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Large-scale demixing in a binary mixture of cells with rigidity disparity in biological tissues
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Physical demixing on large scales of embryonic cell populations is fundamental to metazoan development,
but whether a rigidity disparity alone is sufficient to driving large-scale demixing in a binary mixture of cell
tissues is still an open question. To answer this question, we study mixing and demixing in a binary mixture
of rigidity disparity cell tissues without heterotypic interactions using the Voronoi-based cellular model. Under
suitable system parameters, the solid-like cells in the mixture can aggregate into a large cluster and the large-
scale demixing occurs, which addresses that a rigidity disparity alone is sufficient to drive large-scale demixing.
Remarkably, there exists an optimal temperature or rigidity disparity at which the binary mixture can be separated
to the maximum extent. The necessary condition for the separation of mixtures is that the two types of cells are
solid-like and liquid-like, respectively. The observation of robust demixing on large scales suggests that the
sorting of progenitor cells may occur very early in the development process before robust heterotypic interfacial
tensions are established. Our findings are relevant to understanding the mechanisms that drive cell sorting in
confluent tissues.

DOI: 10.1103/PhysRevE.104.064411

I. INTRODUCTION

Soft matter systems are usually multicomponent, consist-
ing of distinct species that are either mixed or demixed,
depending on the system parameters. Particles with different
properties (mass, size, motility, chirality, etc.) can be sepa-
rated in different systems [1–25]. Examples include mixtures
of active particles with different properties [1–5], chiral active
particles [6–10], and active and passive Brownian particles
[11–14]. The mixture and separation of each particle type
give rise to an exceedingly rich phenomenology compared to
monodisperse systems.

Recently, there has been an increasing interest in cell
sorting in biological tissues [26–28]. Separation at the subcel-
lular level can lead to compartmentalization within cells [28],
while in a developing organism, demixing can lead to cell
sorting. Physical separation of embryonic cell populations is
fundamental to metazoan development. Recently, from in vitro
experiments and cellular Potts model simulations, Canty and
coworkers [26] found that ephrin-Eph-based repulsion is very
effective at inducing and maintaining separation, whereas dif-
ferences in adhesion or contractility have surprisingly little
impact, showing that a large heterotypic line tension between
tissues is key to their segregation. To explore the possibility of
interfacial-tension-driven demixing in the absence of explicit
heterotypic line tension, Sahu and coworkers [27] studied
whether a disparity in cell shape or size alone is sufficient
to drive demixing in bidisperse vertex model fluid mixtures.
They observed large-scale mixing and small-scale demixing
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in mixtures with differential adhesion. However, in this work,
both rigidity disparity and temperature are small. Therefore,
whether the mixed cells without heterotypic interactions in
biological tissues can be separated on a large scale is still an
open question.

To answer this open question, we studied the mixing be-
havior of bidisperse cell mixture based on Voronoi-based
cellular model in the absence of heterotypic interactions.
From numerical simulations, we find that the solid-like cells
in the mixture can aggregate into a large cluster under the
suitable system parameters, which indicates that the mixed
cells without heterotypic interactions in biological tissues can
spontaneously demix on large scales. Therefore, a rigidity
disparity alone is sufficient to drive large-scale demixing in
a binary mixture of cell tissues. The optimum temperature or
rigidity disparity results in the maximum separation of the
binary mixture. The necessary condition for the separation
of mixtures is that the two types of cells are solid-like and
liquid-like, respectively. The separation behavior is almost
independent of the size of the system. The robustness of
large-scale demixing suggests that the sorting of progenitor
cells may occur very early in the development process before
robust heterotypic interfacial tensions are established.

