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The inherent structure landscape for a system of hard spheres confined to a hard cylindrical channel, such
that spheres can only contact their first and second neighbors, is studied using an analytical model that extends
previous results [Phys. Rev. Lett. 115, 025702 (2015)] to provide a comprehensive picture of jammed packings
over a range of packing densities. In the model, a packing is described as an arrangement of k helical sections,
separated by defects, that have alternating helical twist directions and where all spheres satisfy local jamming
constraints. The structure of each helical section is determined by a single helical twist angle, and a jammed
packing is obtained by minimizing the length of the channel per particle with respect to the k helical section
angles. An analysis of a small system of N = 20 spheres shows that the basins on the inherent structure landscape
associated with these helical arrangements split into a number of distinct jammed states separated by low barriers
giving rise to a degree of hierarchical organization. The model accurately predicts the geometric properties of
packings generated using the Lubachevsky and Stillinger compression scheme (N = 104) and provides insight
into the nature of the probability distribution of helical section lengths.
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I. INTRODUCTION

Hard-sphere particle packings play a fundamental role in
understanding a broad range of problems in material science.
For example, mixtures of hard-sphere particles of different
sizes give rise to a variety of stable crystal structures [1–4],
and amorphous packings are used as the basis for describ-
ing the properties of liquids and glasses [5–12], as well as
colloidal systems [13] and granular materials [14,15]. Sphere
packing problems also appear in applications for computer
science and information technology [16]. However, rigorous
results for sphere packings are difficult to obtain. The most
dense jammed packing of single component hard discs in two
dimensions (2D) is the triangular packing, with an occupied
volume fraction φ = π/

√
12. Recently, it was shown that the

face-centered-cubic (fcc) crystal, with φ = π/
√

18 ≈ 0.74,
is the most dense jammed packing of spheres in three di-
mensions (3D) [17], but results for amorphous structures are
generally obtained using numerical and molecular simulation
techniques.

The inherent structure landscape [6,18–20] provides a
framework that connects the properties of a liquid to the
properties of its mechanically stable jammed packings. Each
configuration of the system is mapped to a local jammed
structure, or inherent structure, by a rapid quench. All the
configurations that map to the same inherent structure are then
grouped together in a local basin of attraction, giving rise to a
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high-dimensional “landscape” of valleys (basins) separated by
mountain passes that represent transition state saddle points.
The thermodynamics and dynamics of the system can then
be understood in terms of how the system samples different
regions of this landscape and how it moves between basins.
However, obtaining a comprehensive picture of the inherent
structure landscape remains a significant challenge because of
the difficulties associated with developing theories for amor-
phous particle packing.

Confining the fluid to small pores or narrow channels limits
the number of contacts a particle can make, reducing the
type of local structures that can be formed and simplifying
the inherent structure landscape [21,22]. As a result, it is
sometimes possible to obtain analytical results describing the
nature of particle jamming. The 2D system of hard discs
trapped between two lines, where the confinement only al-
lows contacts up to the second nearest neighbors, has been
studied extensively because its local packing environments
are highly ordered, and the jammed states, from least to most
dense, can be characterized in terms of defects [23,24]. The
comprehensive description of the inherent landscape and the
relationship to the properties of the fluid have facilitated a
detailed analysis of glassy dynamics [25–30], hyperunifor-
mity in amorphous packings [31], the statistical mechanics
of granular materials [32], and the possibility of a Gardner
transition in hard-particle systems [33]. Recent studies of this
system have also revealed the existence of novel asymptoti-
cally crystalline states [34].

Both analytical [35–37] and simulation [38–41] studies
have shown that spheres confined to quasi-one-dimensional
cylindrical channels spontaneously form a variety of
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structures including, single, double, and staggered helices, as
well as some achiral packings, depending on the diameter
of the channel [42–44]. These helical structures have also
been observed experimentally in molecular [45,46], colloidal
[47,48], and athermal [49] systems. Most studies have focused
on the formation of the most dense packing with a perfect
structure, but, to develop connections between the thermo-
dynamics and dynamics of fluids and the inherent structure
landscape or to establish a statistical mechanics of athermal
systems, it is necessary to understand the nature of defect and
amorphous packings in these systems.

The goal of the current work is to develop a comprehensive
picture of the inherent structure landscape for a system of hard
spheres confined within a narrow cylindrical channel, where
particle–particle contacts up to the nearest second neighbors
are possible. This builds on our previous analysis [50] by re-
moving the need to use assumptions concerning the nature of
the defect states, identifying additional packing environments,
and studying the distribution of packings for small systems.
As a result, we find that the inherent structure landscape for
this system has a degree of hierarchical organization, with
basins formed from the arrangements of helical sections split-
ting into sub-basins, associated with distinct jammed states,
separated by small barriers. We also use the model to un-
derstand features that appear in the probability distribution of
helical section lengths in simulation-generated packings.

The remainder of the paper is organized as follows: Sec-
tion II describes the model under study. Section III describes
the geometry of perfect and defect helical packings. Sec-
tion IV explores inherent structure landscape of the packing
model for a small system before the model predictions are
compared with the results of large system jammed states pro-
duced by simulation in Sec. V. Sections VI and VII contain
our discussion and conclusions, respectively. The Appendix
outlines the analytical calculation of the random probability
distribution for helical section lengths.

II. MODEL

The model studied here consists of N three-dimensional
hard spheres, with diameter σ , confined in a cylindrical nar-
row channel of length L with channel diameter Hd in the
range of 1 + √

3/4 < Hd/σ < 2, which ensures spheres can
only contact their first and second neighbors in either direc-
tion along the channel. The particle–particle and particle–wall
interaction potentials are given by

U (ri j ) =
{

0, ri j � σ

∞, ri j < σ,
(1)

Uw(ri ) =
{

0, |rxy| � |H0/2|
∞, otherwise, (2)

respectively, where ri j = |rj − ri| is the distance between par-
ticles, |rxy| is the magnitude of the position vector for a particle
perpendicular to the wall where the center of the cylinder is
located at x = y = 0, and the longitudinal direction of the
channel extends in the z direction. The volume accessible to
the particles centers is V0 = πL(H0/2)2, where H0 = Hd − σ ,
and the occupied volume is φ = 2Nσ 3/(3LH2

d ).
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FIG. 1. Geometric construction for perfect helix. (a) The top
view with black points indicating the sphere centers of particles 1,
2, 3 and the blue point marking the central axis of the cylinder.
The heavy dotted line outlines the volume accessible to the particle
centers and the solid gray line indicates the cylinder wall. (b) The
side view showing central accessible volume. The hypotenuses of
the colored triangles indicate sphere contacts with lengths σ . Spheres
and external cylinder wall have been removed for clarity.

