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Optical tweezer measurements of asymptotic nonlinearities in complex fluids
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This article presents micro-medium-amplitude oscillatory shear (μMAOS), a method to measure the
frequency-dependent micromechanical properties of soft materials in the asymptotically nonlinear regime using
optical tweezers. We have developed a theoretical framework to extract these nonlinear mechanical properties of
the material from experimental measurements and also proposed a physical interpretation of the third-order
nonlinearities measured in single-tone oscillatory tests. We validate the method using a well-characterized
surfactant solution of wormlike micelles, and subsequently employ this technique to demonstrate that the
cytoplasm of a living cell undergoes strain softening and shear thinning when locally subjected to weakly
nonlinear oscillatory deformations.
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I. INTRODUCTION

Active microrheology has emerged as a canonical method
for micromechanical characterization of soft materials that
is important in several applications, such as food science
[1], tissue engineering [2], regenerative medicine [3], wear-
able electronics [4], and pharmaceuticals [5]. The several
advantages of these micromechanical measurements over bulk
rheology include a wide- and high-frequency bandwidth for
probing viscoelasticity, local probing for heteregenous and
multiphase systems, and small required sample volumes [6,7].
Microrheological measurements are often made in the linear
viscoelastic regime or under steady flow conditions [8–10];
however, many soft materials exhibit a nonlinear viscoelastic
response during modest unsteady deformations, a behavior
not characterized by linear or steady flow tests.

Recently, several time-dependent nonlinear microrheolog-
ical tests have been developed in analog to bulk rheological
techniques, including optically driven microscopic step-stress
experiments [11], as well as the start-up, cessation, and peri-
odic reversal of the steady translation of an optically trapped
bead [12–14]. All of these methods probe either steady or
transient features of the viscoelastic response of the surround-
ing matrix. Other bulk nonlinear tests do not yet have a direct
microrheological analog, including spectral methods such as
large and medium amplitude oscillatory shear tests, which
characterize the nonlinear frequency-dependent behavior of
soft materials using sinusoidal deformations [15–20]. Thus,
the microscopic equivalents of these feature-rich, frequency-
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dependent nonlinear material properties have not been directly
accessed by any existing microrheological technique.

In this article, we develop the microscopic counterpart to
the medium amplitude oscillatory shear (MAOS) test using
optical tweezers, henceforth referred to as micro-MAOS, or
μMAOS (Fig. 1). This μMAOS framework represents the first
spectral microrheological technique for studying the nonlinear
response of viscoelastic materials. For optical tweezers active
microrheology in the linear regime, the procedure for isolat-
ing the dynamic mechanical properties of the material from
the characteristics of the optical trap is well known [21–25].
However, this procedure is no longer valid when probing
nonlinear mechanics. Through μMAOS, we obtain nonlinear
viscoelastic properties that are independent of the strength of
the optical trap by applying the Volterra series expansion to
the general relationship between the resistive force exerted by
the material on the probe bead and the velocity of the bead
[26]. Furthermore, we also provide a physical interpretation
of the third-order nonlinearities observed in single-tone oscil-
latory microrheological tests (Fig. 2).

The following section presents a mathematical derivation
of the μMAOS framework, including our proposed interpreta-
tion of the weak nonlinearities measured by single-frequency
μMAOS experiments. We follow this discussion with a brief
description of the experimental methods in Sec. III. The ex-
perimental protocol and mathematical framework of μMAOS
is then applied to four fluids: a Newtonian solution of glycerol
in water, a well-characterized viscoelastic solution composed
of wormlike micelles, the cytoplasm of a living mammalian
cell, and an entangled network of linear polymers. These four
studies validate the applicability of μMAOS to a variety of
fluids with different phenomenology, and demonstrate how
our proposed framework can be used to elucidate previously
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FIG. 1. Schematic representation of nonlinear micromechanical measurements via optical tweezers. (a) Bead within the soft material
trapped by optical tweezers (not to scale). (b) Depiction of the trapping and mechanical forces in the system. (c) Trapping force vs trap
displacement curves showing linear and nonlinear mechanical behavior at amplitudes of 0.175 and 0.4 μm, respectively, at 500 rad/s for a 5
wt% aqueous PEO solution.

unknown features of the nonlinear dynamical response of
complex fluids.

