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Generalized persistence dynamics for active motion
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We analyze the statistical physics of self-propelled particles from a general theoretical framework that properly
describes the most salient characteristic of active motion, persistence, in arbitrary spatial dimensions. Such a
framework allows the development of a Smoluchowski-like equation for the probability density of finding a
particle at a given position and time, without assuming an explicit orientational dynamics of the self-propelling
velocity as Langevin-like equation-based models do. Also, the Brownian motion due to thermal fluctuations and
the active one due to a general intrinsic persistent motion of the particle are taken into consideration on an equal
footing. The persistence of motion is introduced in our formalism in the form of a two-time memory function,
K (t, t ′). We focus on the consequences when K (t, t ′) ∼ (t/t ′)−η exp[−�(t − t ′)], � being the characteristic
persistence time, and show that it precisely describes a variety of active motion patterns characterized by
η. We find analytical expressions for the experimentally obtainable intermediate scattering function, the time
dependence of the mean-squared displacement, and the kurtosis.
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I. INTRODUCTION

The interest in the transport properties of the so-called
active or self-propelled particles has renewed recently due, on
the one hand, to their intrinsic out-of-equilibrium nature, in
clear contrast with the commonly Brownian particles, and, on
the other hand, to the designing of artificial particles that use
different phoretic mechanisms to self-propel [1,2].

A conspicuous feature of active motion is that it is per-
sistent, that is to say, the particle retains its direction of
motion during a characteristic period of time (called persis-
tence time) [3]. However, taking into account the effects of
persistence in reduced descriptions of active motion in terms
of Smoluchowski-like equations for the marginal probability
density that depends only on the particle positions, i.e., when
the orientational degrees of freedom that define the direction
of motion have been marginalized, has been a difficult task,
which we achieve in this paper by the formulation of a general
theoretical framework.

Generally, the reduced descriptions just mentioned lead to
the so-called telegrapher’s equation [4–6], which emerges as
an approximation valid only in the long-time regime. This
has been analyzed for a particular model of active motion in
Euclidean spaces in two and three dimensions [7,8] and in
two-dimensional curved manifolds [9,10]. For instance, two
well-known models that take into account the persistence of
active motion have been considered over the years [11]: the
so-called active Brownian motion (ABM) [12,13], for which
the persistence of orientation is faded by rotational diffusion,
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and run-and-tumble motion (RTM) [14], for which the persis-
tence of the direction of motion is lost by the instantaneous,
temporally uncorrelated tumbling events. In the long-time
regime, both frameworks are well approximated by the the
telegrapher’s equation for the probability density of finding
a particle at position x at time t , ρ(x, t ), which in d spatial
dimensions is given by

∂2

∂t2
ρ(x, t ) + �

∂

∂t
ρ(x, t ) = c2∇2ρ(x, t ), (1)

where �−1 is the persistence time and c the propagation speed.
These two quantities are directly related to (1) the inverse of
the rotational diffusion coefficient DR and the particle swim-
ming speed v0 in the model of ABM when the identifications
� = d (d − 1)DR and c = v0 are made, respectively, and (2)
the inverse of the tumbling rate λ and the particle running
speed v0 in the model of RTM when � = dλ and c = v0

are chosen, respectively. The persistence length, defined as
�p = c �−1, characterizes the average length for which the
particle maintains the direction of motion.

As is well known, the telegrapher’s equation interpolates
between two separated time regimes: the wave equation in the
short-time regime and the diffusion equation in the asymptotic
one (see Ref. [15] in the context of relativistic Brownian mo-
tion). The good agreement of the results provided by Eq. (1)
to describe active motion in the long-time regime is intu-
itively clear and has been discussed before in the case of
two-dimensional ABM [16]. In this time regime, the faded
persistent motion can be effectively described as the motion
of Brownian particles diffusing with an effective diffusion
coefficient given by c2/�. In contrast to the distortionless
propagation of a pulse of active particles in the short-
time regime, the telegrapher’s equation describes a wavelike
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motion that suffers from some issues and fails to account for
a correct description of active motion, as has been pointed
out in Refs. [16,17]. In this paper a generalization of the
telegrapher’s equation, free of these pathological effects, is
derived and analyzed.

A quantity of interest, directly obtained from the proba-
bility density of the particle positions and therefore from our
theoretical framework, corresponds to the intermediate scat-
tering function (ISF). A recent analysis of the ISF of diffusing
Janus particles in two dimensions concluded that it is possible
to discern between ABM and RTM by focusing the analysis
in the intermediate-time regime [18]. It is therefore of interest
to establish generalizations of theoretical frameworks whose
validity comprises the whole time regimes to describe active
motion, particularly at the intermediate and the short ones.

In this paper we propose a general theoretical framework to
analyze a generalized active Brownian motion (GABM) model
that incorporates the rather important effects of the persistence
of active motion through a memory function. This last one
models the pattern of motion induced by the particular internal
mechanism of the particle self-propulsion (notice that this for-
mulation differs of the one considered in Refs. [19,20], where
the internal dynamics of the active particle is embedded in the
memory function of the generalized Langevin equation). Here
we consider a memory function whose time dependence takes
into account the persistence of motion by modifying, in the
short-time regime only, the exponentially decaying memory
function, e−�t , that appears in the telegrapher’s equation (1)
when this is rewritten as [21]

∂

∂t
ρ(x, t ) = c2

∫ t

0
ds e−�(t−s) ∇2ρ(x, s). (2)

We show afterwards that by modifying the dynamics in this re-
spect, not only is the poor behavior of the telegrapher-equation
solutions in high dimensions corrected, but also reveals well-
behaved wavelike patterns of motion.

Furthermore, our analysis considers the important influ-
ence of the fluctuations exerted by the surroundings which
give rise to Brownian motion, characterized by the transla-
tional diffusion coefficient DT. To our knowledge, the role
of thermal fluctuations in the telegrapher equation has been
treated only very recently in Ref. [22] as an approximation to
the wave propagation of active Brownian particles. All these
elements together allow us to carry out an explicit comparison
between the intermediate scattering function of the model
introduced here and the corresponding one for those well-
known models of persistent motion, namely, active Brownian
motion and run-and-tumble motion. Additionally we obtain
the explicit time dependence of the mean-squared displace-
ment (MSD) 〈x2(t )〉 and of the kurtosis κ (t ) for the active
component of motion.

Our paper is organized as follows: In Sec. II the theoretical
framework to study the GABM is introduced, and within
this, a generalized telegraphers equation for active motion is
presented and analyzed. We provide explicit analytical expres-
sions for the time dependence of the MSD and the kurtosis
related to the active part of motion. In Sec. III we give a com-
parison between the GABM and the theoretical predictions
made by the ABM and RTM models. Finally, in Sec. IV we
give our concluding remarks and perspectives.

II. GENERALIZED ACTIVE BROWNIAN MOTION

In this section we provide a probabilistic description of the
stochastic persistent motion of a single active particle under
the influence of thermal noise. Such a description is ade-
quate in the dilute regime of active systems, i.e., far from the
crowded regime where motility-induced phase separation is
observed. The main goal is to present a theoretical framework
to analyze active motion in the presence of thermal noise,
from the knowledge of the statistical properties of active mo-
tion in the absence of it. This is carried out in terms of a
transport equation based on the continuity equation.

∂

∂t
P(x, t ) + ∇ · J(x, t ) = 0, (3)

which endows the conservation of probability by coupling
the change in time of the probability density function (PDF)
P(x, t ) of finding a particle at the position x at the time t , with
the probability current J(x, t ), which indicates the change of
probability per unit of area per unit of time.