III. GEOMETRIC MODEL FOR HELICAL PACKINGS

A. Perfect helical packings

This section provides improved details of our geometric
analysis presented in Ref. [50], which focused on the case of
Hd/σ = 1.95. The most dense packing of the current system
is a helix [44] where each sphere has four sphere-sphere
contacts, formed with its first and second neighbors and a
single sphere wall contact. Figure 1 shows the geometric
construction used to determine the properties of the helix.
Particle one is placed in the channel at a fixed point, then
particle two is placed along the channel at a distance z1 and
angle α1 in a anticlockwise direction looking from the top,
such that it contacts sphere one and the wall. Particle three,
which is placed at a distance z2 and α2 along the channel, is
then constrained to contact the wall as well as particles one
and two. Subsequent particles are added, alternating between
increments of (z1, α1) and (z2, α2), maintaining the contact
constraints until particles N − 1 and N are forced to contact
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particles one and two to ensure that the helical periodic bound-
ary conditions are enforced.

Using this geometric construction yields the following re-
lationships:

σ 2 = a2 + z2
1, (3)

σ 2 = b2 + z2
2, (4)

σ 2 = c2 + (z1 + z2)2, (5)

a = H0 sin (α1/2), (6)

b = H0 sin (α2/2), (7)

c = H0 sin (α3/2), (8)

where a, b, and c form the projected triangle connecting the
particle centers. Expressions for z1 and z2 can be obtained by
using Eqs. (6) and (7) in Eqs. (3) and (4) to give, respectively,

z2
1 + H2

0

2
[1 − cos α1] = σ 2, (9)

and

z2
2 + H2

0

2
[1 − cos α2] = σ 2. (10)

Substituting these results into Eq. (5) and using the constraint
α1 + α2 + α3 = 2π in Eq. (8) gives

σ 2 =
⎛
⎝

√
σ 2 − H2

0

2
+ H2

0

2
cos

[α1

2

]

+
√

σ 2 − H2
0

2
+ H2

0

2
cos

[α2

2

]⎞⎠
2

− H2
0

2
(cos [α1 + α2] − 1), (11)

which can be solved numerically to provide values of α2 as a
function of α1.

All the spheres in the helix satisfy the three-dimensional
local jamming condition, where each particle has at least four
contacts that are not all contained within the same hemisphere.
However, this does not guarantee the system is collectively
jammed because the concerted motion of particles can lead
to unjamming [51]. In the limit that Hd/σ → 1 + √

3/4,
Eq. (11) has a single solution, with α1 = α2 = π , that cor-
responds to the formation of the expected single zigzag chain
of jammed particles. For wider channels, there is a contin-
uous range of solutions where the variation of α1 produces
a concerted twisting motion of the helix that compresses the
overall structure. To locate the most dense jammed state of the
system, we then minimize the length per particle,

L

N
= 1

2
(z1 + z2). (12)

Figure 2 shows that L/N exhibits a single minimum as a
function of α1 in the range 1 + √

3/4 < Hd/σ < 1 + 4
√

3/7,
where α1 = α2 and z1 = z2, confirming that the most dense
packings are single helices. The particle positions on the
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FIG. 2. Length per particle, L/N , as a function of α1, for per-
fect helical sphere packings with channels diameters in the range
Hd/σ = 1.87–1.999. Red points indicate local minima associated
with jammed packings.

single helix can also be represented by the general helical
equation,

{x, y, z} = {H0/2 cos(nθ + �θ ), H0/2 sin(nθ + �θ ), n�z},
(13)

where n = 1, 2, . . . , N is an integer, θ = α1 is angle of rota-
tion between particles, �z = z1 is the longitudinal separation
between particles, and the phase shift �θ = 0. Figure 3(a)
shows the right-hand twist P helix for Hd = 1.95, including
the line representing Eq. (13). The same packing can also
be described as a symmetrical double helix, where the two
chains of the helix are formed by taking every second particle,
θ = −(2π − 2α1) to account for the change in twist direction
of the double helix, �z = 2z1 and fixing the phase shift for
the second chain as �θ = π . The double helix structure can
be observed in Fig. 3(a) by following the two chains formed
by the green and orange particles, respectively.

In the region 1 + 4
√

3/7 < Hd/σ < 2, α1 no longer equals
α2, and, the resulting jammed structure consists of two stag-
gered helices [Fig. 3(b)], which leads to the appearance of
two identical minima corresponding to the two possible ways
of alternating between α1 or α2. Figure 2 also shows that for
Hd > 1 + 4

√
3/7, the symmetrical single helix with α1 = α2

is located at the maximum in L/N and represents a transition
state between the two possible staggered double helices.

The double-helix structure of these packings can also be
described using Eq. (13) by considering chains formed by
every second particle with θ = −[2π − (α1 + α2)] and �z =
z1 + z2. However, �θ �= π for the second chain, resulting in
the staggered conformation. Mughal et al. [35,39] showed
that the double helix could be characterized using phyllotactic
indices (parastichy numbers), consisting of three positive inte-
gers, (m + n, m, n), that describe the lattice structure formed
by the particle centers on the surface of a cylinder of diameter
H0 (see references for full description). At the single-double
helix transition point, Hd = 1 + 4

√
3/7, the structure is
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FIG. 3. Most dense packings for (a) single P helix with Hd =
1.95/σ and (b) staggered double left hand twist M helix with
Hd = 1.995/σ . Spheres have been made semitransparent, and we
have introduced different colors for alternating spheres along the z
axis to provide an aid to the eye. The solid black lines represent
Eq. (13).

characterized as a (2,1,1) helix. As Hd increases, the sym-
metrical helix is deformed along every second lattice line
(line-slip) to create the asymmetrical double helix until it
forms the (2,2,0) structure at Hd = 2, which consists of al-
ternating sphere “doublets” and is achiral [44].