II. MATHEMATICS OF μMAOS

We study the asymptotically nonlinear—or medium
amplitude—regime because it is difficult to define mate-
rial functions for arbitrarily large amplitude oscillatory tests,
where an unbounded number of higher harmonics emerge.
Moreover, very large amplitudes are inaccessible for many
materials, as a number of experimental and physical artifacts
are observed in this regime [19]. Alternatively, medium am-
plitude tests provide distinct information from linear tests, but
avoid the data abstraction and experimental artifacts of large
amplitude tests.

A schematic of our experimental system is shown in Fig. 1.
It consists of a spherical submicron-sized bead immersed in a
soft material. The bead is trapped by optical tweezers, which
are manipulated by a set of acousto-optic deflectors according
to some time-varying, user-supplied protocol. When the trap
created by the optical tweezers is displaced from the center
of the bead, it exerts a springlike restoring force that pulls the
bead towards the focus of the trap. This force is balanced by
the resistance supplied by the surrounding medium, and the
inertia of the bead. In the low-Reynolds number limit, inertia
is negligible, and the resistance exactly balances the trapping
force. In the Hookean limit of the trapping force (i.e., for small
displacements of the trap from the bead) we express this force

FIG. 2. Physical interpretation of the sign of the third-order, first
harmonic nonlinear response for the limiting cases of purely viscous
(left) and purely elastic materials (right).

balance as

0 = −ζ [v(t )] − k(x(t ) − xT (t )). (1)

Here, x(t ) and v(t ) represent the position and velocity of the
bead, and xT (t ) represents the focus of the trap. The mechan-
ical force exerted on the bead by the surrounding medium is
ζ [v(t )], which is a nonlinear, material-specific functional of
v(t ). In bulk rheometry, it is common to measure analogous
properties using oscillatory protocols, which we extend to mi-
crorheology here. For oscillatory experiments, it is convenient
to employ the Fourier transform of the force balance:

0 = −ζ ∗[iωx̂(ω)] − k(x̂(ω) − x̂T (ω)). (2)

We now represent the particle and trap positions in terms of
their Fourier transforms, denoted by carets: x̂(ω) and x̂T (ω).
This transformation allows us to rewrite the transformed par-
ticle velocity in terms of the transformed particle position:
v̂(ω) = iωx̂(ω).

For isotropic materials, the functional ζ ∗[iωx̂(ω)] exhibits
odd symmetry with respect to v̂(ω) due to frame invariance
of the force balance, with the following frequency-domain
Volterra series expansion:

ζ ∗[iωx̂(ω)] =
∑

n∈odds

1

(2π )n−1

∫
· · ·

∫ ∞

−∞
ζ ∗

n (ω1, · · · , ωn)

× δ

(
ω −

n∑
m=1

ωm

)
n∏

m=1

iωmx̂(ωm)dωm. (3)

The transfer functions ζ ∗
n (ω1, ·, ωn) are the material-specific

properties characterized by oscillatory microrheological ex-
periments, and we define the medium amplitude regime as
that wherein only the first two terms of this Volterra series are
resolvable above the experimental noise [15,16]. For a spher-
ical bead with radius R, the linear transfer function is directly
proportional to the complex viscosity, η∗(ω) = G∗(ω)/(iω) =
ζ ∗

1 (ω)/(6πR). The product of the third-order transfer function
ζ ∗

3 (ω1, ω2, ω3) and the bead radius R represents a newly de-
fined, nonlinear material property that has not been measured
directly in any previous microrheological study. Measuring
this transfer function is the primary objective of μMAOS.