Our departure point relies on the assumption that the sta-
tistical properties of active motion, which arises from the
particle’s internal mechanisms of self-propulsion, are known
and encompassed by the probability density Pa(x, t ) and the
probability current Ja(x, t ), which satisfy the continuity equa-
tion

∂

∂t
Pa(x, t ) + ∇ · Ja(x, t ) = 0. (4)

Equations (3) and (4) are incomplete until “constitutive rela-
tions” between the probability currents J (x, t ), Ja(x, t ), and
the probability densities P(x, t ) and Pa(x, t ) are provided.
We show afterwards, once the constitutive relations are intro-
duced, that Eq. (3) reduces to Eq. (4) in the absence of thermal
noise. A first “constitutive relation” is given by

J(x, t ) = −DT∇P(x, t ) +
∫

dx′ G(x − x′, t )Ja(x′, t ), (5)

leaving the second “constitutive relation” to be specified later
[see Eq. (9) below]. Besides the constitutive relation (5), we
need also to specify the relation between P(x, t ) and Pa(x, t ),
which is given as the convolution of the probability density of
active motion Pa(x, t ) with the Gaussian propagator G(x, t ):

P(x, t ) =
∫

dx′ G(x − x′, t )Pa(x′, t ). (6)

In Eqs. (5) and (6), G(x − x′, t ) is the d-dimensional
Gaussian distribution, also called the Brownian propagator
solution of the diffusion equation ∂t G(x, t ) = DT∇2G(x, t ),
and it is given by exp[−(x − x′)2/4DTt]/(4πDTt )d/2 for the
initial condition G(x, 0) = δ(x). This describes the fluctuating
motion due to the effects of an external source of stochastic
motion, like the one provided by a thermal bath which leads
to passive motion usually referred to as Brownian motion,
frequently not negligible for microorganisms or artificial par-
ticles in the range of a few micrometers. It is now easy to
show that in the absence of thermal noise, i.e., DT → 0 and
thus G(x − x′, t ) → δ(x − x′), we have that J(x, t ) = Ja(x, t )
in Eq. (5) and P(x, t ) = Pa(x, t ) in Eq. (6).

We turn now to discuss the meaning of the total probability
current J(x, t ) in Eq. (5) and of the total probability P(x, t )
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in Eq. (6). Consider first the former one. The first term in
the right-hand side of Eq. (5) corresponds to the standard
Fick’s law with DT = kBT/γ being the translational diffusion
coefficient that characterizes the influence of the surroundings
at uniform temperature T , kB the Boltzmann constant, and γ

the friction coefficient that results of the interaction between
the particle and the external source of heat, a fluid in most
cases. The second term takes into account the contribution of
the current due to active motion, written as the convolution
of G(x − x′, t ) and the current of active motion Ja(x, t ). The
physics of the second term in the right-hand side of Eq. (5) can
be understood under the following rationale. The internal dy-
namics of self-propulsion characterized by the active current
Ja(x, t ) gives rise to the advection term ∇ · [V a(x, t )P(x, t )]
in the transport equation (3),

∂

∂t
P(x, t ) + ∇ · [V a(x, t )P(x, t )] = DT∇2P(x, t ), (7)

where the probability current V a(x, t )P(x, t ) ≡ ∫
dx′G(x −

x′, t )Ja(x′, t ) defines the active velocity field V a(x, t ), as can
be verified by substituting (5) in (3). Locally, this probability
current is the result of the contributions of the active current
Ja(x′, t ) at each point in space, weighted by the Gaussian
propagator.

Second, Eq. (6) simply expresses that the change of the par-
ticle position in the time interval �t , �x(t ; �t ) ≡ x(t + �) −
x(t ), is decomposed as the sum of a random displacement due
to active motion �xa(t ; �t ) ≡ ∫ t+�t

t ds va(s), and another due

to Brownian motion �xB(t ; �t ) ≡ ∫ t+�t
t ds ξB(s). Here va(t )

denotes the stochastic swimming velocity of the particle and
ξB(t ) is three-dimensional Gaussian-white noise modeling the
thermal fluctuations. This description can be embodied in the
stochastic differential equation

d

dt
x(t ) = va(t ) + ξB(t ). (8)

In addition, one can prove that both Eqs. (5) and (6) are
self-consistent with the active continuity equation (4) (see
Appendix A).

In order to determine the statistical properties of the per-
sistent part of motion, we require to make explicit the second
constitutive relation between the current Ja(x, t ) and the
probability density Pa(x, t ) in Eq. (4). Here we assume the
generalized form of the Fick’s law,

Ja(x, t ) = −∇
∫ t

0
dt ′K (t, t ′)Pa(x, t ′), (9)

where K (t, t ′) denotes a memory function that embeds the
implicit dynamics of the particle swimming direction and
thus the patterns of active motion. This constitutive relation
leads to a generalization of the diffusion equation for Pa(x, t )
when Ja(x, t ) is substituted in Eq. (4). Such a generalization
considers a temporal nonlocality, and to the knowledge of
the authors, no simple stochastic process in the form of a
stochastic differential equation for va(t ) gives rise to it (the
analysis of this aspect alone deserves attention and will be
discussed elsewhere). In some cases of physical interest, it can
be considered invariant under time translations, i.e., K (t, t ′) =
K (t − t ′); however, in general, such memory can be nonlocal

[23] in space too, but such a complication is unnecessary at
the level of description of the present paper. We want to point
out in advance that the two first even moments of P(x, t ) can
be written in terms of the memory function K (t, t ′) [24] as

〈x2(t )〉 = 2dDT t + 2d
∫ t

0
dt ′

∫ t ′

0
dsK (t ′, s) (10)

and

〈x4(t )〉 = 4(d + 2)

[
DT

∫ t

0
ds〈x2(s)〉

+
∫ t

0
dt ′

∫ t ′

0
dsK (t ′, s)〈x2(s)〉

]
, (11)

which reveal, explicitly, the role of the memory function.
The general scope of our theoretical approach, endowed in

the memory function K (t, t ′), can be reviewed as follows. Lets
first recall that active Brownian and run-and-tumble motion
provide an explicit stochastic dynamics of self-propulsion or,
equivalently, of the pattern of active motion, for which in the
long-time regime, the details of the fluctuating dynamics of
the swimming direction for both models can be cast into the
zero-ranged memory function K (t ) = Deff δ(t ), with Deff an
effective diffusion coefficient which is identified with v2

0/�,
v0 the particle swimming speed, and �−1 the persistence
time. A first correction that incorporates the effects of persis-
tence on both models is given by the exponentially damped
memory function K (t ) = Deff� e−�t , which is valid in the
long-time regime and leads to the telegrapher’s equation (1)
after substitution of K (t ) in Eq. (4) with ρ(x, t ) = Pa(x, t )
[15,21]. Such a memory function can be rigorously obtained
from generic models of active motion (ABM, RTM) in the
long-time regime, where the polar approximation is valid, i.e.,
when one can neglect the multipoles of order higher than
one in the multipolar expansion of the complete probability
density distribution [9,11,23] (see Appendix D). Thus, proper
generalizations of the memory function K (t, t ′), would lead to
physically meaning descriptions of different patterns of active
motion, including ABM and RTM.

Finally, we want to point out that although the theoretical
framework posed in this paper is limited to the description
of the free motion of an active particle, it can be extended
to different situations with almost no change. For instance,
when the active particle moves on a curved surface we simply
replace the vector derivative ∇ with the covariant derivative
compatible with the metric tensor of the surface. This situa-
tion in particular is of interest for the study of the combined
effects of persistent motion and the surface curvature on the
active transport processes such as the ones studied in Ref. [9].
Another case of interest corresponds to the inclusion of the
effects of confinement due to an external field; in this case
we can analyze the role of thermal fluctuations if the statis-
tical properties of active motion under the influence of the
external field in the absence of thermal noise are known.
Simply, the term Jext(x, t ) ∝ Pa(x, t )∇ϕ(x), must be added to
the probability current Ja(x, t ) (9), without further changes
in Eqs. (3), (4), and (6), where ϕ(x) is the external potential
field acting on the active particles [25]. The case when active
motion is confined by “hard-wall” boundaries, as occurs in
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many experimental situations, can be treated in a similar fash-
ion; however, the restrictions of zero flux at the boundaries
must be taken into account as much as for the propagator of
thermal diffusion (this can be expanded in eigenfunctions of
the diffusion equation that satisfies the boundary conditions)
as for the solution of active motion in the absence of thermal
noise. These extensions are of interest, and a discussion of the
possible solutions will be presented elsewhere.