The results from our geometric construction are consistent
with the simulation results obtained by Pickett et al. [44]. It
is also important to note that Fig. 2 essentially reproduces the
results of Chen et al. [37], who used a similar approach to
study the most dense perfect helical packings for 1 + √

3/4 <

Hd/σ < 2, and we include this figure here for completeness
and to highlight the importance of the minimization of L/N
with respect α1, which plays an expanded role in determining
the nature of jammed structures containing defects. Finally, it
is important to note that both the right-handed (P) and left-
handed (M) helices can be constructed by incrementing the
angle in our analysis in clockwise or anticlockwise directions,
respectively.

B. Defect helical packings

To generate lower density jammed states, we introduce
topological defects into the helix that reverse the direction
of the helical twist, noting that these must be introduced
in pairs in order to maintain the helical periodic boundary
conditions. As a result, a packing with k defects consists

1 2

3 αd
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(b)
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z d
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1
,2

z
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)
1

FIG. 4. Geometric construction for helical defects: (a) top view
and (b) side view.

of k alternating left and right twisting sections of helix that
can be characterized by a list {n(1), n(2), . . . , n(k)}, where n( j)

specifies the number of spheres in a helical section j so that
N = ∑k

j=1 n( j). Figure 4 shows the geometric construction
used to calculate the properties of a defect located between
two sections of helix, denoted with superscripts a and b,
respectively. Spheres 1 and 2, which are in contact, represent
the last two particles of helix section a twisting in an anti-
clockwise direction (from the top) and the angle αa

i can be
either α1 (i = 1) if n(a) is even or α2 (i = 2) if n(a) is odd.
Spheres 3 and 4 are also in contact with each other and are the
first two particles in helix section b, twisting in a clockwise
direction. The defect is then located between particles 2 and
3 and is characterized by the longitudinal length zd and angle
αd . To satisfy local jamming constraints, all the particles must
contact the walls, sphere 3 must also contact sphere 1, and
sphere 2 must contact sphere 4, but a contact between spheres
2 and 3 is not necessary.

Using the geometric construction shown in Fig. 4, we ob-
tain the following relations for the particle separations along
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the longitudinal z axis:

(
z(a)

i

)2 + H2
0

2

[
1 − cos α

(a)
i

] = σ 2, (14)

(
z(b)

1

)2 + H2
0

2

[
1 − cos α

(b)
1

] = σ 2, (15)

(ze)2 + H2
0

2
[1 − cos αe] = σ 2, (16)

(z f )2 + H2
0

2
[1 − cos α f ] = σ 2, (17)

where αe and α f are the in-plane angles between particles
1 and 3, and particles 2 and 4, respectively. Substituting
Eqs. (14)–(17), along with the angular constraints αe = 2π −
α

(a)
i − αd and α f = αd − α

(b)
1 into (ze)2 = (z(a)

i + zd )2 and
(z f )2 = (z(b)

1 + zd )2 yields two relations,

z2
d + H2

0

2
cos α

(a)
i + 2zd

√
σ 2 − H2

0

2

[
1 − cos α

(a)
i

]

− H2
0

2

[
cos

(
α

(a)
i + αd

)] = 0, (18)

and

H2
0

2
[1 − cos (αd − α f )]

−σ 2 +
⎛
⎝zd +

√
σ 2 − H2

0

2

[
1 − cos α

(b)
1

]⎞⎠
2

= 0, (19)

that can be solved numerically to obtain zd and αd . Equations
(18) and (19) highlight the fact that the geometric properties
of the defect are a function of the properties of the helical
sections on either side through their dependence on α

(a)
i and

α
(b)
1 . This represents an improvement on our original analysis

in Ref. [50], where it was assumed αd = π , a condition that
is only true if the helices on both sides of the defect are the
same, i.e., for what we referred to as helical defect crystals
because they represent repeated units of identical left- and
right-handed helical sections so the defects appear at regular
spacings along the packing.

The length per particle of a configuration of spheres satis-
fying the contact conditions and containing k defects is then
given by

L

N
= 1

N

k∑
j=1

[(
n( j) − A

2

)
z1

(
α

( j)
1

)

+
(

n( j) − A

2
− B

)
z2

(
α

( j)
1

) + zd
(
α

( j)
i , α

( j+1)
1

)]
, (20)

where A = 0 or 1 if n( j) is even or odd, respectively, B =
1 or 0 if n( j) is even or odd, respectively, and in determining
zd , i = 1 for even n( j) and i = 2 for odd n( j). Helical periodic
boundaries are imposed for the first and last helical sections
so that, for j = k, j + 1 ≡ 1. A jammed packing can then be
obtained by minimizing L/N in Eq. (20) with respect to the set
of k angles α

( j)
1 that characterize each helical section and the

jamming density, φJ = 2Nσ 3/(3LH2
d ). The helical periodic

boundary conditions of the packing can be described by

riγ = ri + nγ λ, (21)

where riγ is the position of particle i in the γ th unit cell, nγ

is an integer, and λ(λ|rxy|, λθ , λz ) is the lattice vector for the
radial, angular θ , and longitudinal z components of the cylin-
drical coordinates, respectively. For each packing, λz = L,
λ|rxy| = 0, and λθ can be obtained by summing over the signed
angle of rotation between each atom where the sign alternates
(+1,−1), for each helical section to account for the direction
of twist.

The number of possible helical arrangements for a given
defect fraction, θ = k/N , can be found by considering the
number of ways we can distribute N indistinguishable spheres
into k helical sections. The geometric contact restrictions of
the defects require each section of helix to contain at least two
spheres, leaving N − 2k spheres to be placed without restric-
tions and yielding the number of helical section arrangements
with k defects,

Nh(k) = 2(N − k − 1)!

