with those states are close each other. Then, one can consider
that both conditions give rise to the same thermodynamic
states. A similar result was also reported in Ref. [11] for
shorter attractive ranges. However, it is important to point out
that the thermodynamic states where the condition 〈nb〉 = 2.4
is satisfied are always located at densities above the percola-
tion threshold for both interaction ranges. We have also found
that such states correspond to Ep ≈ 1.0 (data not shown).

As mentioned in the previous section, we have used the
local density distribution method to roughly estimate the crit-
ical temperature for particles with n = 2, 3, and 4 patches:
all of them with χ = 0.6 and range λ = 1.2; for smaller

coverages the method does not work correctly. The result-
ing critical temperatures are T ∗

n=4 ≈ 0.43, T ∗
n=3 ≈ 0.425, and

T ∗
n=2 ≈ 0.39. We expect a lower temperature for the one-patch

system, however, we could not compute accurately the criti-
cal temperature for this case. We only provide an estimation
of the critical temperature due to the difficulty to precisely
calculate the coexistence curve in patchy colloidal systems
[54]. The problem resides in the enormous amount of time
necessary to reach thermal equilibrium and the fact that many
particles are needed to have enough resolution of the local
densities distribution to distinguish the maxima associated to
each phase. From now on, we only present results for those
thermodynamic states above the critical temperature.

IV. RIGIDITY PERCOLATION IN PATCHY
COLLOIDAL SYSTEMS

A gel state is usually characterized by the formation of
a percolating network [7]. However, connectivity percolation
represent thermodynamic states that do not support mechan-
ical stresses. In a previous work, two of us found that a
percolating colloidal system composed of adhesive particles
in which the average coordination number is 〈nb〉 =2.4 cor-
responds to gel states identified in experiments [23]. The
condition given by 〈nb〉 =2.4 is associated to a kind of per-
colation state known as rigidity percolation (RP) [11]. Then,
the onset of gelation might be linked to RP. Interestingly,
new experimental evidence reported in Ref. [14] shows that
states at RP also corresponds to gel states in systems made of
rodlike particles interacting with very short-range attractions.
It is worth mentioning that originally the RP accounts for
the glass transition in molecular systems whose interactions
(mainly covalent) are anisotropic in nature [35], however, it is
interesting that such a mechanism also precedes gelation in the
colloidal domain. In this work, we assume that RP also applies
for systems with highly directional interactions to estimate the
location of the boundary of gelation in patchy colloids.

To find the thermodynamic states where rigidity per-
colation occurs, we first find the connectivity percolation
threshold, ρp, at a given T ∗. After that, we measure the bond
distribution, P(nb), at densities above ρp. From this distribu-
tion, we compute the coordination number 〈nb〉. For SW-like
particles, it is known that the energy per particle is given by
u ≡ U/N = − 1

2 〈nb〉ε, which is a quantity that can be straight-
forwardly computed in any Monte Carlo computer simulation.
For a constant T ∗, we obtain 〈nb〉 for different densities around
ρp. Then, we fit 〈nb〉 using a quadratic function. The density
at which rigidity percolation occurs is thus reached when the
condition 〈nb〉 = 2.4 is satisfied. Hence, from now on, we
identify the condition 〈nb〉 = 2.4 with RP and it will also be
our criterion to define the “mean-field rigidity boundary.” Al-
though this is a pure heuristic criterion, we will show further
below that it is indeed an excellent approximation to identify
those thermodynamic states associated to RP.

In Fig. 5, the thermodynamic states linked to rigidity per-
colation for a system of patchy particles with one and four
patches and attraction range λ = 1.1 are plotted; different χ

values are displayed. The results indicate that for the same
interaction range and same coverage the mean-field rigidity
curve has, more or less, the same shape regardless the number
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FIG. 5. Mean-field rigidity or gel-like curves for patchy particles
with n = 1 and 4 patches and for different values of coverage. The
attraction range is λ = 1.1. Only thermodynamic states above the
binodals are plotted.

of patches. Furthermore, the effect of increasing the number
of patches is to shift slightly the curves to lower densities.

The above results are of utmost importance. One of the
consequences is that the gel-like state is suppressed at certain
coverage. This was observed for χ � 0.5, since the condition
〈nb〉 = 2.4 cannot been attained for both attractive ranges.
Hence, there is a critical coverage that indicates that for cov-
erages below it one cannot find gel-like states. This behavior
is associated to the fact that a minimum coverage is needed to
guarantee the formation, on average, of at least 2.4 bonds per
particle. This is an important aspect that could be applied for
the technological design of new materials that, according to
the potential application, one would like to avoid or promote
the onset of gelation by simply tuning the coverage value.