A. Persistent dynamics through a memory function

In this paper we argue that to fulfill the implicit dynamics
of the swimming vector of active particles, not only in the
long-time regime but also in the whole span of time, a power-
law dependence should be incorporated into the memory
function K (t, t ′). We propose, instead of the time-translational
invariant memory function in (9), an exponentially damped
power-law memory function given explicitly by

K (t, t ′) = c2 t−ηe−�t

t ′−ηe−�t ′ , t � t ′, (12)

where η is a non-negative dimensionless parameter that takes
into account how fast the ratio t/t ′ diminishes for t 
 t ′ (or
grows as t � t ′), c is another parameter with units of speed,
and �−1 is the persistence time. As is made clear later in
this paper, η defines an effective “temporal dimension” whose
value is intimately related to the particle’s effective speed
in the short-time regime. Though (12) is not invariant under
time translations, the consequences of such a particular form
are relevant for the description of active motion as is dis-
cussed in the following. Notice that for η = 0 we recover the
exponential memory function that leads to the telegrapher’s
equation (1).

After substitution of the memory function (12) in Eq. (4),
we get a closed equation for the probability density Pa(x, t ):[

∂2

∂t2
+

(η

t
+ �

) ∂

∂t

]
Pa(x, t ) = c2∇2Pa(x, t ). (13)

The second term in the left-hand side of the last expression
considers two effects: (1) the short-time effects of active
motion indicated by η and (2) the dissipation as occurs in
the telegrapher’s equation (1), with �−1 the timescale that
characterizes the correlation time of the orientation of the
particle direction of motion. Initial conditions corresponding
to a pulse at the origin of coordinates that propagates with van-
ishing initial flux are of interest and are denoted by Pa(x, 0) =
δ(x), and ∂Pa(x, 0)/∂t = 0. We want to point out in passing
that in the dissipationless case, i.e., � = 0, Eq. (13) coincides
with the generalization of the wave equation of Bietenholz
and Giambiagi [26] in d isotropic spatial dimensions and in
dη = η + 1 isotropic “temporal dimensions.”

We show that the solutions to Eq. (13) describe active
motion in the whole time regime. Furthermore, since such
a solution gives directly P(x, t ), the probability density of
finding a particle at x at time t , independent of the direction of
motion motion, our theoretical framework dispenses with the
standard approach of getting a hierarchy of coupled equations
for the moments of the complete distribution and truncating
the hierarchy at some suitable order.

B. Probability density function for the effective
active motion Pa(x, t )

We can take advantage of the simple physical circum-
stances considered here, namely, that active particles diffuse
freely and isotropically in open space, in order to find solu-
tions to Eq. (13) in Fourier space. After Fourier transforming
Eq. (13) we get

d2

dt2
P̃a(k, t ) +

(η

t
+ �

) d

dt
P̃a(k, t ) + c2k2P̃a(k, t ) = 0, (14)

where we have chosen

P̃a(k, t ) =
∫

dx e−ix·kPa(x, t ) (15)

as the direct Fourier transform, and k denotes the two-
dimensional Fourier variable (wave vector) conjugate to x. As
usual, the inverse transform involves the kernel (2π )−d eik·x.
Equation (14) is complemented by the corresponding initial
conditions P̃a(k, 0) = 1 and (∂/∂t )P̃a(k, 0) = 0.

The rotational symmetry of Eq. (14) implies that its solu-
tion depends only on k, the magnitude of k; then P̃a(k, t ) =
P̃a(k, t ), and for η > 0 the solution can be obtained by solving
a Kummer differential equation as is shown in Appendix B.
Consequently, the solution is written in terms of the Kummer
function 1F1(a, b; z) = ∑∞

�=0
(a)�
(b)�

z�

�! ; in particular, for η = 0 it
can be simplified using explicit expressions of this function
[27],

P̃a(k, t )

= e−�t/2

{
cosh

(
σk

�t
2

) + 1
σk

sinh
(
σk

�t
2

)
, η = 0

e−σk�t/2
1F1

[
η

2

(
1 + 1

σk

)
, η; σk �t

]
, η > 0

,

(16)

where σk =
√

1 − 4�2
pk2 is a dimensionless, rotationally in-

variant function of the dimensionless quantity �pk.
Thus, for η > 0 the complete probability distribution (6),

or ISF [13], is a function of the magnitude of k and is given
by

P̃(k, t ) = exp

{
−t

[
DTk2 + �

2
(1 + σk )

]}
× 1F1

[
η

2

(
1 + 1

σk

)
, η; σk �t

]
, (17)

where the factor exp{−DTk2t} is the d-dimensional Fourier
transform of the Gaussian propagator G(x, t ) that appears in
(6). The appearance of the dimensionless parameter η and the
inverse Péclet number D̃T = DT/(��2

p) is made explicit in the
solution (17) when this is written as function of the dimen-
sionless wave vector �pk. As is evident from the expression
(17), the behavior is independent of the spatial dimensionality
of the system since the dependence is on the wave-vector
magnitude only.

The ISF is shown in Fig. 1 for η � 0 and for the reference
value of the inverse Péclet number D̃T = 0.038 (computed
from the data obtained from Janus particle trajectories mov-
ing in two dimensions in Ref. [18]), as a function of the
following:
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FIG. 1. Intermediate scattering function P̃(k, t ) as given in (6) with an inverse Péclet number D̃ = DT/��2
p = 0.038 obtained from the

experimental data in Ref. [18]. Columns a and b show P̃(k, t ) as function of the dimensionless time �t , and column c as function of the
dimensionless wave vector �pk. The panels in column a correspond to η = 0 (a.1), η = 1 (a.2), η = 3/2 (a.3), and η = 2 (a.4), where P̃(k, t ) is
shown for different values of the dimensionless wave vector �pk: 0.5 (solid black line), 1.0 (dashed red line), 2.0 (dash-dotted green line), 4.0
(dash-double-dotted blue line), 7.0 (double-dash-dotted brown line), and 10.0 (long-dashed cyan line). The panels in column b show P̃(k, t )
for: �pk = 0.5 (b.1), �pk = 1 (b.2), �pk = 5 (b.3), and �pk = 10 (b.4); different curves correspond to η = 0.1 (solid black line), 1.0 (dashed red
line), 2.0 (dash-dotted green line), 3.0 (dash-double-dotted blue line), and 4.0 (long-dashed brown line). Column c shows P̃(k, t ) as a function
of the dimensionless wave vector �pk at different times: �t = 0.1 (c.1), �t = 1.0 (c.2), �t = 10.0 (c.3), and �t = 100.0 (c.4) for different
values of η: 0 (solid black line), 0.5 (dashed red line), 1.0 (dash-dotted green line), 2.0 (dash-double-dotted blue line), 3.0 (double-dash-dotted
brown line), and 4.0 (long-dashed cyan line).

(a) The dimensionless time, �t , for different values of lpk
marked by different line style. The effects of the parameter
η are shown in the different panels of column a: η = 0 (a.1),
η = 1 (a.2), η = 3/2 (a.3), and η = 2 (a.4). This behavior is
qualitatively similar to the ISF obtained experimentally for
Janus particles diffusing in two dimensions [18].

(b) The same variable, �t , for different values of η marked
by different line style, at different values of �pk shown in the
different panels of column b: �pk = 0.5 (b.1), �pk = 1 (b.2),
�pk = 5 (b.3), and �pk = 10 (b.4).

(c) The dimensionless magnitude of the wave vector, �pk,
at the dimensionless time �t = 0.1 (c.1) and 1.0 (c.2) for
which the characteristic oscillations of active motion are
shown, and �t = 10 (c.3) and �t = 100 (c.4), for which the
oscillations are damped out and the solutions converge to a
universal Gaussian distribution independently of η.