(k − 1)!(N − 2k)!
, (22)

where the factor for of two appears because we can choose to
begin twisting the first helical section in either a clockwise
or anticlockwise direction. Taking the natural logarithm of
Eq. (22) and using Stirling’s approximation then gives, in the
thermodynamic limit,

ln Nh(θ )

N
=(1 − θ ) ln (1 − θ ) − θ ln θ − (1 − 2θ ) ln (1 − 2θ ),

(23)
where 0 � θ � 0.5. The total number of helical arrangements
can be obtained by summing over all possible values of k =
0, 1, . . . , N/2 in Eq. (22), to obtain

lim
N→∞

ln Nh

N
= ln

(
1 + √

5

2

)
≈ 0.481. (24)

Equation (23) is the same distribution of structures found in
the 2D model of hard discs confined between two lines where
only nearest-neighbor contacts are allowed [23]. However, in
the 2D model, θ is directly linked to the jamming density φJ ,
which is independent of the way the defects are arranged, and
there is only one jammed state associated with each defect
arrangement. As we will see, this is not the case for the current
model, so Nh(θ ) becomes a lower bound on the number of
jammed states, and φJ for a packing is not only determined by
θ , but it also depends on how the defects are distributed.

IV. SMALL-SYSTEM JAMMED PACKINGS

To understand how the presence of defects affects the over-
all structure of the packings, we begin by studying a system of
N = 50 spheres containing just two defects and two sections
of helix, denoted a and b, for a case where Hd/σ = 1.95.
Figure 5(a) shows a contour plot of L/N , from Eq. (20), as
a function of α

(a)
1 and α

(b)
1 for a system {n(a), n(b)} = {15, 35}.

When the defects are well separated and both helix sections
contain an odd number of spheres, the minimum occurs where
α

(a)
1 = α

(b)
1 , at a value where α1 = α2 within both sections of

helix. As a result, the jammed packing consists of two sections
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FIG. 5. Contour plots of L/N as a function of α
(a)
1 and α

(b)
1 for

packings (a) {15, 35} and (b) {14, 36}, with Hd/σ = 1.95. Contours
are separated by 0.001, the red dashed lines represent the contact
constraint between particles 2 and 3 in the defects, and the red points
denote the minima.

of a perfect single helix, identical to the most dense structure,
with opposite P and M twists, separated by a large volume
defect.

When the two helical sections contain an even number of
spheres, such as {n(a), n(b)} = {14, 36} [see Fig. 5(b)], α

(a)
1 �=

α
(b)
1 , so that the two sections no longer have the same struc-

ture. Furthermore, within each section, α1 �= α2, indicating
the structure has changed to that of a double helix. In this case,
the presence of a single defect has disrupted the entire global
structure of the packing. Figure 5 also shows that, when the
defects are well separated (large helical sections), the minima
are located away from the contact constraint between particles
2 and 3 in the defect, indicating there is a gap between the
particles.

As the defects are brought closer together, by decreasing
the size of one of the helical sections, the surface of the
minimum elongates along the α

(a)
1 axis before eventually split-

ting in two when n(a) ≈ 10. Figure 6 shows that the system
becomes jammed when particles 2 and 3 in the defect come
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3.0

α
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FIG. 6. Contour plots of L/N as a function of α
(a)
1 and α

(b)
1 for

packings (a) {3,47} and (b) {2,48}, with Hd/σ = 1.95. Contours
are separated by 0.001, the red dashed lines represent the contact
constraint between particles 2 and 3 in the defects, and the red
and green points denote a global minimum and a local minimum,
respectively.

into contact, locking the structure in place. Now, α
(a)
1 �= α

(b)
1

for odd-numbered helical sections, but the two minima have
the same L/N and result from a switching between the values
of α1 and α2 within a section. Nevertheless, the two packings
are distinct structures because they are separated by a barrier,
and it requires the concerted motion of the relative position
of all the particles to move from one state to the other. The
jamming densities of the two states are not the same for the
even-number helical sections (Fig. 6).

Figure 7(a) shows φJ , where Eq. (20) has been minimized,
as a function of n(a) for a system containing two defects, with
Hd/σ = 1.95, and we have only identified the global density
maxima (L/N global minima) for each n(a). For N = 100, as
n(a) is varied, the structure {n(a), N − n(a)} oscillates between
structures where both sections of helix are odd-sized and
then both sections are even-sized. The jamming density of
the even-sized sections increases as n(a) decreases, bringing
the defects closer together, whereas φJ for the structures with
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FIG. 7. The jamming occupied volume fraction, φJ , for packings
{n(a), N − n(a)} as a function of n(a) for systems with N = 100 (filled
circles) and N = 99 (open circles) for (a) Hd/σ = 1.95 (b) Hd/σ =
1.99. Only the most dense structure for each {n(a), N − n(a)} is
included.

odd-sized sections remains constant until n(a) < 10. When
N = 99, n(a), the smaller of the two helical sections, oscillates
between odd and even, and we see a similar trend in φJ ,
where φJ is lower when n(a) is odd. Figure 7(b) shows the
same analysis for a system with Hd/σ = 1.99, where the most
dense state is a double helix. The behavior of φJ for the even
helical sections remains the same as observed for the narrower
channel and increases as n(a) decreases. However, we now
see φJ for the odd helical sections increasing over the entire
region. In addition, αi in both odd helical sections differ from
those of the perfect helix.

The analysis of a system with just two defects clearly
shows that the way the defects are distributed within a
packing influences φJ , suggesting it is worth examining
packings with an increased number of defects. The total
number of jammed packings increases exponentially with
N , but the simplicity of the packing model described
in Sec. III means that it is possible to generate all the
possible model packings for small systems and examine
the full jamming landscape. The challenge of finding all

TABLE I. The number of canonical helical arrangements com-
pared with the total number for small systems.

N Nc Nh

16 54 306
20 238 2091
24 1206 14330
32 38889 673135

the jammed structures is simplified by recognizing that all
the helical arrangements, under periodic boundaries, can
be generated from a series of canonical arrangements by
a rotation, {n(1), n(2), . . . , n(k)} → {n(k), n(1), . . . , n(k−1)}
or a reversal of the order, {n(1), n(2), . . . , n(k)} →
{n(k), n(k−1), . . . , n(1)}, then any replicated states can
be removed. For example, the canonical arrangement
{2, 2, 3, 2, 2, 9}, generates six distinct arrangements by
rotation, but the operation of reversal generates six identical
arrangements, which are then removed to leave the original
six. However, for {2, 2, 2, 3, 2, 9}, the rotation and reversal
operations generate a total of 12 distinct arrangements.