II. MODEL AND METHODS

Simple models that represent cells as polygons have been
successful in describing both the static and dynamic aspects
of an epithelial monolayer [29–44]. To understand the mecha-
nisms of cell sorting in confluent tissues, we study the binary
mixture of cells with rigidity disparity using the Voronoi-
based cellular model [29,30] in the absence of the explicit
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FIG. 1. (a) Schematic of Voronoi-based modeling of a tissue:
all forces are applied directly to the center of cells. Only the cell
centers are updated and the cell shape is determined by the result-
ing Voronoi tessellation. The energy from Eq. (1) depends only on
a cell’s perimeter (Pi) and area (Ai). (b) A typical snapshot of a
confluent tissue containing N/2 type A cells (blue polygons) and
N/2 type B cells (red polygons) in a square box of side L with
periodic boundary conditions at p0 = 3.813, � = 1.5, and T = 0.0.
The shape indexes for type A and B cells are pA = p0 − �/2 and
pB = p0 + �/2, respectively. Relatively, type A cells are harder and
type B cells are softer.

heterotypic line tension. In contrast to particle-based models,
cells in the Voronoi-based cellular model are confluent and
can change their shape to completely fill space, thus their
interaction is shaped based. The Voronoi model describes
a confluent tissue as a network of polygons. Each cell is
characterized by its position ri ≡ (xi, yi ), and cell shape is
determined by the resulting Voronoi tessellation (shown in
Fig. 1 ). The tissue forces are obtained from an effective
energy functional E ({ri}) without heterotypic interactions for
N cells, given by [45]

E =
N∑

i=1

[Ka(Ai − A0,i )
2 + Kp(Pi − P0,i )

2], (1)

where Ai and Pi are the cross-sectional area and perimeter
of the ith cell. A0,i and P0,i are the preferred cell area and
perimeter for cell i. Ka and Kp represent the area and perime-
ter stiffness moduli, respectively. The first term models cell
incompressibility and the monolayer’s resistance to height
fluctuations. The second term arises from active contractility
of the actomyosin subcellular cortex and effective cell mem-
brane tension due to cell-cell adhesion and cortical tension.
For convenience, we assume that the preferred cell area A0,i

does not vary and is set to be A0. The effective dimensionless
target shape index p0,i = P0,i/

√
A0 is an important parameter

that controls the elastic behavior of the cells. Geometrically,
a regular pentagon corresponds to p0,i ≈ 3.81 and a regular
hexagon to p0,i ≈ 3.72.

In this study, we consider a binary mixture of N/2 cells
with the shape index pA (named type A cells) and N/2 cells
with the shape index pB (named type B cells) in a square
box of side L(= √

NA0) with periodic boundary conditions
(shown in Fig. 1). The average shape index is p0 = (pA +
pB)/2 and the rigidity disparity is described by �p = pB − pA

with pB > pA. From the expression for the elastic energy in
Eq. (1), we can see that the system softens when the target
shape index increases. When p0 < p∗

0 (the critical value p0 at
the rigidity transition), cortical tension dominates over cell-

cell adhesion and the tissue behaves as an elastic solid. When
p0 > p∗

0, cell-cell adhesion dominates and the energy barriers
for local rearrangements vanish, resulting in zero rigidity and
fluid-like behavior. Therefore, one naturally expects a solid
phase with small shape index, and a liquid phase with large
shape index.

The effective energy of Eq. (1) leads to a mechanical in-
teraction force on cell i by Fi = −∇iE (see the Supplemental
Material [46]). In contrast to particle-based models, Fi is a
multibody interaction force that cannot be expressed as a sum
of the pairwise force between cell i and its neighboring cells.
To simulate the dynamics of the model, each cell undergoes
overdamped Brownian motion at a given temperature. Thus,
the dynamic of cell i in the overdamped limit follows the
Langevin equation

dri

dt
= μFi +

√
2Dξi(t ), (2)

where ξi(t ) are Gaussian white noises with zero mean and
unit variance. The thermal diffusion coefficient D and the
mobility μ fulfill the Einstein ration D = μkBT , where T the
temperature and kB is the Boltzmann constant.

Equations (1) and (2) can be rewritten in the dimension-
less forms by introducing the characteristic length

√
A0 and

time 1/(μKaA0). The parameters in the dimensionless forms
can be rewritten as K̂p = Kp/(KaA0), L̂ = L/

√
A0 = √

N , and
T̂ = kBT

KaA2
0
. From now on, we will use only the dimensionless

variables and shall omit the hat for all quantities occurring in
the above equations.