In the short-time regime, �t � 1, the damping term (the
one proportional to �) can be neglected in Eq. (14). In this
regime the active probability density for the initial data chosen
is given by

P̃a,s-t(k, t ) � �(dη/2)
Jdη/2−1(kct )

(kct/2)dη/2−1
, (18)

where Jα (z) is the αth order Bessel function of the first kind,
�(z) is the standard Gamma function, and we have explicitly
shown the dependence on the “temporal dimension” dη intro-
duced by Bietenholz and Giambiagi [26]. Remarkably, it can
be shown that Eq. (18) coincides exactly with the intermediate
scattering function obtained in the short-time regime, from the
expressions of the ABM given in Ref. [13] and from the RTM
given in Ref. [18] when dη = d . The general expression (18)
gives rise to a whole family of rotationally symmetric pulses
that propagates with speed c:

Pa,s-t(x, t ) = �(dη/2)

2d−1πd/2

∫ ∞

0
dk kd−1

× Jdη/2−1(kct )

(kct/2)dη/2−1

Jd/2−1(kx)

(kx/2)d/2−1
, (19)

where it can be noticed that the spatial dimensionality d , and
the temporal one dη, play a symmetric role. In particular, it is
noticeable that Eq. (19) reveals a connection between η and
the spatial dimensionality of the system d , for if dη is chosen
to be equal to the spatial dimension d , we get that the proba-
bility density (18) can be written in the spatial coordinates as
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the rotationally symmetric sharp pulse:

Pa,s-t(x, t ) = δ(x − ct )

�d xd−1
, (20)

which propagates without distortion in any dimension and is
free from some of the undesirable features of the propagating
pulses given by the wave equation [16], like signal reverbera-
tion [28], wake effects [22], or negative probabilities [17]. In
Eq. (20) x = |x| and �d = 2πd/2/�(d/2) is the surface of the
(d − 1)-dimensional unit sphere.

If we take dη = 1 in (19), we recover the propagating
pulses given by the solutions of the d-dimensional wave
equation. As has been pointed out in Refs. [16,22,28], such
pulses give rise to wake effects, responsible for the anomalous
behavior specially in two spatial dimensions where unphysical
negative probabilities appear [17]. Notice additionally that the
algebraic decay with distance in (20) differs from the standard
decay x−1 of the pulse solution of the wave equation in three
dimensions.

In the long-time regime, �t 
 1, the dependence on η is
faded out and the decaying behavior of the memory function
(12) is led by the exponential e−�(t−t ′ ), for which normal dif-
fusion is expected. We show that this is the case by use of the
approximation 1F1(a, b, z) ≈ �(a)ezza−b/�(b) for z 
 1 [27]
and of �pk � 1; thus the asymptotic expression of the active
sector in the intermediate scattering function (17) behaves as

P̃a,l-t(k, t ) � exp[−Deffk
2t]. (21)

This is exactly the expected expression of the intermediate
scattering function corresponding to Brownian motion with
an effective diffusion constant Deff = c2/� [13,14].

C. Mean-squared displacement for the active part of motion

We focus on the mean-squared displacement associated
with the effective transport equation (13) proposed here. The
contribution to the MSD due to active motion can be obtained
directly by calculating the integral in (10) when DT = 0:

〈x2(t )〉a = 2d
c2

�
t[1 − 2F2({1, 1}, {2, dη},−�t )], (22)

where 2F2({a, b}, {c, d}, x) = ∑
n=0

(a)n(b)n

(c)n(d )n

xn

n! is the confluent
hypergeometric function [27] and 〈F (x)(t )〉a denotes the ex-
pectation value of F (x) calculated with the corresponding
probability density of active motion Pa(x, t ). From the se-
ries expansion of the confluent hypergeometric function, the
ballistic behavior 〈x2(t )〉a � v2

efft
2(1 − 2

3
�t
η

+ · · · ) is evident
in the short-time regime �t � 1; however, with an effective
speed veff, proportional to c, the proportionality factor being
the square root of the ratio of the spatial dimensionality to the
temporal one, i.e., veff = √

d/dη c. Thus, the proposed model
given by (13) gives rise to the pulse (19) that propagates with
the effective speed veff. If the spatial dimension d is larger
than the temporal one dη the effective speed is larger than
c, and the reversed occurs if d < dη. As noted above, the
case dη = d is of particular interest since the parameter c
corresponds precisely to the propagation speed. By use of the
asymptotic behavior of the confluent hypergeometric function
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FIG. 2. Dimensionless mean-square displacement
[�2/(2dc2)]〈x2(t )〉a as function of the dimensionless time �t
for different values of η. The ballistic behavior, ∼(d/dη )c2t2, is
evident in the short-time regime, while normal diffusion 2dDefft is
shown at the long-time regime with Deff = c2/�.

in (22), one recovers the diffusive behavior

〈x2(t )〉a = 2dDeff t

{
1 + η[ψ (η) − ln �t]

�t
− η(η − 1)

(�t )2

×
[

1 − η − 2

2�t
+ (η − 2)(η − 3)

3(�t )2
− · · ·

]}
, (23)

giving rise to normal diffusion ∼2dDeff t as �t → ∞, with the
diffusion coefficient Deff = c2/�, where ψ (x) is the digamma
function [27]. The factor between curly brackets contains the
corrections due to the active memory kernel (12) and thus
shows an explicit dependence on η. Notice that although
the model makes η conspicuously revealed in the short-time
regime, it affects the time dependence of the MSD in the
intermediate-time regime as well. That is, while no correction
whatsoever to the standard 2dDeff t is obtained for η = 0,
this linear time dependence of the MSD is corrected by the
factor [1 − (γe + ln �t )/�t] for η = 1, with γe � 0.5772 . . .

the Euler-Mascheroni constant. Higher corrections appear the
higher the value of η, and these corrections shift the crossover
to the diffusive regime to larger times, as is apparent in Fig. 2,
where the exact time dependence of the MSD is shown for
different values of η. We would like to point out in passing that
an equivalent exact expression for the time dependence of the
MSD is given by Eq. (C1) in Appendix C. This expression is
obtained directly from (16) using 〈x2(t )〉a = −∇2

k P̃a(k, t )|k=0,
where ∇2

k is the Laplacian in the Fourier variables. Expres-
sions (C1) and (22) establish a mathematical identity that will
be proved rigorously elsewhere.

Specific expressions for the MSD obtained from (22)
are given for different values of η in Table I. For η = 0,
we recover the well-known expression of persistent motion
obtained, among many other equations—such as from the
Ornstein-Uhlenbeck description of Brownian motion—from
the telegrapher’s equation. This expression describes the ex-
ponentially fast crossover from ballistic motion to normal
diffusion, for arbitrary spatial dimension around times of the
order of the timescale �−1.
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TABLE I. Explicit expressions for the mean-squared displace-
ment from (22) for specific cases of different values of dη = η + 1.
Ein(x) = γe + ln x + E1(x) where E1(x) = ∫ ∞

x dt e−t/t is the expo-
nential integral function (see Ref. [27]) and γe � 0.5772 . . . is the
Euler-Mascheroni constant.

dη 〈x2(t )〉a

1 2dc2

�2 [�t − (1 − e−�t )]

2 2dc2

�2 [�t − Ein(�t )],

3 2dc2

�2 {�t + 2[1 − Ein(�t )] − 2
�t (1 − e−�t )}

D. The kurtosis κ(t ) of Pa(x, t )

As is well known, the kurtosis of a probability density
function gives information about its “shape” and can be used
as a measure of “distance” from a reference distribution. The
kurtosis definition given in Ref. [29] is an invariant measure
for multivariate Gaussian distributions and is explicitly given
by κ = 〈xT �−1x〉, where xT denotes the transpose of the d-
dimensional vector x, and �−1 the so called covariance matrix
defined as the inverse of the average for the dyadic product
x · xT .

For rotationally symmetric distributions, the kurtosis re-
duces simply to

κ (t ) = d2 〈x4(t )〉
〈x2(t )〉2

. (24)

It can be shown that the kurtosis for a rotationally symmetric
Gaussian distribution with mean μ and variance σ 2 has the in-
variant kurtosis value d (d + 2). Thus, in the long-time regime
it is expected that the kurtosis of the distributions given by (6)
and (16) acquires this value, denoted with κ∞.