All structures related to the same canonical arrangement
maintain the same relative position of all the helical sections
and minimize to a set of jammed structures with the same
respective geometric properties, with the same set of α

( j)
1 and

jamming density. In addition, each helical arrangement actu-
ally represents two possible arrangements that can be formed
by winding in the opposite direction, but the arrangements
will again minimize to structures with the same geometric
properties. This mechanical approach lets us count the num-
ber of states associated with each canonical arrangement and
reproduces the same total number of helical arrangements
as predicted by Eq. (22). Table I compares the number of
canonical arrangements, Nc, with the total number of helical
arrangements, Nh, for a series of small system sizes and high-
lights the significant reduction in the number of arrangements
that need to be analyzed.

Here, we study systems of N = 20 spheres with Hd/σ =
1.95 and 1.99, respectively, by searching for the jammed
packings associated with all of their 238 canonical helical
arrangements. Since the basin for a given helical arrangement
can split into sub-basins, as shown in Fig. 6, we use the local
optimization, Nelder-Mead algorithm in Mathematica [52]
and perform five minimizations of Eq. (20) for each helical
arrangement with randomized initial starting points. While
this does not ensure we find the global minimum for each
helical arrangement, and a larger number of trials for each
arrangement could reveal additional jammed states, it allows
us to explore the general features affecting the appearance of
sub-basins. We will also focus our analysis on arrangements
that start with a single direction of twist for the first helical
section because the other starting twist direction will yield the
same results for φJ .

To begin, it is useful to examine some of the properties
of a few particular packings. The perfect helix arrangement,
{20}, i.e., with θ = 0, has a single canonical structure that
leads to one and two jammed structures for Hd/σ = 1.95 and
1.99, respectively, as discussed earlier. The {10, 10} canonical
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arrangement represents a single arrangement that minimizes
to a single jammed structure, where α

( j)
1 is the same for all he-

lical sections, which is also true for {2, 2, 2, 2, 2, 2, 2, 2, 2, 2}
(θ = 0.5). For the {5, 5, 5, 5} arrangement, we see a more
complex set of jammed states. With Hd/σ = 1.95, we find
two distinct packings where α

( j)
1 is the same in all four

helical sections, one where the list of angles {α( j)
1 } =

{2.2943, 2.2943, 2.2943, 2.2943} and the other with {α( j)
1 } =

{2.8104, 2.8104, 2.8104, 2.8104}. We can understand the ap-
pearance of these packings by noting the helical sections
containing an odd number of spheres have an even number
of alternating angles, α

( j)
1 and α

( j)
2 [see Eq. (20)], where the

second angle is a function of the first. In the first packing,
α

( j)
1 = 2.2943 and α

( j)
2 = 2.8104, so it is possible to construct

the second packing by simply interchanging the two angles.
For Hd/σ = 1.99, these uniform packings, where α

( j)
1 is the

same in all helical sections, are replaced by packings that
alternate α

( j)
1 ; i.e., {α( j)

1 } = {1.7639, 2.7512, 1.7639, 2.7512}
and {α( j)

1 } = {2.7512, 1.7639, 2.7512, 1.7639}. In addition,
we also find that the {5, 5, 5, 5} helical arrangement, for both
channel diameters, jams in a series of asymmetrical struc-
tures, where two of the helical sections are the same, but
the remaining two are different; i.e., for Hd/σ = 1.95 we
find {α( j)

1 } = {2.5378, 3.0837, 2.5378, 2.1206}, which func-
tions as a canonical structure for four additional jammed
states. As a result, the inherent structure basin associated with
the {5, 5, 5, 5} helical arrangement splits into a total of six
distinct jammed states. These sets of structures illustrate the
complexity of the packings that arise, despite the simplicity of
the model. In particular, it is evident that while every helical
section is a perfect double helix, sections within a packing
can adopt double helix structures with different properties
characterized by α

( j)
1 , even when they have the same number

of particles as other sections. The diversity of helical section
structures increases as we begin to study packings with differ-
ent section sizes, giving rise to the “poly helical” description
of the packings.

In Fig. 8, we show a number of the jammed packings for a
system with N = 20, where the defect particles (the first and
last particles in each helical section) are highlighted in a pale
color, along with a plot of the angle αi between particles i and
i + 1. Figure 8(a) shows the {8, 12} packing, starting with a
double (M) helix that switches to a right-hand (P) twist after
the defect and that the two helical sections adopt double helix
structures characterized by different angles. The two defect
particles do not contact each other, but a line of contacts
persists along each of the helical chains. A comparison of
Figs. 8(b) and 8(c) shows how the structure can change with
the movement of a defect, while the total number of helical
sections remain the same. It is also worth noting that the two
six-sphere helical sections in the {5, 3, 6, 6} packing are char-
acterized by different helical twist angles because they have
different overall environments. Figure 8(d) shows the least
dense structure of the system, where almost all the particles
are defect particles and the helical section lengths are small,
causing the defect particles to touch. The variety of jammed
structures results from the system needing to satisfy the global
set of constraints. Our analysis also shows that Eqs. (22)–(24)
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FIG. 8. αi between particles as a function z for jammed packings
(N = 20) (a) {8, 12}, (b) the symmetrical {5, 5, 5, 5}, (c) {5, 3, 6, 6},
and (d) {2, 3, 2, 3, 2, 3, 2, 3}. Insets show packings with defect
spheres highlighted in a pale color.

provide a count of the number of basins, or metabasins, so
they represent a lower bound to the number of jammed states
because each arrangement of helical sections can minimize
to more than one jammed structure. Most of the remaining
canonical structures minimize to at least two distinct jammed
states, and it is possible additional structures would be found
with a more extensive search.