To quantify the spatial distribution of cell types A and
B, we divide the area L × L into M square subregions, the
segregation coefficient S is given by

S = 1

N

M∑

j

∣∣NA
j − NB

j

∣∣, (3)

where NA
j and NB

j are the number of cell types A and B in
the jth subregion, respectively. With this definition, the binary
mixture is completely mixed when S = 0 and completely
demixed when S = 1. Note that to calculate the segregation
coefficient S, M must not be too large or too small. Although
the segregation coefficient S is related to M, S still can well
describe the separation state of the mixture if we choose a
reasonable M (see the Supplemental Material [46]).

To study the dynamics behavior of the system, we use the
mean square displacement (MSD), MSD(t ) = 〈[r(t + t0) −
r(t0)]2〉, where 〈· · · 〉 denotes an average over all time t0
and all cells in the tissue. The normalized self-diffusivity
Deff is obtained by assuming the long-time behavior Deff =
limt→∞ MSD(t )

4tD . The system is solid-like for small Deff and
fluid-like for large Deff. Therefore, the normalized self-
diffusivity can be used as an accurate dynamical order
parameter that distinguishes a fluid state from a solid state.

We use the relative radial distribution function to describe
the characteristic cluster size of the single cell species in the
binary mixtures. For two cell types A and B, their densities are
ρA(r) = ∑NA

i=1 δ(r − ri ) and ρB(r) = ∑NB
i=1 δ(r − ri ), respec-

tively. We define the relative radial distribution function for
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the binary mixture as the autocorrelation function [8,18]

gAB(r1, r2) = 〈ρAB(r1)ρAB(r2)〉
= 〈ρA(r1)ρA(r2)〉 + 〈ρB(r1)ρB(r2)〉

− 〈ρA(r1)ρB(r2)〉 − 〈ρB(r1)ρA(r2)〉, (4)

where ρAB(r) = ρA(r) − ρB(r). In the homogeneous and
isotropic systems, Eq. (4) reduces to gAB(r) with r = |r1 −
r2|. gAB(r) is negative if at distance r mainly cells of the dif-
ferent species contribute to the average and positive if mainly
cells from equal species contribute to the average. The roots
of gAB(r) are found at distances, where cell types A and B
appear with equal probability. The characteristic cluster size
is determined by the first nontrivial root of gAB(r) [8,18].

In our simulations, all forces are applied directly to the
center of cells. At every time step, only the cell centers are
updated and a new Voronoi tessellation is obtained from the
updated cell centers. The intercellular forces are then calcu-
lated based on shapes and topologies of the Voronoi cells
(see the Supplemental Material [46]). Equation (2) is numer-
ically integrated using a stochastic Runge-Kutta algorithm.
The integration time step was chosen to be 0.001 and the
total integration time was more than 2 × 105 (this time is
sufficient to ensure that the system can reach a steady state).
For all simulation runs, we start with a set of N random cell
positions (the two type cells are uniformly distributed in the
initial state) and wait for equilibration before recording data.
We considered 100 realizations to improve the accuracy and
minimize statistical errors. Unless otherwise noted, we set
Kp = 1, N = 1600, and M = 10 × 10 = 100 throughout the
simulations. We tested that the presented results are robust
against reasonable changes in these parameters.

III. RESULTS AND DISCUSSION

To study whether a rigidity disparity alone is sufficient to
drive large-scale demixing, we explore the demixing behavior
in a binary mixture of cell tissues by varying the temperature
T , the average shape index p0, and the rigidity disparity �.