An exact expression for the time dependence of 〈x4(t )〉a,
suitable for analyzing its leading dependence in the short-time
regime, is obtained by calculating the integral in (11) when
DT = 0. Although it is possible to express it in terms of
hypergeometric functions, the series expansion in powers of
�t ,

〈x4(t )〉a = 8d (d + 2)η!(ct )4
∞∑

n=0

(−�t )n

(n + η + 3)!

× n + 1 + η[γe − 1 + ψ (n + 3)]

n + 4
, (25)

is more convenient for the sake of analysis in the short-time
regime. In this regime the probability density function de-
pends strongly on η, as can be seen from the last expression,
since we have for �t � 1 that 〈x4(t )〉a � d (d + 2)/[(η +
3)(η + 1)](ct )4; and after dividing this by the mean-squared
displacement in the same time regime, we have that the kur-
tosis has the η-dependent value κa-str � κ∞(η + 1)/(η + 3),
where κ∞ = d (d + 2) and κa-str denotes the kurtosis κa(t )
of the probability density Pa(x, t ) in the short-time regime.
In Fig. 3 the ratio κa(t )/κ∞, which is independent of the
system spatial dimensionality, is shown as a function of the
dimensionless time �t for different values of η.

Notice that the value η = 0 corresponds to the case de-
scribed by the telegrapher’s equation [16] and is characterized
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FIG. 3. Kurtosis κ/κ∞ as function of the dimensionless time �t
for different values of the parameter η, where κ∞ = d (d + 2) gives
the value of the kurtosis for a Gaussian distribution in d spatial
dimensions. The dash-dotted line marks the case η = 1 for which
dη = 2. The value 0.5 in the short-time limit corresponds to the
kurtosis of the pulse given by (20) with d = 2.

by κa-str/κ∞ = 1/3. As noted in Refs. [8,16], for d = 2 and
3, κa-str describes a wavelike front propagation for which
wake effects are present, leading to the values κa-str = 8/3 and
κa-str = 5 for two and three dimensions, respectively. Like-
wise, the connection previously devised between η and the
system spatial dimensionality, η = d − 1, which character-
izes the short-time propagating pulse (20), gives κa-str/κ∞ =
d/(d + 2), for which the value 1/2 is obtained for d = 2 (see
dash-dotted red line in Fig. 3). Thus, different front propaga-
tions are characterized by the ratio κa-str/κ∞.

In the long-time regime, the fourth moment of Pa(x, t )
can be obtained alternatively from (16) by use of the for-
mula 〈x4(t )〉a = ∇4

k P̃a(k, t )|k=0 (see Appendix C), where ∇4
k

is the bi-Laplacian in the Fourier variables. After a long but
straightforward calculation, one gets expression (C2) for the
fourth moment, and from this one, the ratio κa/κ∞ = 1, which
characterizes the diffusive regime of the probability density
distribution, is obtained in the long-time regime (see Fig. 3
upper dotted line).

III. COMPARISON: GENERALIZED ACTIVE BROWNIAN
MOTION VS ACTIVE BROWNIAN MOTION

AND RUN-AND-TUMBLE MOTION

In this section we focus our analysis on a comparison of
our model of active motion, which arises from Eqs. (4) and
(9), with the well-known models of active Brownian and run-
and-tumble motion. Although the formalism introduced here
to consider thermal fluctuations is well applicable to any kind
of active motion, we center our attention on discerning the
differences between these just in their active nature.

In particular it is of interest to contrast the results obtained
from the model we have named generalized active Brownian
motion (GABM) described in Sec. II with the theoretical
predictions made for active agents that use the reorientation
dynamics of the swimming direction of ABM and RTM. Both
models can be cast into a transport equation for the probability
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density function, P(x, v̂, t ), of finding a particle at the point
x moving along the swimming direction v̂ at the instant t .
When the translational motion of the active particle occurs
in the d-dimensional Euclidean space, the dynamics of the
swimming vector velocity occurs on the surface of the unit
(d − 1)-dimensional sphere Sd−1.

The probability density function for active Brownian mo-
tion, PABM(x, v̂, t ), satisfies the Fokker-Planck-like equation

∂

∂t
PABM(x, v̂, t )+v0v̂·∇PABM(x, v̂, t ) = DR∇2

v̂ PABM(x, v̂, t ),

(26)

where DR is the coefficient of rotational diffusion whose
inverse, D−1

R , defines the persistence time, v0 is the particle
swimming speed, ∇2

v̂ is the corresponding Laplace-Beltrami
operator associated to the unit sphere Sd−1, and ∇ is the
gradient operator in d spatial dimensions. Analogously, the
probability density function for RTM model, PRTM(x, v̂, t ),
satisfies the transport equation

∂

∂t
PRTM(x, v̂, t ) + v0v̂ · ∇PRTM(x, v̂, t )

= −λPRTM(x, v̂, t ) + λ

∫
d v̂′

�d
PRTM(x, v̂′, t ), (27)

where the parameter λ is the tumbling rate of the self-
propelling particle and

∫
d v̂′ denotes the integration over the

d-dimensional unit sphere Sd−1, �d being its area. A compari-
son between ABM and RTM has been carried out theoretically
to study the many-body effects of active particles that exhibit
motility-induced phase separation in two dimensions [11]. On
the other hand, a comparison between both models against
data acquired from trajectories of Janus particles has been
carried out in two dimensions too [18], where the authors
conclude that the model of active Brownian motion describes
better the data analyzed.

Exact analytical expressions for the total intermediate scat-
tering function are known for active Brownian particles freely
diffusing in two [18] and three dimensions [13], while the
corresponding active intermediate scattering functions in one,
two, and three dimensions for RTM are given in Ref. [14].

In addition to a direct comparison between the ISF of ABM
and RTM with the one given in this paper [see Eq. (17)],
we make a comparative analysis among the mean-squared
displacements and the kurtosis of the active part of the par-
ticle’s motion. This allows for a more physical analysis of the
differences among these patterns of active motion.

For ABM and RTM the mean-squared displacement and
the kurtosis are calculated from an analysis based on terms of
the hydrodynamic-like tensor fields defined in Appendix D,
namely, ρ(x, t ), the scalar probability density (D1a); P i(x, t ),
the ith component of the polarization vector field (D1b);
Qi j (x, t ), the elements of the nematic tensor field (D1c); and
the elements of the third rank tensor field Ri jk (x, t ) (D1d).

The procedure presented in Appendix D allows us to de-
rive equations for each of the hydrodynamic-like tensors just
mentioned above. The conservation of probability leads to the
continuity equation

∂

∂t
ρ(x, t ) + ∂iJ

i(x, t ) = 0, (28)

where the ith component of the probability current, Ji(x, t ),
is given by v0P i(x, t ) and ∂i denotes the partial derivative
with respect to the ith spatial coordinate. Likewise, the evolu-
tion equation of the ith component of the polarization vector
P i(x, t ) is

∂

∂t
P j = −ξ P j − v0

d
∂ jρ − v0∂kQ

jk, (29)

where the parameter ξ acquires the value (d − 1)DR for the
ABM model, and the value λ for the RTM one, respectively.
We note that by combining Eqs. (28) and (29), one gets the
following inhomogeneous telegrapher’s equation:

∂2

∂t2
ρ + ξ

∂

∂t
ρ = v2

0

d
∇2ρ + v2

0∂i∂ jQ
i j . (30)

On the other hand, the evolution equation for the elements of
the nematic-like tensor Qi j is given by

∂

∂t
Qi j = −ξQi j − v0

d + 2
T i j − v0∂kR

i jk, (31)

with T i j = −2 δi j

d ∂kP k + ∂ iP j + ∂ jP i a second 2-rank trace-
less tensor field, and the parameter ξ acquires the value 2dDR

for ABM and the value λ for the RTM, respectively.
Notice that the damping rate in Eq. (29) (first term in

the right-hand side) is given by ξ , while it is given by ξ in
Eq. (31). Thus, P i and Qi j damp out at the same rate for
the case of RTM, since ξ = ξ = λ. In contrast, the nematic
tensor Qi j damps out faster than the polarization vector P i for
ABM, since ξ > ξ for d � 2. This is expected to occur also
for tensors of higher rank, namely, that each tensor of rank
n + 1 decays faster than the one of rank n. This observation
demonstrates the difference between both models; in particu-
lar this is analyzed by a comparison of the time dependence
of the kurtosis among the models.