A number of factors affect the φJ of a structure, including
the number of defects and how the defects are distributed.
To capture some of the more generic features of the jammed
states, we plot [Fig. 9(a)] the distribution of most dense
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FIG. 9. (a) The cumulative number distribution of jammed states,
NJ , with different θ , as a function of φJ , for Hd/σ = 1.95. The φJ for
the jammed structure with θ = 0 and θ = 0.5 are highlighted with
blue and brown circles, respectively. The bin size for the distribution
�φJ = 0.001. (b) Fraction of odd helical sections, fodd, for each θ

from the same distribution. Solid lines provide a guide to the eye.

jammed states obtained for each canonical structure, weighted
by the number of helical arrangements it represents, which
gives rise to a distribution of 2091 structures for N = 20, for
the Hd/σ = 1.95 model. Similar results were obtained for
the Hd/σ = 1.99 case [see the Supplemental Material (SM)
[53]]. Each defect fraction θ exhibits a broad distribution of
φJ , again indicating that the jamming density is sensitive to
the way the defects are organized and not just to their concen-
tration. Notably, there is a significant gap between the φJ of
the most dense packing of the perfect helix and the packings
with a single defect, but this is the result of the small system
size and the distribution fills the density gap as N increases.
Figure 9(a) also shows that the θ = 0.5 jammed structure,
which is the maximum defect fraction possible in the model,
is not the least dense structure. Structurally, this packing is
made up of two parallel zigzag chains [50]. It becomes the
least dense packing in the limit Hd/σ → 1 + √

3/4, where
the particles can only touch their first-nearest neighbors, but as
Hd/σ → 2, φJ (θ = 0.5) → φJ (θ = 0), and the two structures

TABLE II. Average properties of simulation generated packings,
N = 10 000 and Hd/σ = 1.95, using compression rate dσ/dt . The
standard deviation in the last digit is given in brackets.

dσ/dt n◦ packings 〈φJ〉 〈θ〉
1 × 10−3 65 0.4117(1) 0.044(1)
5 × 10−4 65 0.4129(1) 0.033(1)
5 × 10−5 153 0.4151(2) 0.011(2)

(θ = 0.5; θ = 0) become equivalent, leading to the formation
of an achiral most dense packing of alternating “doublets”
[44]. However, the full distribution of jammed states is not
contained between these two apparent limits, and the θ = 0.5
structure moves through the distribution as the channel be-
comes wider.

The underlying double helix structure of the packings
means that sections of helix containing odd and even numbers
of spheres have different jamming properties. To examine this
effect in general, we calculate the fraction of helical sections
in a jammed state containing an odd number of spheres,
fodd, for each θ , as a function of φJ . Figure 9(b) shows that
increasing fodd tends to decrease the jamming density, with
the effect becoming greater for larger θ . This suggests that
smaller sections, with odd numbers of particles, tend to pack
less efficiently because they generate large defects. For the
current small system studied here, the lowest density packings
are formed from structures containing a mixture of helical
sections with two and three particles.

V. LARGE SYSTEM SIMULATED JAMMED PACKINGS

The model developed here suggests that the jammed pack-
ings of this system adopt a “poly helical” type structure,
containing a mixture of well-formed sections of single or dou-
ble helix, where the properties of each helical section, such as
helical pitch, depend on the distribution of the defects. To test
this, we generate jammed packings by continually compress-
ing a system of N = 104 spheres from low density, φ = 0.01,
using a modified version of the Lubachevsky and Stillinger
(LS) molecular dynamics (MD) scheme [54], with compres-
sion rates dσ/dt = 1 × 10−3, 5 × 10−4, and 5 × 10−5 in
reduced units. Packings formed in this way have previously
been shown to be jammed and follow the free volume equation
of state near their jamming densities, with slower compression
rates leading to increased φJ , and decreased θ [50]. The aver-
age properties of the packing generated for this study are listed
in Table II.

Figure 10 shows the cylindrical angle αi between succes-
sive spheres, as a function of sphere position along the channel
for a typical section of a jammed packing. Most sections
have a well-defined double helix structure as denoted by the
alternating values of α1, α2, but the values of the angles for
each section differ, giving rise to the “poly helical” structure
of the packing. This is consistent with our results from the
study of small systems, where we find helical sections with
variable α

(k)
i within one jammed packing. The configuration

also shows the presence of a section of single helix contain-
ing an odd number of particles, where α1 = α2, as predicted
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FIG. 10. The cylindrical angle between neighboring spheres, αi,
as a function of the position of the sphere along the z axis of the
channel.

by the model. As a check on the validity of the packing
model, we compare the geometric parameters, z1, z2, and α1,
obtained from the simulation, for each helical section, with
the predictions of Eqs. (9)–(11). For almost all the spheres in
the generated packings, we find �zi = zi − z′

i < 5.0 × 10−6,
where zi (i = 1, 2, d ) is measured from the configurations
obtained by simulation and z′

i is calculated from the model
using the measured αi. However, we do find configurations
(Fig. 11) that show the presence of particles adopting spacings
not predicted by the model at small values of α1, which sug-
gests there may be some packing environments not included
in the model.

z1 packing
z2 packing
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z 1
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FIG. 11. Geometric properties, z1 (circles) and z2 (triangles), of
helical sections in a jammed packing, formed using dσ/dt = 0.001
as a function of measured α1, compared with predictions of the model
(solid and dashed lines, respectively).