Equations (2) and (3) are not yet sufficient to compute
ζ ∗

1 (ω) and ζ ∗
3 (ω1, ω2, ω3) from μMAOS data, because the
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particle position x̂(ω) appears inside the Volterra series but
is not a directly controlled quantity. In optical tweezers active
microrheology, measurements proceed by controlling x̂T (ω)
and measuring �(ω) = x̂T (ω) − x̂(ω) with a quadrant photo-
diode [21]. Therefore, we define an alternate Volterra series
directly relating the experimental input and output:

�(ω) =
∑

n∈odds

1

(2π )n−1

∫
·
∫ ∞

−∞
R∗

n(ω1, ·, ωn)

× δ(ω −
n∑

m=1

ωm)
n∏

m=1

x̂T (ωm)dωm. (4)

If we define a characteristic amplitude A for variations in
the trap position, then the transfer functions R∗

n(ω1, ·, ωn) can
be inferred directly from data at different A using polynomial
regression. This inference is performed by the MITMAPS soft-
ware package adapted from [17]. By comparing Eq. (4) to
Eqs. (2) and (3), we obtain equations relating the measured
transfer functions R∗

1(ω) and R∗
3(ω1, ω2, ω3) to the linear and

medium amplitude material transfer functions [27]:

ζ ∗
1 (ω) = kR∗

1(ω)

iω[1 − R∗
1(ω)]

, (5)

ζ ∗
3 (ω1, ω2, ω3) = kR∗

3(ω1, ω2, ω3)

[1 − R∗
1(�)]

∏3
j=1 iω j[1 − R∗

1(ω j )]
, (6)

with � = ω1 + ω2 + ω3. These expressions allow us to di-
rectly relate active microrheological data to weakly nonlinear
material properties.

The mathematical development herein has so far been in-
dependent of some specific driving function xT (t ) [16]. For
the sake of simplicity, however, we now restrict our attention
to single-tone drives of the form xT (t ) = A sin(ω0t ), where A
and ω0 are the amplitude and angular frequency of the trap
oscillations, respectively. Substituting the single-tone signal
into Eqs. (4)–(6), we find that a weakly nonlinear single-tone
drive elicits both a linear and third-order material response at
the driving frequency (ω0), and a purely third-order response
at the third harmonic (3ω0). The coefficient weighting the
linear response at ω0 is the linear transfer function ζ ∗

1 (ω0).
The coefficients weighting the third-order response elements
are certain values of the third-order transfer function:

ζ ∗
3 (ω0,−ω0, ω0) ≡ ζ ∗

31(ω0) = ζ ′
31(ω0) − iζ ′′

31(ω0), (7a)

ζ ∗
3 (ω0, ω0, ω0) ≡ ζ ∗

33(ω0) = ζ ′
33(ω0) − iζ ′′

33(ω0). (7b)

Here, ζ ∗
31(ω) and ζ ∗

33(ω) describe the first and third har-
monic nonlinearity, respectively. It is common to interpret the
real and imaginary components of the linear complex vis-
cosity, η∗(ω) = η′(ω) − iη′′(ω), as representing viscous and
elastic components of the linear response, respectively. We
may extend this interpretation to the nonlinear properties,
where ζ ′

31(ω) (ζ ′
33(ω)) represents a viscous nonlinearity and

ζ ′′
31(ω) (ζ ′′

33(ω)) represents an elastic nonlinearity on the first
(third) harmonic.

Unlike η′(ω) and η′′(ω), the real and imaginary com-
ponents of the nonlinear properties can be either positive
or negative, and we may interpret their signs in terms of
the mechanical properties of our material. To develop this
interpretation, it is instructive to consider some limiting ex-

amples. For a purely viscous medium in the linear regime,
the mechanical force ζ [v(t )] responds proportionally to v(t ).
For nonlinear deformations, however, this curve may bend
downwards or upwards, corresponding to shear thinning or
shear thickening, respectively. Asymptotically, this curvature
is dictated by the sign of the real component of the first har-
monic nonlinearity ζ ′

31(ω), with ζ ′
31(ω) < 0 corresponding to

shear thinning and ζ ′
31 > 0 corresponding to shear thickening.

Similarly, for a purely elastic medium in the linear regime, the
mechanical force ζ [x(t )] responds proportionally to x(t ). In
the nonlinear regime, negative curvature (ζ ′′

31 < 0) in this rela-
tionship corresponds to strain softening and positive curvature
(ζ ′′

31 > 0) to strain stiffening. Figure 2 depicts these limiting
cases. For a viscoelastic material, the mechanical force is no
longer dictated instantaneously by either v(t ) or x(t ), and plots
of ζ [v(t )] against either v(t ) or x(t ) for oscillatory probes will
look like deformed ellipses [e.g., the red curve in Fig. 1(c)].
However, ζ ′

31(ω) and ζ ′′
31(ω) still provide information about

curvature in the deformed ellipses, and their signs can be
associated with average shear thinning/thickening and strain
softening/stiffening over one period of oscillation [15].