A. The mean-squared displacement and the kurtosis

The exact time dependence of the mean-squared displace-
ment for ABM and RTM can be obtained straightforwardly
from the inhomogeneous telegrapher’s equation [as is shown
in Appendix D by use of Eq. (30)] and is given by

〈x2(t )〉a = 2v2
0

ξ 2
[ξ t − (1 − e−ξ t )]. (32)

As has been mentioned in Sec. II C, this expression arises
from a variety of models of persistent motion, exhibiting the
ballistic time dependence 〈x2(t )〉 � v2

0t2, in the short-time
regime ξ t � 1, and the linear time dependence 〈x2(t )〉 �
2dDeff t , in the regime of long times, ξ t 
 1, with Deff =
v2

0/(d ξ ). For the GABM model presented in this paper,
Eq. (32) arises naturally only for the case η = 0 (see Table I).
Notice, however, that there is no quantitative agreement be-
tween the MSD for η = 0 and the expression (32) for constant
values of the set of parameters: {c, �, v0, DR, and λ} (see
the curves for η = 0, long-dashed gray line, ABM dashed
magenta line, and RTM dashed-double-dotted orange line in
Fig. 4 for the two-dimensional case). Nevertheless, a good
agreement among the time dependence of the three models
(see the solid blue line in Fig. 4 for two spatial dimensions
and the lines for ABM and RTM) is obtained when the spatial
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displacement given by the GABM (22) (η = 0, 1, and 2) and the
mean-squared displacement corresponding to ABM and RTM (32),
for the two-dimensional case (d = 2).

dimensionality, d , plays the same role as the temporal one,
i.e., when dη = d or equivalently η = d − 1. In addition we
must choose � = DRd (d − 1) for a proper comparison with
ABM and � = λd to compare with RTM. In both cases we set
c = v0. That such is the case can be easily proof by requiring
that the moments at both the short- and long-time regimes
of our model coincide with the corresponding ones of the
ABM and RTM. We want to point out that even when the
agreement in the mean-squared displacement is good when we
choose η = d − 1, the position distribution reveals differences
among the three patterns of active motion considered. This
is markedly exhibited in the intermediate-time regime of the
kurtosis shown in Fig. 5 for d = 2, where for the timescales
chosen, the GABM grows more rapidly than ABM and RTM.
In the same figure it can be noticed that in the short-time
regime, the case for which η = 1 properly describes the dis-

10
-2

10
-1

10
0

10
1

10
2

10
3

 Γt

2

4

6

8κ

GABM η = 0
GABM η = 1
GABM η = 2
ABM
RTM

Diffusive regime

wave-like propagation

pulse propagation

d = 2

FIG. 5. Comparison of the time dependence of the probability
distribution kurtosis given by the GABM for η = 0 (dashed gray
line), 1 (solid blue line), and 2 (short-dashed gray line), and the
mean-squared displacement corresponding to ABM and RTM (32),
for the two-dimensional case (d = 2).

torsionless pulse propagation (characterized by κ = 4 in two
spatial dimensions) exhibited by ABM and RTM in contrast to
the case η = 0, which gives rise to wake effects of wavelike
propagation characterized by κ = 8/3 � 2.667 in two spatial
dimensions [16]. In the long-time regime the kurtosis of the
three distributions reaches the value 8 that univocally charac-
terizes the Gaussian distribution of normal diffusion.

B. The intermediate scattering function: Two-dimensional case

Finally for this section, we compare the ISF given by our
model of active motion for η > 0, Eq. (17), with the corre-
sponding complete ISF of ABM and RTM in the case of two
dimensions. These last ones are computed by taking the prod-
uct of exp(−DTk2t ) and the Fourier transform of PABM(x, t )
and PRTM(x, t ) obtained by integrating over the orientational
degrees of freedom of PABM(x, v̂, t ) and PRTM(x, v̂, t ), respec-
tively. Instead of using the expansions in eigefunctions to
compute the ISFs, as is done in Ref. [18], we use instead
the exact representation of these in the form of continuous
fractions which are amenable for numerical evaluation (see
Appendix E).

Our results are shown in Fig. 6 for two different values of
the inverse Péclet number, D̃ = 0.038 (such as the one used
in Fig. 1) and D̃ = 0.01 for which the effects of persistence
are more conspicuous. The ISF obtained from our model as
function of the dimensionless wave vector �pk is shown for
η = 2 (dash-dotted green line), 1 (dashed blue line), 0.75
(dashed magenta line), and 0.1 (dash-dotted orange line) is
compared with the corresponding ones of RTM (solid black
line) and of ABM (solid red line).

IV. CONCLUDING REMARKS AND PERSPECTIVES

In this paper we proposed and studied a model for
active motion that incorporates the persistence effects of
self-propulsion through the memory function given in
Eq. (12). The specific choice of such function results in the
Smoluchowski-like equation (13) for the probability density
function Pa(x, t ) of finding a particle at the position x at
the time t in a d-dimensional space. The main feature of
the memory kernel (12) is that it gives a smaller weight to
events in the past than the corresponding exponential memory
of the telegrapher process [15,21]. This leads to Eq. (13),
which corresponds to an original generalization of the well-
known telegrapher’s equation. Such a generalization takes
into consideration, in an exact manner, the contribution of
active motion characterized by the parameter η, which car-
ries implicitly the mechanism of self-propulsion. Our analysis
takes into consideration the fluctuations of a thermal bath as
well. The joint effects of thermal and active fluctuations are
encompassed in the total probability density function P(x, t ),
given by Eq. (6), whose Fourier transform gives us the inter-
mediate scattering function [see Eq. (17)]. Thus, our analysis
avoids the sometimes cumbersome hierarchy analysis made
for active Brownian and run-and-tumble motion and allows a
qualitative comparison with the experimental data for Janus
particles [18].

We also have presented an analysis of the time dependence
of the mean-squared displacement and of the kurtosis of the
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particle position distribution, and we studied the deep con-
sequences of the memory parameter η. To be explicit, we
uncovered a large class of active-motion patterns that prop-
agate distinctly as the parameter η is varied. The connection
between η and the spatial dimensionality d is uncovered by
choosing η = d − 1; for this, the “time dimension” plays the
same role as the spatial dimension in the context of the gen-
eralization of the wave equation of Bietenholz and Gambiagi.
In our model, this choice manifestly captures the dynamics
of active Brownian motion and run-and-tumble motion if the
relations � = DRd (d − 1) and � = λd are satisfied.

The approach presented in this paper can be extended in
various directions. For instance, it is of interest to consider
the analysis of the combined effects of general patterns of
active motion under the confinement effects of an external
field. This case can be treated directly by considering an extra
term in the current probability due to the external force. In
addition, the effects of spatial heterogeneity on the dynamics
of the active particle, such as when the particle motion occurs
on a curved surface, can be immediately generalized for the
GABM. Moreover, as we mentioned above, the memory func-
tion can be adjusted in order to capture much more different
active behaviors. For example, we can modify the time depen-
dence of the memory function in order to damp it out slower
than the function proposed here. Also, the memory function
can be modified to take into account a space dependence to
describe additional effects of spatial inhomogeneities. Fur-
thermore, we can use the space dependence of the memory
function to interpret it as a generalized diffusion process in
order to treat the problem of an interacting active particle
system within the context of the hydrodynamic fluctuation
theory [21,30].
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APPENDIX A: CONSISTENCY BETWEEN CONSTITUTIVE
RELATIONS (5) and (6) WITH THE ACTIVE CONTINUITY

EQUATION (4)

Here we give a proof of the statement given in Sec. II that
Eqs. (5) and (6) provide a “constitutive relation” for the conti-
nuity equation (3) and are consistent with the active continuity
equation (4). Indeed, by direct substitution of Eqs. (5) and (6)
in (3) we have, after some rearrangements, that