Mean-field rigidity or gel-like curves are displayed in
Fig. 6 in terms of the reduced bulk density and the second
virial coefficient for the cases χ = 0.6 and 0.7, for particles
with one to four patches and for attractions ranges λ = 1.1
and 1.2. We observe the same behavior for χ = 0.5 and 0.8
(data not shown). It can be noticed that the effect of decreasing
the coverage is to shift the boundary of gelation at higher
densities. This means that the gel density for the same tem-
perature is larger, as can be seen in the snapshots of Fig. 7.
In the latter, we have selected the case with n = 4 patches
because it is the patchy colloidal system with less degree
of anisotropy in the interaction and the mean-field rigidity
curve is reached at lower densities. Furthermore, this case
allows us to observe the percolation cluster. It is important to
stress out that for high coverage values, χ is the quantity that
basically dictates the general behavior of the gel boundary. In
the case of small coverages, the number of patches and their
arrangement should be more relevant.

The representation of the gel-like states given in Fig. 5
makes evident that for a given attraction range the boundary
of gelation is basically dependent on the coverage, however,
the representation illustrated in Fig. 6 highlights the fact that
for patchy particles the gelation curves seem to collapse onto
a kind of a universal curve that slightly depends on the at-
traction range. Then, the idea that the onset of gelation in
patchy colloids only depends on the second virial coefficient
provides an interesting extension of the so-called extended

FIG. 6. Mean-field rigidity or gel-like curves in the B∗
2 vs ρ∗ state

diagram for particles with attraction range (a) λ = 1.1 and (b) λ =
1.2, and for different number of patches and coverages. The blue
diamonds represent the 〈nb〉 = 2.4 curve for the isotropic system at
the corresponding attractive range.

law of corresponding states (ELCS) [55]; however, a deeper
and systematic study to prove this point is still needed. An
important aspect to remark is that Kern and Frenkel [44]
showed that the ELCS is not fulfilled for the binodals of
patchy colloids, but it seems to be the case for the gelation
curves.

FIG. 7. Snapshot of two different patchy colloidal systems with
λ = 1.2, n = 4 and T ∗ = 0.9. (a) χ = 0.5 and ρ∗ = 0.584. (b) χ =
0.7 and ρ∗ = 0.374. The red patch particles belong to the percolating
cluster and the blue ones are from different clusters. We only show
particles near the frontal face of the cube with the aim of appreciating
better the difference between both systems.
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FIG. 8. Radial distribution functions for patchy colloidal systems
at the gel-like states reported in Fig. 6 for different number of patches
(n = 1, 2, 3, and 4) and same coverage χ = 0.6. (a) λ = 1.1 and
T ∗ = 0.6. (b) λ = 1.2 and T ∗ = 0.8.

V. STRUCTURE AND CLUSTER SIZE DISTRIBUTION
AT THE GEL-LIKE STATES

We have determined the gel-like states in patchy colloids
using empirically the rigidity percolation criterion. However,
one can also learn on the rich structural scenario that emerges
along those particular states. To this end, we have calculated
the radial distribution function and the cluster size distribution
to highlight the structural differences and similarities on the
gel-like states for particles with different coverage fractions
and number of patches.

We then simulate patchy colloidal systems with N = 3375
particles. We have found that those systems have a radial
distribution function very similar regardless the number or the
position of the patches when compared at the same tempera-
ture, as it is explicitly shown in Fig. 8. The results are plotted
for both attraction ranges. The fact that the structure, at a
given attraction range, is identical for each isotherm regardless
the number of patches is consistent with the fact that along
those gel-like states the B∗

2 is the same, which would imply
isostructurality.

In Fig. 9, we have selected representative cases for both
attractive ranges with the main goal of highlighting the fact
that all states over the mean-field rigidity curves have at least
one cluster that spans the entire volume in all directions. Fur-
thermore, one can observe the same behavior or trend for the
cluster size distribution, regardless the range of the attraction,
however, there exist differences attributable to the latter; the
biggest cluster for the lowest number of patches is smaller

FIG. 9. Cluster size distribution along some of the gel-like states
displayed in Fig. 6 for χ = 0.6. (a) λ = 1.2, T ∗ = 0.8. (b) λ = 1.1,
T ∗ = 0.5.

than the other cases. To better understand this behavior, one
has to consider that a system that has a big cluster which
contains most of the particles will have other small aggregates
or even a lot of individual particles that do not belong to the
biggest aggregate, meaning that the left part of the distribution
is near to one and the last peak near the total number of
particles in the system. It is worth mentioning that the devi-
ations for those systems with a single patch are much bigger
that the others because it is considered the most anisotropic
case. Such deviations tell us an important aspect about the
angular dependence that is more or less obvious, namely, if
the number of patches is too high, the orientation dependence
will eventually decrease.