III. EXPERIMENTAL METHODS

A. Materials

1. Polystyrene probe particles

Throughout all experiments in this article, we use fluores-
cent carboxylate-modified polystyrene latex beads with radius
R = 0.44 μm (from Molecular Probes) as probe particles,
which are small enough to maneuver inside of the cytoplasm
but substantially larger than the characteristic mesh size for
each material studied in this work [28–31]. These particles are
rendered inert by grafting short amine-terminated methoxy-
poly(ethylene glycol) to their surface, as described previously
[32]. These grafts limit surface interactions with the viscoelas-
tic matrix, particularly cytoplasmic proteins [33,34], which is
critical for ensuring that the experiments measure the contin-
uum viscoelastic properties of the surrounding matrix. These
inert particles are stored at 4◦C and used within two weeks.

2. Wormlike micellar solution

The surfactant solution of wormlike micelles used in this
study was composed of cetylpyridinium chloride (CPyCl),
sodium salicylate (NaSal), and sodium chloride (NaCl) in
de-ionized water at concentrations of 100 mM, 60 mM, and 33
mM, respectively (CPyCl and NaSal supplied by Alfa Aesar;
reagent grade NaCl purchased from Sigma Aldrich).

3. Cell cultures and microinjection

Mouse embryonic fibroblasts (mEFs) [35] were cultured in
Dulbecco’s minimal essential medium (Corning, NY) supple-
mented with 10% fetal calf serum (Gibco, Life Technologies,
Gaithersburg, MD) and 1% penicillin-streptomycin (Gibco,
Life Technologies, Gaithersburg, MD) at 37◦C and 5% CO2
in humid conditions. Cells were transferred onto 35-mm
micropatterned dishes and allowed to grow overnight. Mi-
croinjection of probe particles was performed using a glass
needle and a FemtoJet microinjector (Eppendorf) mounted on
a bright-field microscope. About 50 cells were injected per
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FIG. 3. Validation of μMAOS framework for a Newtonian fluid (a 50 wt% aqueous glycerol solution). (a) The real and imaginary
components η′(ω) and η′′(ω) of the linear complex viscosity obtained from μMAOS measurements. (b) and (c) The third-order material
properties ζ ′

31(ω), ζ ′′
31(ω), ζ ′

33(ω), and ζ ′′
33(ω) obtained from μMAOS measurements, depicted with filled and unfilled symbols to indicate

where data are positive and negative, respectively. Data represent the average over 20 trials, with error bars representing one standard error
uncertainty.

dish; each cell was injected with up to 50 tracer particles to
eliminate the interference to cell function. Cells were then al-
lowed to recover in culture medium for 6 h before the μMAOS
measurements were performed.

B. μMAOS experimental protocol

The beam from a single-mode continuous wave (CW) Yt-
terbium fiber laser (10 W, 1064 nm; IPG Photonics, MA)
is directed through a series of Keplerian beam expanders to
overfill the back aperture of a 1.45 numerical aperture micro-
scope objective (CFI Plan Apo Lambda DM 100X Oil; Nikon
Corp., Japan), which focuses the beam to optically trap and
manipulate the probe beads immersed in viscoelastic media.
Two-axis acousto-optic deflectors (IntraAction Corp., IL) are
used to maneuver the beam in the plane of the microscope
glass slide and subsequently manipulate the trapped bead. To
measure the position of the probe, the bead is centered on a
high-resolution position detection quadrant detector (Thorlabs
Inc., NJ) with brightfield illumination from a 100-W lamp.

The linear region of the detector was previously calibrated
by trapping a bead identical to those used in this article and
moving it across the detector using the acousto-optic deflec-
tors in known step sizes. The trap stiffness was calibrated
using the mean-squared Brownian motion of a trapped bead in
solution of glycerol and water at various laser power densities
using the principle of energy equipartition [36]. Due to the
slightly different indices of refraction in the cellular cytoplasm
and water, we use a water/glycerol solution with a matched
index of refraction to calibrate the trap for the measurements
in cells.