∫
dx′

[
∂

∂t
G(x − x′, t )

]
Pa(x′, t )

+
∫

dx′G(x − x′, t )
∂

∂t
Pa(x′, t )

−
∫

dx′DT [∇2G(x − x′, t )]Pa(x′, t )

+
∫

dx′[∇G(x − x′, t )] · Ja(x′, t ) = 0. (A1)

The first and third terms of the last equation cancel each other
by use of the diffusion equation for the Brownian propagator,

∂

∂t
G(x − x′, t ) = DT ∇2G(x − x′, t ). (A2)
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We get∫
dx′

[
G(x − x′, t )

∂

∂t
Pa(x′, t ) + [∇G(x − x′, t )] · Ja(x′, t )

]
= 0. (A3)

Now, we use the identity ∇G(x − x′, t ) = −∇′G(x − x′, t ),
where ∇′ is the gradient operator in the x′ variables, and
perform an integration by parts to have∫

dx′G(x − x′, t )

[
∂

∂t
Pa(x′, t ) + ∇′ · Ja(x′, t )

]
= 0, (A4)

from which we obtain Eq. (4), which is completed by Eq. (9).

APPENDIX B: SOLUTION OF THE DIFFERENTIAL
EQUATION (14)

In order to solve the Eq. (14), we make the substitution
P̃a(k, t ) = e−x(p)T ϕ(p, T ) where x(p) = 1

2 (1 +
√

1 − 4p2),
where T = �t , p = |p|, and p = k�p are dimensionless quan-
tities introduced here for the sake of clarity. In addition, we
make the change of variable τ = T (2x(p) − 1); thus it is
straightforward to show that the function ϕ(p, τ ) satisfies the
Kummer differential equation

τ
d2ϕ

dτ 2
+ (η − τ )

dϕ

dτ
− αϕ = 0,

where α = ηx(p)/[2x(p) − 1]. It is well known that this
differential equation has the two linearly independent so-
lutions �(α, η; τ ) and τ 1−η�(α − η + 1, 2 − η; τ ), where
�(α, η; z) = 1F1(α, η; z) is the confluent hypergeometric
function [27]. The first solution, �(α, η; τ ), is the only pos-
sible one that satisfies the initial conditions P̃a(k, 0) = 1 and
dP̃a(k, 0)/dT = 0, unless the parameter η = 0. In such a case,
both linear independent solutions must be considered; thus the
solution is of the form

P̃a(k, 0) = e−x(p)T lim
η→0

[Ap�(α, η; τ )

+ Bpτ
1−η�(α − η + 1, 2 − η; τ )]. (B1)

Now, using that limη→0 �(α, η; τ ) = �(0, 0, τ ) = 1,
limη→0 τ 1−η�(α − η + 1, 2 − η; τ )] = τ�(1, 2; τ )] = eτ − 1,
and after imposing the initial value conditions just
mentioned above, it is not difficult to show that Ap = 1 and
Bp = x(p)/[2x(p) − 1]. After a straightforward calculation
the solution becomes

P̃a(k, t ) = e− 1
2 �t

⎡⎣cosh

(
�t

2

√
1−4�2

pk2

) sinh
(

�t
2

√
1−4�2

p p2
)

√
1 − 4�2

p p2

⎤⎦,

(B2)

which is the well-known solution for the telegrapher equation
(1) [7].

APPENDIX C: ALTERNATIVE EXPRESSIONS
FOR MSD AND KURTOSIS

In this section, we give the expressions for the mean-
squared displacement and fourth moment directly from the

probability distribution function (16). In the case of MSD one
gets

〈x2(t )〉a = 2d

{
c2

�
t − ηe−�t

∞∑
k=1

(�t )k

k!
[ψ (η + k) − ψ (η)]

}
,

(C1)

where ψ (x) = d log �(x)/dx is the digamma function. The
appearance of the exponential factor in front of the sum makes
expression (C1) useful to determine the asymptotic regime,
that is, 〈x2〉a � 2d Defft , which is the standard expression in
the diffusive regime, where the effective diffusion constant is
given by Deff = c2/�. In addition, we obtain the following
expression for the time dependence of the fourth moment:

〈x4(t )〉a = d (d + 2)c4

�4

{
−8�t + 4�2t2

+ 8(�t + 3)η e−�t
∞∑

k=1

(�t )k

k!
[ψ (η + k) − ψ (η)]

− 16η �te−�t
∞∑

k=1

(�t )k−1

(k − 1)!
[ψ (η + k) − ψ (η)]

+ 4η2e−�t
∞∑

k=1

(�t )k

k!

[
ψ (η + k) − ψ (η)]2

+ 4η2e−�t
∞∑

k=1

(�t )k

k!
[ζ (2, η + k) − ζ (2, η)]

}
,

(C2)

where ζ (a, x) is the Hurwitz zeta function [27]. The kurtosis
κa is obtained from last expression after dividing by 〈x2(t )〉2

a
and multiplying by d2. Clearly, the exponential prefactor in
front of the sums appearing in Eq. (C2) allows us to identify
immediately the asymptotic behavior of the kurtosis. Indeed,
in this long-time limit, �t 
 1, the fourth moment goes with
time as 〈x4(t )〉a � 4d (d + 2)c4t2/�2, and the mean-squared
displacement as 〈x2〉a = 2dc2t/�, thus the kurtosis has the
constant value κ∞ � d (d + 2) as was anticipated in earlier
sections.

APPENDIX D: HIERARCHY EQUATIONS FOR ACTIVE
BROWNIAN PARTICLES AND RUN-AND-TUMBLE

PARTICLES

The hydrodynamic tensor fields mentioned in Sec. III are
defined as follows:

ρ(x, t ) ≡
∫

d v̂ P(x, v̂, t ), (D1a)

P i(x, t ) ≡
∫

d v̂ v̂iP(x, v̂, t ), (D1b)

Qi j (x, t ) ≡
∫

d v̂

(
v̂iv̂ j − δi j

d

)
P(x, v̂, t ), (D1c)

Ri jk (x, t ) ≡
∫

d v̂

(
v̂iv̂ j v̂k − 1

d + 2
δ[i j v̂k]S

)
P(x, v̂, t ),

(D1d)
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where [· · · ]S indicates that the total symmetrization of the
indices must be taken into account and P(x, v̂, t ) is either
PABP(x, v̂, t ) or PRTP(x, v̂, t ).

After these definitions, we are going to determine the hi-
erarchy of hydrodynamic equations for both models (26) and
(27), respectively. The evolution equations (28),(29), and (31)
for ρ(x, t ), P i(x, t ), and Qi j (x, t ), respectively, are obtained
by multiplying each equation (26) and (27) with each term of
the orthogonal basis,

B =
{

1, v̂i, v̂iv̂ j − δi j

d
, v̂iv̂ j v̂k − 1

d + 2
δ[i j v̂k]S , · · ·

}
, (D2)

respectively, and integrating out the v̂ degrees of freedom.
In order to implement this procedure for the ABPs case we
notice that it is necessary to calculate the action of ∇2

v̂ on each
element of the basis B. For these calculations we find it use-
ful to apply the Weingarten-Gauss (WG) structure equations,
∇aeb = −Kb

a n and ∇an = Kabeb valid for any hypersurface
embedded in Rd of codimension 1, where ∇a is the covariant
derivative compatible with the metric tensor gab, Kab are the
components of the extrinsic curvature tensor, {ea} is a set
of tangent vectors, and n is a normal vector at a point in
the hypersurface [31]. In the case of the hypersphere Sd−1

one has n = v̂, Kab = gab, and ∇2
v̂ = ∇a∇a. For instance, the

calculation ∇2
v̂ v̂ can be carried out using the WG equations as

∇2
v̂ v̂ = ∇c∇cn = −gcbgcbn = −(d − 1)v̂; similarly one can

compute the Laplacian of the rest of the orthogonal basis
terms. For the RTPs equations we find it useful to apply the
property that the integration