We discuss the demixing mechanism of the mixed cells,
three typical cases are shown in Fig. 2. When a cell is trying
to squeeze through two cells of different type, whether or not
this cell can squeeze through two cells of different type, we
cannot judge whether the mixture can be separated. Therefore,
we only consider the case of a single cell squeezing through
two homotypic cells with the opposite cell type. For case I,
the two types of cells can easily squeeze through each other,
once a cluster of type A (B) cells forms, it is quickly destroyed
by type B (A) cells, the two types of cells cannot aggregate
separately, so the mixture is mixed. For case II, type A cells
can easily squeeze through two type B cells, but type B cells
cannot squeeze through two type A cells, once two type A cells
meet, they will be connected. In this case, type A cells keep
aggregating and finally form a large cluster, thus the mixture
of two types of cells can be separated. For case III, the two
types of cells cannot squeeze through each other, both type
A and B cells cannot aggregate into clusters, so the mixture
cannot be separated. Therefore, only in case II, the demixing
of the binary mixing system is possible. To satisfy case II, a

B B
A

A A
B

(I)

B B
A

A A
B

(II)

B B
A

A A
B

(III)

FIG. 2. The illustrative sketches for the interactions between two
mixed cells. (i) The two types of cells can easily squeeze through
each other and the mixture cannot be separated. (ii) Type A cells can
easily squeeze through two type B cells, but type B cells cannot cross
though two type A cells. In this case, type A cells will aggregate into
a large cluster and the mixture is demixed. (iii) The two types of cells
cannot squeeze through each other and the system is mixed.

significant difference between two types of cells and a driving
force (e.g., Brownian motion) are required.

We first study how the rigidity disparity � affects the
fluidity of the tissue by using the normalized self-diffusivity
Deff. We consider the case of p0 = 3.813, where a rigidity
transition occurs [30–32] for the monodisperse system at
zero temperature. Here we used a threshold of Deff = 0.01
to distinguish between a liquid state and a solid state. As an
example, the normalized self-diffusivity Deff as a function of
� is shown in Fig. 3 for different cases at T = 0.02. In this
case, the system behaves as a liquid state at � = 0. It is found
that each single cell type exhibits the different behaviors in
the presence or not of another cell type. In the monodisperse

FIG. 3. The normalized self-diffusivity Deff as a function of �

at p0 = 3.813 and T = 0.02 for different cases: type A cells in the
mixture (solid circles), type B cells in the mixture (solid square),
the whole mixture (solid triangles), type A cells in the monodisperse
system (hollow circles), and type B cells in the monodisperse system
(hollow squares).
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FIG. 4. Typical snapshots of the binary system of 800 type A cells (blue polygons) and 800 type B cells (red polygons) for different
temperature at p0 = 3.813 and � = 1.5. (a) T = 0.0. (b) T = 0.005. (c) T = 0.02. (d) T = 0.03. (e) T = 0.08. (f) T = 0.095.

system, Deff increases with � for type B cells and decreases
with the increase of � for type A cells. However, in the binary
system, the normalized self-diffusivity Deff decreases with the
increase of � for all cases, which indicates that large rigidity
disparity � will harden the system. For small �, type B cells
are indeed able to help type A cells diffuse. For large �,
type A cells in the mixture are sufficient to freeze the entire
tissue. Both types A and B cells are fluid-like for � < �1 and
solid-like for � > �2. Interestingly, when �1 < � < �2,
type A cells are solid-like, while type B cells are fluid-like,
which satisfies the case II in Fig. 2. Note that this interval
(�1 < � < �2) shifts to large � when T increases. Figure 4
shows the typical snapshots of the binary system for different
T at p0 = 3.813 and � = 1.5. When the rigidity disparity � is
fixed, the demixing behavior of cells is determined by temper-
ature T . At zero temperature [shown in Fig. 4(a)], two types
of cells cannot squeeze through each other, which is the case
III in Fig. 2, so the system is mixed. At low temperature [e.g.,
T = 0.005 in Fig. 4(b)], a few type A cells squeeze through
two type B cells and aggregate into some small clusters, but
MSD for both components in the mixture tends to be saturated
with time (shown in Fig. 5), which shows that both types A
and B cells are solid-like. As temperature T increases, type
A cell cluster gradually grows larger [shown in Fig. 4(c)].
Remarkably, at T = 0.03, MSD (shown in Fig. 5) tends to
be saturated with time for type A cells and increases linearly
with time for type B cells, which shows that type A cells
are solid-like and type B cells are fluid-like. In this case,
type A (solid-like) cells can swim through type B (liquid-like)
cells, all type A cells aggregate into a large cluster [shown in
Fig. 4(d)] which corresponds to the case II in Fig. 2, so the
mixture of two types of cells can be completely separated.
On further increasing T due to strong Brownian motion, a
few type B cells squeeze through two type A cells, so the big