In the following section, we will analyze whether the
resulting percolating cluster is rigid, leading to mechanical
stability, and mainly to corroborate that the heuristic criterion
given by 〈nb〉 = 2.4, which is linked to mechanical transitions
in molecular materials [22], also holds for patchy colloidal
systems.

VI. BOND-BENDING NETWORK ANALYSIS
IN PATCHY COLLOIDS

So far, we have identified the gel-like states in patchy
colloidal systems with those thermodynamic states where the
condition 〈nb〉 = 2.4 is fulfilled. Such a condition is associ-
ated to the so-called rigidity percolation in network-forming
materials [22]. This is an instantaneous static property that
cannot provide any physical information on the particle dy-
namics. In rheological terms, it tells us whether G′ > G′′ for
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infinite frequency. However, as we pointed out above, recent
experimental colloidal gel states were identified with the onset
of a rigid and mechanically stable network that also satisfies
the previous condition [11]. Nonetheless, the proper calcula-
tion of the states where RP occurs should allow us to either
discard or corroborate our conjecture. Thus, in this section, we
introduce the so-called bond-bending analysis, implemented
for the case of patchy colloids, to account for the formation
of rigid networks and, mainly, to assess the accuracy of the
condition 〈nb〉 = 2.4 even for colloids interacting with highly
directional potentials.

We have implemented the Chubynsky and Thorpe analysis
where the well-known pebble game, based on the technique
proposed by Jacobs [56], is adapted to study a particular type
of three-dimensional networks called bond-bending networks
[24]. In a bond-bending network, the sites are exclusively
bonded to their first neighbors and angularly constrained with
their second neighbors [57]. These conditions are met by
the colloidal systems with n = 3 and n = 4 patches. The
n = 1 and n = 2 cases allow the formation of three parti-
cles bonded with each other, thus breaking the bond-bending
condition.

Several quantities depend only on the spatial distribution of
particles. One of them is the number of floppy modes, which
can be defined as the linearly independent infinitesimal move-
ments that do not deform a constriction, and because that,
do not cost energy. The number of floppy modes is directly
related with the rigidity of the cluster. Rigidity percolation
occurs when the number of floppy modes tends to zero [24].

The “pebble game” method is a combinatorial algorithm
based on the Lamman theorem [58], which establishes that a
graph with N vertices and E edges is minimally rigid if there
is no subgraph with more than 2N − 3 edges. This theorem is
exact only in 2D and not generalizable to 3D [24]. However,
this method is applicable to three dimensional bond-bending
networks, where the equivalent conjeture is that a graph in
3D is minimally rigid if there is no subgraph with more than
3N − 6 edges. The pebble game for bond-bending networks
has been used to identify rigidity and flexibility substructures
in proteins [59]. As far as we know, this might be the first time
that such a scheme is applied to study the rigidity of networks
formed by patchy particles.

The algorithm works as follows: Starting with an empty
network and assigning 3 pebbles to N vertices (particles),
equivalent to 3 degrees of freedom. One adds one bond to the
network and proceeds to test its independence or redundancy.
A bond is independent if it is possible to free an extra pebble
from the first neighbor from one side. Then, the bond is cov-
ered by one free pebble available from either particle attached
to the bond. As we add bonds to the graph, free pebbles are
used to cover them. A redundant bond occurs when it is not
possible to free a single pebble of the subnetwork and all
subnetworks are declared minimally rigid and the bond is
not covered. This process is repeated until there are no more
bonds to add to the network. At the end of the analysis, the
remaining free pebbles represent the floppy modes associated
to the network.