∫
d v̂ of each element of B is zero

as a consequence of the compactness of Sd−1.
Next, we are going to sketch briefly the procedure used to

obtain the mean-squared displacement (MSD) and the fourth
moment for both ABPs and RTPs models. In particular, using
the hierarchy equations shown above we are able to provide
exact results for the MSD and the fourth moment for both
models. In particular for the MSD, one can obtain the equation
using Eq. (30):

d2

dt2
〈x2(t )〉 + ξ

d

dt
〈x2(t )〉

= v2
0

d

∫
dd x x2

[∇2ρ + v2
0∂i∂ jQ

i j
]
. (D3)

Now we perform an integration by parts, and we use the
traceless property of Qi j ; therefore one obtains the ordinary
differential equation for 〈x2(t )〉:

d2

dt2
〈x2(t )〉 + ξ

d

dt
〈x2(t )〉 = 2v2

0 . (D4)

Under the initial conditions 〈x2(t )〉 = 0 and d〈x2(t )〉/dt = 0
at t = 0, one can get easily the MSD,

〈x2(t )〉 = 2v2
0

ξ 2
[ξ t − (1 − e−ξ t )], (D5)

where we recall that ξ = (d − 1)DR and ξ = λ for ABPs and
RTPs models, respectively. It is noteworthy to mention that
the RTPs mean-squared displacement does not depend on the
dimension d of the space.

Next we are going to calculate the fourth moment of the
ABPs model. The procedure implemented is similar to the one

used for the MSD. Using Eq. (30) one is able to obtain the
following differential equation:

d2

dt2
〈x4(t )〉 + ξ

d

dt
〈x4(t )〉

= 4v2
0 (d + 2)

d
〈x2(t )〉 + 8v2

0J (t ), (D6)

where

J (t ) ≡
∫

dd x xix jQ
i j (x, t ). (D7)

This quantity can be determined using the equations of the hi-
erarchy. In particular, using Eq. (31) and the traceless property
of Ri jk one is able to find the equation

dJ
dt

= −ξJ − v0

d + 2
K(t ), (D8)

where we recall the values of ξ for ABPs and RTPs models,
respectively, and K(t ) is given by

K(t ) =
∫

dd x xix jT
i j (x, t ). (D9)

This quantity can be simplified using the structure of the
tensor T i j (x, t ) and integrating by parts; thus one gets K(t ) =
−2(d + 2)(d − 1)L(t )/d , where L(t ) is given by

L(t ) =
∫

dd x xiP
i(x, t ). (D10)

Using Eq. (29) and the identity e−ξ t d (eξ tv)/dt = dv/dt +
ξv, one is able to find the ordinary differential equation
e−ξ t d/dt (eξ tL) = v0. Under the initial condition L(0) = 0,
one can get easily the following solution:

L(t ) = v0

ξ
(1 − e−ξ t ). (D11)

Finally, using the expression for L(t ) we get an expression for
K(t ) and then substitute it in Eq. (D8) in order to determine
J (t ). Here we also use the identity

e−ξ t d

dt
(eξ tv) = dv

dt
+ ξv. (D12)

In particular, the equation for J (t ) is then given by

e−ξ t d

dt
[eξ tJ (t )] = 2v2

0 (d − 1)

dξ
(1 − e−ξ t ). (D13)

Now we solve this equation for the initial condition J (0) = 0;
then one has

J (t ) = 2(d − 1)v2
0

dξξ (ξ − ξ )
(ξ − ξ + ξe−ξ t − ξe−ξ t ). (D14)
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The J (t ) solution is therefore substituted in Eq. (D6) in order to determine the fourth moment 〈x4〉. In addition, using the identity
(D12), one is able to show that Eq. (D6) turns out to be

eξ t d

dt

[
eξ t d

dt
〈x4(t )〉

]
= 8v4

0 (d + 2)

dξ 2
[ξ t − (1 − e−ξ t )] + 16(d − 1)v4

0

dξξ (ξ − ξ )
(ξ − ξ + ξe−ξ t − ξe−ξ t ). (D15)

Under the initial conditions 〈x4(t )〉 = 0 and d〈x4(t )〉/dt = 0 at the time t = 0, the solution of the last differential equation (D15)
is given by

〈x4(t )〉 = 4v4
0

dξ 4ξ
2
(ξ − ξ )2

(
4(d − 1)ξ 4e−ξ t − 2ξ

2
e−ξ t [3dξ 2(ξ t + 3) + (d + 2)ξ

2
(ξ t + 3) − 2ξξ (d (2ξ t + 5) + ξ t + 4)]

+ (ξ − ξ )2{−4(d − 1)ξ 2 + (d + 2)ξ
2
[ξ t (ξ t − 4) + 6] + 4(d − 1)ξξ (ξ t − 2)}). (D16)

In particular, we should take carefully the limit ξ → ξ = λ for the RTPs model, which leads to the expression

〈x4(t )〉 = 4v4
0

dλ4
{6(d − 4)e−λt + 6(d − 2)tλe−λt + 2(d − 1)t2λ2e−λt + [(d + 2)t2λ2 − 12tλ − 6(d − 4)]}. (D17)

The behavior of the fourth moment for both models at the short-time regime is 〈x4(t )〉 � v4
0t4.

APPENDIX E: THE COMPLETE INTERMEDIATE SCATTERING FUNCTION TWO-DIMENSIONAL ACTIVE BROWNIAN
MOTION AND RUN-AND-TUMBLE MOTION

Exact expressions for the ISF for ABM and RTM can be obtained if in addition to the Fourier transform of the spatial variables
x → k, the Laplace transform of the time variable is performed, t → ε. These can be written in the form of continued fractions
using the methods espoused in Ref. [23]. For ABM we have that the partial ISF due to the active part is given by

P̃ABM(k, ε) = 1

2π

1

ε + v2k2/2

ε + DR + v2k2/4

ε + 4DR + v2k2/4

ε + 9DR + . . .

(E1)

while for RTM we have

P̃RTM(k, ε) = 1

2π

1

ε + v2k2/2

ε + λ + v2k2/4

ε + λ + v2k2/4

ε + λ + . . .

(E2)

and both results are valid for the initial conditions considered δ(2)(x)/2π . Notice that, as has been remarked in Sec. III, the
solution (E1) displays the increasing of the damping rates DR, 4DR, 9DR, . . . , n2DR for the corresponding n-rank hydrodynamic-
like field tensor of two-dimensional ABM, while the solution (E2) shows the same damping rate λ for all hydrodynamic-like
field tensors of two-dimensional RTM. From these expressions, the complete ISF, i.e., the one that takes into account the effects
of passive diffusion, is obtained by use of the time-shifting property of the Laplace transform, namely, by the replacement
ε → ε + DTk2.

The numerical inversion of the Laplace transform is stable and converges rather fast with the order of the approximant. The
calculation has been done using Mathematica [32], and the results are shown in Fig. 6.
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[29] K. V. Mardia, Sankhyā Indian J. Stat. B 36, 115
(1974).

[30] W. Hess and R. Klein, Adv. Phys. 32, 173 (1983).
[31] S. Montiel and A. Ros, Curves and Surfaces, Graduate Stud-

ies in Mathematics Vol. 69 (American Mathematical Society,
Providence, RI, 2009).

[32] Wolfram Research, Inverse Laplace transform, https://
reference.wolfram.com/language/ref/InverseLaplaceTrans
form.html (2020).

064601-14

https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1038/srep36702
https://doi.org/10.1140/epje/i2012-12084-y
https://doi.org/10.1016/j.physrep.2008.12.001
https://doi.org/10.1103/PhysRevE.90.022130
https://doi.org/10.1103/PhysRevE.55.7771
https://doi.org/10.1103/PhysRevLett.121.078001
https://doi.org/10.1103/PhysRevE.100.032123
https://doi.org/10.1103/PhysRevE.101.052609
https://doi.org/10.1103/PhysRevE.101.022608
https://doi.org/10.1063/1.531313
https://doi.org/10.1098/rsta.1983.0095
https://doi.org/10.1080/00018738300101551
https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html