Finally, to perform the μMAOS experiments described
herein, the optical trap is subjected to sinusoidal oscillations at
six logarithmically spaced frequencies between 6.28 and 1526
rad/s, with measurements at 12 amplitudes spaced linearly
between 0.175 and 0.45 μµm, and the laser position and bead
displacement are recorded simultaneously. These amplitudes
were selected to ensure that the distance between the particle
and trap, �, is sufficiently described by a cubic polynomial
in the trap position. The largest of these amplitudes is nearly
equal to a single particle radius, therefore the focus of the trap
never exceeds a single particle diameter of separation from

the probe, ensuring that bead dropout will not hamper the
microrheological tests. The absence of dropout can be verified
visually in Fig. 1(c), which shows that the force-displacement
curve for even a high-amplitude experiment in polyethylene
oxide varies gradually, without any sudden changes charac-
teristic of dropout.

IV. RESULTS

A. Glycerol-Water solution

To validate the applicability of the μMAOS protocol in
the linear limit, and to verify the linearity of the instrumental
tools, we first study the mechanical response of a 50 wt%
solution of glycerol in water. The measurements in glycerol
faithfully reproduce the expected Newtonian viscosity of the
solution [Fig. 3(a)] indicating proper calibration of the equip-
ment. Moreover, the nonlinear response detected in glycerol
is nearly 10 orders of magnitude less than those measured
in viscoelastic solutions [Figs. 3(b) and 3(c)], suggesting that
nonlinearities due to the detection and trapping mechanisms,
including highly nonlinear effects such as the bead dropping
out of the optical trap, have negligible impact on our measure-
ments.

B. Wormlike micellar solution

We next apply μMAOS to a well-characterized worm-
like micellar solution—100:60:33 mM CPyCl:NaSal:NaCl
in deionized water—to validate the scheme in the medium
amplitude regime. First, we compare the complex moduli
obtained from the μMAOS technique to predictions of the
corotational Maxwell (CRM) model:

λ
Dτ p

Dt
+ τ p = ηp(∇u + (∇u)T ), (8)

with a relaxation time spectrum described by a single discrete
relaxation mode plus a continuous spectrum of fast-relaxing
Rouse dynamics:

P(λ) = (1 − B)e−λ/λc

√
πλcλ

+ Bδ(λ − λp). (9)
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FIG. 4. Validation of the μMAOS framework using a CPyCl wormlike micellar solution. (a) The elastic and viscous moduli, G′(ω) and
G′′(ω), obtained from μMAOS measurements. (b) and (c) The third-order material properties, ζ ′

31(ω), ζ ′′
31(ω), ζ ′

33(ω), and ζ ′′
33(ω) obtained from

μMAOS measurements, depicted with filled and unfilled symbols to indicate where data are positive and negative, respectively. Data represent
the average over 20 trials, with error bars representing one standard error uncertainty. Predictions of the corotational Maxwell model with
high-frequency Rouse dynamics are depicted with solid and dashed lines to indicate positive and negative values, respectively.

This model has been previously validated to approximate the
linear and weakly nonlinear viscoelasticity of this micellar
solution using bulk rheological measurements [37], and we
similarly observe close agreement between the model and the
measured linear response [Fig. 4(a)].

To validate the nonlinear measurements, we compute pre-
dictions for ζ ∗

31(ω) and ζ ∗
33(ω) from the CRM model using this

relaxation time spectrum [27]. Details regarding these analyt-
ical predictions are presented more extensively in [27]. The
result shows qualitative agreement between the model predic-
tions and data [Figs. 4(b) and 4(c)]. Without any adjustable
parameters to fit the nonlinear response, the model predicts the
correct sign for all four nonlinear properties, as well as the ap-
proximate magnitude and frequency dependence of the data.
This level of agreement is supported by bulk rheological mea-
surements, for which the CRM model also underestimates the
magnitude of the weakly nonlinear response [17], likely due
to its inability to capture more detailed physical effects of the
micellar solution, such as the elongation of micellar segments.
Still, that such agreement is observed between our data and
a constitutive model known to approximate the mechanical
response of this micellar solution in bulk rheometry verifies
that μMAOS indeed measures intrinsic nonlinear properties
of viscoelastic materials.