In Fig. 10, the analysis of the rigidity of the percolating
cluster for the colloidal system reported in Fig. 5 with n = 4
patches and λ = 1.1 is shown. For each curve, error bars were

FIG. 10. Fraction of floppy modes f as a function of the mean
coordination of the percolating cluster 〈npc

b 〉 for the colloidal systems
with n = 4 patches and λ = 1.1. (a) Empty blue circles belong to
the thermodynamic state ρ∗ = 0.712, T ∗ = 0.5, which lies at the
RP curve reported in Fig. 5. (b) Three curves at different densities
for the same temperature T ∗ = 0.5; lower density system (empty
red diamonds), higher density system (black empty diamonds) and
the system where RP occurs (empty blue circles). (c) Number of
floppy modes for those thermodynamic states along the RP curve
(see Fig. 5). Insets show a close up of the region where the frac-
tion of floppy modes breaks its linear behavior; this occurs around
〈npc

b 〉 = 2.4 and the solid line is just a guide for the eye. Error bars are
smaller than the symbol size. The results were obtained by averaging
over 83 different clusters.

calculated, but they are smaller than the symbol size. It is
important to note that 〈nb〉 is the mean coordination number,
whereas 〈npc

b 〉 is the mean coordination of the percolating
cluster only, which depends on the attractive range, number
of patches and the coverage. Almost every percolating cluster
contains over 80% of the particles of the whole system.

Figure 10(a) makes evident that our assumption about the
localization of the rigidity percolation curve is right, namely,
the rigidity percolation starts when the number of floppy
modes curve deviates from the linear behavior [24]; this
occurs approximately at 〈npc

b 〉 ∼ 2.4. This result is comple-
mented with the analysis reported in Fig. 10(b), which shows a
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comparison between states before and after the RP threshold;
the red empty diamond curve preserves linear behavior be-
cause is at the left of the RP threshold. For all thermodynamic
states along the RP curve (shown in Fig. 5), the bond-bending
analysis displayed in Fig. 10(c) exhibits a very similar be-
havior. All curves are near the loss of linearity, meaning that
all of them are in the RP threshold, pointing out the fact
that the criterion 〈nb〉 = 2.4 describes correctly the rigidity
percolation transition even for patchy colloidal systems.

VII. PARTICLE DYNAMICS IN THE REGION NEAR
THE RIGIDITY PERCOLATION THRESHOLD

A viscoelastic material, such as a gel, behaves as a solid
at times shorter than its relaxation time, although stresses are
able to relax at long time due to the dynamic nature of the
physical bonds between particles. Thus, one intriguing aspect
of colloidal gels is the nature of the particle dynamics and
its connection with the formation of rigid or mechanically
stable structures, mainly because bonds are being formed and
broken continuously. Furthermore, one can also think that due
to the nonequilibrium nature of such thermodynamic states,
the transport behavior should resemble the features observed
in the classical glassy dynamics [60]. Experimental evidence
[18] shows that the latter scenario is not the general physi-
cal picture of gel dynamics and recent molecular dynamics
simulation results [52] point out the fact that even at higher
densities and lower temperatures that the ones here consid-
ered, i.e., close to glassy states, the long-time dynamics of
patchy colloids behave normal, i.e., as in the fluid phase.
However, since we have already identified the gel-like states,
it would be advantageous to study the particle dynamics along
the rigidity percolation curve.

The colloid dynamics is calculated using the dynamic
Monte Carlo (DMC) technique for particles with orientational
degrees of freedom [61,62]. This is a good approximation to
represent the diffusive dynamics, i.e., within the Brownian
regime, in the case of a very small Monte Carlo displacement
δl . The connection between the real time and the Monte
Carlo displacement can be established using the following
expression [63]:

δtt = Atδl2

6D0
t

, (8)

where δtt is the Brownian time translational interval per MC
cycle, At is the average translational acceptance and D0

t is the
free-particle diffusion coefficient [50]. Also, there is a relation
between the angular displacement and the real time,

δtr = Arδθ
2

18D0
r

, (9)

with δtr being the real time rotational interval per MC cycle,
δθ is the angular displacement, Ar is the average rotational
acceptance and D0

r is the rotational free-particle diffusion
coefficient [50]. Both rotational and transnational diffusion
coefficients are related through the Stokes-Einstein relation
[61], leading to the expression D0

r σ
2 = 3D0

t [64]. The times
given by Eqs. (8) and (9) must be equal. This allows one
to express δtr in terms of D0

r and to obtain the following

FIG. 11. (a) Mean-square displacement and (b) intermediate
scattering function with q∗ = 6.18 for those thermodynamic states
along the mean-field rigidity curve for n = 4 patches, χ = 0.5 and
λ = 1.1 reported in Fig. 5. (c) Intermediate scattering functions in the
neighborhood of ρ∗ = 0.712, T ∗ = 0.5 (the thermodynamic density
at which RP occurs). All dynamic Monte Carlo simulations were
carried out using δl = 0.01, which in Brownian time corresponds
approximately to ∼10−5.

relationship:

δl

δθ
= σ

3

√
Ar

At
. (10)