The packings can be further characterized in terms of the
probability P(n) of finding a helical section of length n, where
we calculate the distribution over packings formed with the
same compression rate because they have similar θ and φJ .
The location of the defects in the simulation-generated pack-
ings can be identified by using the local geometric properties
of the particles (see SM [53] for details), which includes
calculating a volume, vtet (i) for each particle as the volume of
the tetrahedron formed by particles, i − 1, i, i + 1, and i + 2.
The sign of vtet (i) captures the local twist direction of the helix
so the particles in the same helical section have the same sign,
and in most cases, the sign changes at a defect. The probability
distribution, P(|vtet (i)|) (Fig. S1), also shows the defects all
have small volumes compared with those in the helical sec-
tions, providing an additional tool for locating and counting
defects. To compare this to the random distribution, PR(n) (see
the Appendix for details), we also calculate a nonequilibrium
potential of mean force (PMF),

PMF = − ln
P(n)

PR(n)
, (25)

which will be zero if the distributions are the same and
negative if helical section lengths are more probable than
random. Figure 12 shows the distributions of odd and even
helical sections exhibit similar properties at larger n, but at
small n, the probability of finding an odd-sized helical section
rapidly decreases. Notably, the probability maximum for the
odd sections moves to larger section sizes with decreasing
compression rate, moving from n ≈ 20 at dσ/dt = 1 × 10−3

to n ≈ 50 at dσ/dt = 5 × 10−5. We also see the presence of
sections with n = 1 that are not predicted by the model, al-
though only with a low probability. At the fastest compression
rate P(n) for the even-sized sections decreases monotonically
with increasing n, with the exception of the n = 2 section, but
as dσ/dt decreases, the distribution develops a shoulder and
then becomes bimodal at the slowest compression rate. As
a result, the PMF exhibits two minima, one at small n and
another at larger n, separated by a barrier.

VI. DISCUSSION

The inherent structure paradigm applied to hard particle
systems describes the statistical mechanics of the fluid by
grouping together all the configurations that map the same
jammed state into a local basin of attraction. The thermody-
namics and dynamics of the fluid and glassy behavior can
then be described in terms of the properties of the accessi-
ble basins and how the system moves between them. The
goal of the current work is to develop an accurate model of
the jammed states for this quasi-one-dimensional model, in
terms of helical structures, that improves on the defect crystal
model developed previously. In particular, the new model now
includes odd-sized helical sections and does not assume a
regular arrangement of the defects, which helps account for
a broader range of helical arrangements. The model does miss
some possible arrangements, such as the presence of neigh-
boring defects observed in simulation, but this state appears to
be rare and further decreases in probability as the compression
rate is decreased. Furthermore, our approach to generating the
distribution of jammed packing can be viewed as introducing
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defects as a perturbation on the structure of the perfect most
dense helical structure for a given channel diameter. If other
perfect helical structures exist that are not related to the most
dense packing through a combination of the defects described
in our model, then it may be possible to generate additional
defects structures not included here. Nevertheless, our current
model accurately reproduces the helical geometries found in
large packings generated by the LS simulation.

The model for jammed packings also reveals that the in-
herent structure landscape has some degree of hierarchical
organization, where the basins of configuration space as-
sociated with a given arrangement of helical sections split
into sub-basins for distinct jammed states. A single helical
arrangement represents a basin on the inherent structure land-
scape because, at high density, there is a significant barrier to
moving a particle from one section of helix, which is twisting
in one sense, to the next helical section, which is twisting in
the opposite sense. For example, particles 3 and 4 in Fig. 4
would need to swap places in terms of the anticlockwise
rotation so that the defect becomes located between particles
3 and 4, and particle 3 moves from one helical section to
another. Figure 6 then shows these basins can split further
into smaller sub-basins, each associated with distinct jammed
states that are separated by a small barrier. As the number
of helical sections increases, we see an increasingly complex
set of minima located within the basin of a given helical
arrangement.

A highly successful mean-field theory [55] of the bulk
hard-sphere glass transition in high dimensions also predicts
the presence of a Gardner transition [56] between stable
and marginally stable glasses that is associated with
the repeated fracturing of inherent structure basins into
sub-basins at high densities. There is growing evidence
to suggest the Gardner transition persists down to three
dimensions [57,58], making it relevant to real glassy
materials. However, it has also been argued that the physics
observed in these lower dimensions results from an avoided
transition [33]. The quasi-one-dimensional nature of our
system suggests that it is unlikely to exhibit a Gardner

transition and the types of particle rearrangements involved
in the transition between sub-basins are globally concerted
motions rather than the highly localized motion thought
to be important in bulk glasses. For example, Fig. 6
shows that the angle characterizing the structure changes
in both helical sections, even though the change in the
longer helical section is small and within the {5, 5, 5, 5}
helical arrangement, the transition from the jammed
packing, {α j

1} = {2.2943, 2.2943, 2.2943, 2.2943} →
{2.8104, 2.8104, 2.8104, 2.8104}, requires significant
changes in all helical sections. However, the properties
of the sub-basins still need to be studied in larger systems.
The connectivity of the sub-basins also remains to be
explored because it is not clear whether the sub-basins show
repeated hierarchical organization as expected in bulk glasses.
Nevertheless, access to a detailed model of the inherent
structure landscape for this system opens up the possibility
of understanding how the presence and organization of
sub-basins influence the properties of materials at high
density.

Our study of jammed packings in small systems shows that
φJ depends on more than the defect fraction. Figure 7 shows
that, in the case of a system with two defects, the number
parity of the system influences φJ . The effect arises because
of the asymmetric nature of the double helix formed in the
presence of the defects. The odd- and even-sized sections
have different numbers of angular increments, α1 and α2, and
α1 �= α2, resulting in different packing effects. However, with
increasing helical section size, the two angles approach those
of the perfect structure, and we see a decrease in the parity
effects.

The presence of small odd-sized packings tends to lower
the packing density due to a large defect length. Figure 9
shows that φJ varies over a large range for any given θ and that
increasing the fraction of odd sections leads to lower densities,
with the least dense packing consisting of alternating sections
of two and three particles. Similarly, Fig. 7 shows that small,
odd-sized helical sections lead to a decrease in φJ relative to
similar sized, even-sized sections. This inefficiency of packing
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for small, odd-sized sections has a significant effect on the
distribution of helical sections lengths of the large system
packing formed in simulation. The LS molecular dynamics
scheme continually expands the particles during the trajectory,
allowing the system to relax during compression and move to
denser basins on the inherent structure landscape that have
greater vibrational entropy until the fluid eventually falls out
of equilibrium and finally becomes jammed. Figure 12 shows
that the smaller, odd-sized, helical sections are preferentially
eliminated from P(n) due to their inefficient packing, lead-
ing to a nonmonotonic distribution with a maximum. As the
compression rate decreases, the fluid samples denser basins on
the inherent structure landscape by continuing to eliminate the
least efficient packing elements, which moves the maximum
in the odd-sized helical section to larger sizes. However, it is
not clear how far this process goes with further decreases in
compression rate because the odd and even helical sections
become more similar with increasing n.