C. Mammalian cellular cytoplasm

We finally demonstrate the capability of μMAOS to dis-
cern previously unknown physical traits of soft materials by
characterizing the nonlinear, time-dependent response of the
cytoplasm of a living cell. The mechanical properties of the
cytoplasm play important roles in regulating many key cel-
lular physiological functions, such as mechanotransduction
[38], cancer metastasis [39], cell signaling [40], and stem cell
fate [41,42]. A significant portion of cell mechanics studies
are limited to the linear regime [21,22,43,44]. Some studies
have examined nonlinear behavior, showing that cells stiffen
when subjected to an external stress [36,45,46]. However,
these studies externally probe the cell, measuring the rigid
actin cortex instead of the cytoplasm [47]. In fact, we know
from previous studies that the linear cytoplasmic mechanics
is distinct from the cortex, with the latter being two orders

of magnitude stiffer [21,42,43,48]. Thus, our goal here is to
directly probe the cytoplasm of a living cell to characterize
its previously unknown nonlinear behavior, as it could lead to
significant insights into how critical physiological processes
are mechanically regulated.

We introduce probe beads inside the cytoplasm of mouse
embryonic fibroblasts (mEFs) by endocytosis [22]. To avoid
effects caused by the cellular cortex, we apply the μMAOS
technique only to beads that are at least 1.5 μm from the
cortex. From these measurements, we find that the storage
and loss moduli in the linear regime [Fig. 5(a)] show weak
power-law dependence on frequency with a magnitude rang-
ing from 1 to 30 Pa. These measurements are consistent with
previous observations for mammalian cytoplasm [21,33,48],
suggesting that both surface interactions between the bead
and cytoplasmic proteins and effects from the stiffer cellular
cortex are indeed minimal. Both components of the first- and
third-harmonic nonlinear properties [Figs. 5(b) and 5(c)] ex-
hibit a ∼ω−3 power-law decay over the measured frequency
range, similar to the behavior of the nonlinear properties of
the wormlike micellar solution. Thus, the observed behavior
is consistent with our expectations for simple viscoelastic
materials with fading memory.

The first-harmonic nonlinear properties ζ ′
31(ω) and ζ ′′

31(ω)
are both negative throughout the measurement window, im-
plying that the cytoplasm exhibits a dynamic strain softening
and shear thinning behavior distinct from that of the stress-
stiffening cortex. The strain softening of the cytoplasm is
possibly due to its relatively sparse filamentous actin com-
pared to the cortex [49] and unbinding of the network due to
mechanical disruption, as observed in previous studies [50].
Furthermore, consistent intracellular softening and fluidifi-
cation behavior of the cytoplasm was observed during cell
division [51]. We believe that this behavior aids in intra-
cellular processes within the cytoplasm by providing a soft
environment that is distinct from the cortex, which stiffens
under external physical stress as a mechanism for protecting
the soft cytoplasm.

The observation of dynamic softening of the cytoplasm
is supported by recent theoretical studies, which predict
shear thinning of the cytoplasm in steady flow [52], and
by experimental observations of strain softening of the
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FIG. 5. μMAOS studies of the cytoplasm of a living cell and of an entangled solution of polymers. (a) A schematic of an optically trapped
bead within the cellular cytoplasm is shown as an inset. The linear elastic and viscous moduli G′(ω) and G′′(ω) obtained from μMAOS
measurements in the cytoplasm of an mEF cell and in a 5 wt% solution of PEO in water. (b) and (c) The third-order material properties ζ ′

31(ω),
ζ ′′

31(ω), ζ ′
33(ω), and ζ ′′

33(ω) obtained from μMAOS measurements. Data from the mEF cytoplasm are represented by blue and red symbols,
while data from PEO are represented with light blue and purple symbols, with filled and unfilled symbols used to denote positive and negative
values, respectively. Data represent the average over 20 trials, with error bars representing one standard error uncertainty.