By fixing δl and At , δθ and At are computed iteratively.
The mean-square displacement (MSD) displayed in

Fig. 11(a) corresponds to the gel-like states presented in
Fig. 5. As seen in the figure, the particle dynamics exhibits
the typical diffusive dynamics observed in fluid-like states at
all time scales, i.e., at long times, it does not show evidence
of a glassy-like dynamics and the corresponding long-time
self-diffusion coefficient decreases with the density (data not
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shown). Figure 11(b) displays the intermediate scattering
function along the RP curve. The features seen in this case
are also typical of a fluid-like state; the curve decays in all
cases and its relaxation time increases with the particle den-
sity. In Fig. 11(c), one can note that the particle dynamics
does not exhibit a particular transition or anomaly when the
RP threshold is crossed. This is clearly related with the fact
that we are dealing with homogeneous gels, which occur
at intermediate densities and above the critical temperature
[11]. Of course, one can appreciate that the particle motion
becomes slightly slow at intermediate times (mainly at higher
densities), but the long-time self-diffusion does not exhibit
any evidence of a kind of glassy dynamics, i.e., the MSD does
not reach the standard plateau linked to dynamical arrest [52].
As mentioned above, these results agree with recent results
of glass-former patchy particles [52], where the dynamics of
particles with 8 and 12 patches interacting with short-range
attractive forces was reported above the critical temperature;
authors found that the glassy dynamics is only observed at
extreme thermodynamic conditions, namely, high densities
and low temperatures.

VIII. CONCLUDING REMARKS AND PERSPECTIVES

By means of Monte Carlo computer simulations, we have
studied the onset of gelation in patchy particles interacting
with highly directional and short range attractive potentials
by systematically varying the coverage χ , the number of
patches, n, and the attractive range, λ. We mainly located
those thermodynamic states associated with gelation by using
the criterion provided by He and Thorpe for rigidity percola-
tion, i.e., the coordination number at the RP threshold takes
the value 〈nb〉 = 2.4. This assumption is strongly supported
by experimental evidence [14]. However, by computing the
number of floppy modes of the resulting percolating clusters,
we concluded the validity of the aforementioned criterion at
least in the cases with n = 3 and n = 4 patches. A different
analysis is required to study the rigidity of the percolating
clusters in the cases of n = 1 and n = 2 patches.

Our analysis also pointed out several important and inter-
esting results. For example, we found that not all coverages
lead to the formation of a gel; there is a minimum coverage
needed to form, on average, 2.4 bonds. Roughly speaking,
systems with a coverage bigger than χ ≈ 0.5 can reach a
gel-like state. This is an important technological aspect that
should be potentially used to facilitate or inhibit the formation
of gels in functionalized particles.

We also observed that for high coverages, the gel-like states
were mainly dominated by χ , regardless the way in which

patches are arranged on the particle surface. The opposite
was observed at lower coverages. However, we noticed that
all mean-field rigidity curves followed a kind of universal
behavior when they were particularly plotted in terms of the
reduced second virial coefficient. These gel-like states were
calculated above the binodals, which means that they form
homogeneous gels not associated with an interruption of the
spinodal decomposition. It is important to highlight that our
exploration can be used to predict the conditions at which
gelation occurs as function of the coverage.

From the structural analysis along the gel-like states, we
observed isostructurality and the appearance of clusters that
span the entire volume; however, the cluster size distribution
showed that the percolating cluster is bigger for the cases
with higher valence or number patches. As mentioned above,
the bond-bending analysis provided enough evidence that
such percolating clusters are mechanically stable and rigid
networks; one of the crucial signatures of colloidal gelation.
The calculation of both the mean-square displacement and
self-intermediate scattering function showed that the particle
dynamics at those thermodynamic states identified as poten-
tial candidates of gel states became slow, but not so slow
enough as in the glassy dynamics scenario. The transport
behavior of patchy particles that are able to form physical gels
at intermediate densities and above the phase coexistence has
not been studied in detail yet, which undoubtedly constitutes
a fascinating problem to be solved.

Last, but not least, we should stress out that we have
established rigidity percolation mechanism as the potential
precursor of gelation in patchy colloidal systems. This helped
us to identify the states where gelation might eventually occur.
Of course, our contribution naturally extends the previous
experimental observations performed in adhesive (spherical
and nonspherical) colloidal dispersions. With this information
at hand, we can systematically study and characterize the
mechanical and viscoelastic properties of gels made up of
particles interacting with orientational dependent potentials.
Work along this direction is currently in progress.
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