Earlier [50], it was shown, using a defect crystal model,
that this system exhibits a long-range defect-defect attraction
that results from an increase in φJ , and hence the vibrational
entropy, as two defects approach. Figure 7 shows that the same
picture persists for a single pair of defects with the improved
model, although the inclusion of the odd-sized helical sec-
tions complicates the details by adding an oscillation to the
attraction. Furthermore, Fig. 12 clearly shows the PMF for the
even-sized sections develops two minima at slow compression
rates, one at small n and a second one at larger separations,
suggesting the defect-defect attraction leads to a degree of
defect pairing. One-dimensional and quasi-one-dimensional
systems with particles interacting via short-ranged potentials
cannot exhibit a phase transition because there is an entropic
advantage in the thermodynamic limit associated with in-
troducing defects that breaks up long-range order [59–61].
However, if the interactions between defects become suffi-
ciently long-ranged, phase transitions can occur [62,63]. Hu
et al. [64] recently obtained numerically exact results using
the transfer matrix method that shows that a transition does not
occur in this system, suggesting the configurational entropy,
which is related to the number of defects, still dominates at
high density, despite the defect-defect attraction driven by the
vibrational entropy. The fact that the PMF for the odd-sized
helical sections only exhibits a single minimum at large n, and
that the PMF for the even-sized sections has a large barrier
at n = 2, reducing defect-defect annihilation, may work to
counter the attractive interaction and help prevent a transi-
tion. Finally, we also note that P(n), and hence the PMF, are
obtained from a nonequilibrium compression of the fluid. It
is likely that the jammed states retain some properties of the
equilibrium fluid when they fall out of equilibrium, but kinetic
effects, such as defect creation and annihilation mechanisms
and the ability of defects to diffuse through the structure,
could play a role in determining the properties of the packings.

VII. CONCLUSIONS

A model for the jammed packings of hard spheres confined
to a narrow cylindrical channel, allowing only next-nearest
contacts, has been developed. It assumes all particles satisfy
local packing constraints and describes the structure in terms

of helical sections, with alternating twist direction, separated
by defects. While it is possible that additional local packing
environments could be found, the model provides an improved
description of the defects in the packings, as well as packings
with odd-sized helical sections, compared with the defect
crystal model developed earlier, and accurately reproduces
the geometries of jammed packings created by molecular dy-
namics simulation. The model also confirms the possibility of
an entropically driven defect-defect attraction that appears to
influence the structure of the particle packings.
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APPENDIX: RANDOM DISTRIBUTION OF HELICAL
SECTION LENGTHS

Here, we derive the random distribution of helical section
lengths to obtain an expression for the probability PR(n) of
finding a helical section of length n in a system of N spheres
containing k defects. It is more convenient to develop the
analysis in terms of the clusters of the “bonds” connecting
the neighboring spheres in contact, so that a cluster of l bonds
represents a helical section of n = l + 1 spheres. If n0 is the
total number of nondefect bonds and ql is the number of clus-
ters of with l bonds, then we have the following constraints:

n0 =
∞∑

l=1

lql = N − k, (A1)

and

k =
∞∑

l=1

ql , (A2)

where the conservation condition, N = n0 + k, was used in
the right-hand side of Eq. (A1), and Eq. (A2) arises from the
requirements that each cluster be separated by a defect and
defects cannot be adjacent to each other.

The random equilibrium distribution of clusters is obtained
by finding the cluster distribution {ql} that maximizes the
entropy S/kB = ln 
, subject to the constraints, Eq. (A1) and
Eq. (A2), where


 =
∑
{ql }

g, (A3)

and g is the number of distinct ways to distribute the clus-
ters. To obtain an expression for g, it is useful to begin by
treating all clusters as distinguishable and then remove the
over-counting of any indistinguishable clusters [65]. In a sys-
tem with periodic boundaries, such that particle N contacts
particle 1, there are N places to put the first cluster and
(k − 1)! ways to place the remaining k − 1 distinguishable
clusters. The distinguishability is then removed by dividing
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FIG. 13. Probability, PR(n), of finding a helical section contain-
ing n spheres in a random distribution of defects with θ = 0.0333,
from simulation (open circles) and exact theory (solid line) given by
Eq. (A10).

by ql ! for each l , yielding,

g = N (k − 1)!∏∞
l=1 ql !

. (A4)

The maximum can be obtained by introducing the under-
determined multipliers, λ1 and λ2, for the two constraints and
setting the derivative with respect to qm to zero, for each m,

∂

∂qm

[
ln [{ql}]+λ1

(
N − k −

∞∑
l=1

lql

)
+ λ2

(
k −

∞∑
l=1

ql

)]

= 0. (A5)

The only terms to survive are those where m = l , which gives

ql = e−λ1l e−λ2 = Sl
1S2, (A6)

then using Eq. (A6) in the constraints, Eqs. (A1) and (A2),
and solving for the unknowns yields

S1 = N − 2k

N − k
, (A7)

and

S2 = k2

N − 2k
. (A8)

Using Eqs. (A7) and (A8) in Eq. (A6) and introducing the
fraction of defects, θ = k/N then gives

ql

N
= θ2

1 − 2θ

[
1 − 2θ

1 − θ

]l

. (A9)

Finally, to be consistent with our analysis in the main text, we
normalize PR(n) with respect to the number of defects rather
than N and note n = l + 1, which gives,

PR(n) = 1

θ

qn−1

N
= θ

1 − 2θ

[
1 − 2θ

1 − θ

]n−1

. (A10)

Figure 13 compares the exact result for PR(n) [Eq. (A10)],
which is valid in the thermodynamic limit (N → ∞), with
the results obtained from simulations for a system with N =
10 000, where 5 × 106 configurations were generated with
randomly placed defect bonds such that there were no neigh-
boring defects bonds and θ = 0.0333. The finite-sized system
accurately reproduces the exact results for the small helical
sections but begins to systematically underestimate PR(n) for
larger sections.
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