cytoplasm [14] after cyclic steady loading. To further support
the observation made from the μMAOS measurements that
the mammalian cytoplasm exhibits a dynamic strain softening
and shear thinning behavior, and to contrast the mechanics
of the mammalian cytoplasm with that of the cellular cortex,
we conduct unidirectional dragging experiments both in the
cytoplasm and near the cortex. In these experiments, an opti-
cally trapped bead is displaced at a steady rate, and the force
exerted by the surrounding medium on the bead is measured
by observing the displacement between the bead and the op-
tical trap. Otherwise, the experimental setup and protocol is
the same as for μMAOS experiments, described in Sec. III B.
Figure 6 shows the result of these unidirectional dragging
experiments.

Although these experiments capture the nonlinear mechan-
ics of the cytoplasm and cortex only in the steady limit,
whereas μMAOS measurements are inherently dynamic and
therefore correspond to a finite time scale, these measure-
ments do support the observation that the cytoplasm is strain
softening. The strain softening behavior is evident in the neg-
ative concavity of the force vs displacement curve, which

would correspond to ζ ′′
31(ω) < 0 in the limit of ω → 0. The

cytoplasm, on the other hand, exhibits a strain stiffening re-
sponse, corresponding to ζ ′′

31(ω) > 0 in the limit of ω → 0.
Therefore, the unidirectional dragging experiments support
the conclusions made from the μMAOS data that the cyto-
plasm is strain softening, and that its behavior is distinct from
that of the strain stiffening cortex.

D. Polyethylene oxide

The unique capabilities of μMAOS to study the nonlinear
mechanical properties of complex fluids at the microscale are
further demonstrated by comparing the data from the mEF
cytoplasm to that obtained in another material with similar
linear viscoelastic characteristics. Figure 5 also presents data
taken in an aqueous solution of 5 wt% polyethylene oxide
(PEO), a solution which forms a weakly entangled polymeric
network that might be considered a surrogate model for the
cytoplasm. Indeed, G′(ω) and G′′(ω) for both the cytoplasm
and PEO exhibit weak power-law dependence on fre-
quency [Fig. 5(a)], consistent with previous observations [53].

FIG. 6. Unidirectional dragging measurements of an optically trapped bead in a living mammalian cell. (a) Measurements near the cellular
cortex, which depict a strain stiffening behavior (positive concavity in the force vs displacement curve). (b) Measurements in the cytoplasm,
away from the cortex, which depict a strain softening behavior (negative concavity in the force vs displacement curve). The solid black line
corresponds to the mean over 20 trials, and the shaded region corresponds to one standard error of the mean.
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However, ζ ′
31(ω) is measured to be positive for PEO but

negative for the mEF cytoplasm, indicating that while the
cytoplasm is shear thinning in the measured frequency win-
dow, the PEO solution is asymptotically shear thickening—an
observation supported by bulk rheological measurements of
concentrated PEO solutions [54]. With the sensitivity of
μMAOS to this nonlinear material property, we are able to
distinguish the distinct nonlinear characteristics of two mate-
rials with qualitatively similar linear viscoelastic responses.

V. CONCLUSION

This article demonstrates that μMAOS sensitively probes
aspects of soft material physics that are difficult, or im-
possible, to ascertain using other methods. Despite the
mathematical complexity of μMAOS compared to linear
microrheology, conducting μMAOS experiments does not
involve additional instrumentation. These experiments pro-
duce a high data throughput, which can even be dramatically
increased by incorporating multiple tones into the driving
signal [17]. This accessible and high-throughput experimental
technique opens doors to a number of intriguing applications.

Here, we have used μMAOS to distinguish the nonlinear me-
chanical signatures of the cellular cytoplasm from the cortex.
The fundamental understanding of cytoplasmic mechanics
will lend deeper understanding of biological processes such as
mechanotransduction, cancer metastasis, and differentiation,
where mechanical behavior of cells plays a critical regula-
tory role. Other potential applications of μMAOS include
data-driven analysis by building large sets of nonlinear mi-
crorheological data, and the continuous observation of the
nonlinear mechanical response of a material as it changes.
Thus, μMAOS stands to become a versatile technique that is
essential to future explorations in the physics of soft materials.
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