type A cell cluster is gradually destroyed [shown in Fig. 4(e)].
When the temperature is high (e.g., T = 0.095), MSD (shown
in Fig. 5) increases linearly with time for both types A and B
cells, which shows that two components are fluid-like. In this
case, the two types of cells can easily squeeze through each
other, the mixture is mixed, which corresponds to the case I in
Fig. 2. Therefore, when fixing the rigidity disparity �, there
exists an optimal value of temperature T at which two types of
cells are completely demixed, which addresses that a rigidity
disparity alone is sufficient to drive large-scale demixing.

In Fig. 6, we plotted the relative radial distribution func-
tion gAB(r) for different T at p0 = 3.813 and � = 1.5. The
cluster size of the single cell specie is determined by the first

FIG. 5. MSD for different components and different T
at p0 = 3.813.
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FIG. 6. Relative radial distribution function gAB(r) at t = 2 ×
105 for T = 0, 0.02, 0.03, and 0.095, which corresponds to Figs. 4(a),
4(c), 4(d), and 4(f), respectively. The first nontrivial root (marked
by circles) is a quantifier for the cluster size of the single particle
species.

nontrivial zero of gAB(r)(marked by red circles). It is found
that when T increases from 0, the cluster size first increases to
the maximum and then decreases gradually. Specifically, the
cluster size of the single cell species is very large at T = 0.03.
The cluster size is very small at T = 0, which means that the
mixture is mixed.

We use the separation coefficient S defined in Eq. (3) to
describe the degree of separation of binary mixtures. The seg-
regation coefficient S as a function of temperature T is shown
in Fig. 7(a) for different � at p0 = 3.813. The segregation
coefficient S is a peaked function of temperature T . When
T → 0, two types of cells cannot squeeze through each other,
the system is mixed, so S is small. When T is very large, the
two types of cells can easily squeeze through each other, thus
the mixture is also mixed. Therefore, there exists an optimal
temperature T at which S takes its maximal value. In addition,
the position of the peak shifts to large T with the increase of
�. This can be explained as follows. The peak in the curves

FIG. 8. MSD of two types of cells in the mixture for different �

at T = 0.01 and p0 = 3.813. MSD of two types of cells decreases
with the increase of �.

means that type B cells start to cross through type A cells.
As � increases, the MSD of type A cells (shown in Fig. 8)
decreases, which means that type A cells become harder, so
type B cells need a higher temperature to swim through two
type A cells.

The dependence of the segregation coefficient S on the
rigidity disparity � is shown in Fig. 7(b) for different T at
p0 = 3.813. When � → 0, the two types of cells are almost
identical and cannot be separated, so S is very small. From
Fig. 3, we can find that there exists an interval (�1 < � <

�2), where type A cells are solid-like, while type B cells
are fluid-like. In this regime, type A cells can easily squeeze
through two type B cells, but type B cells cannot cross though
two type A cells, type A cells keep aggregating and finally
form a large cluster, thus the mixture of two types of cells can
easily be separated. When � is very large, both types A and
B cells are solid-like (very small Deff shown in Fig. 3). In this
case, the two types of cells cannot squeeze through each other,
so the mixture is mixed. Therefore, at the finite temperature,
there exists an optimal value of � at which the segregation

FIG. 7. (a) Segregation coefficient S as a function of temperature T for different rigidity disparity � at p0 = 3.813. (b) Segregation
coefficient S as a function of the rigidity disparity � for temperature T at p0 = 3.813. The solid line is the average over 100 independent
simulations and the shaded region shows standard deviation above and below the average. (c) Phase diagram of the binary mixtures in the
T − � representation with p0 = 3.813. The four points (1–4) in the figure correspond to Figs. 9(a)–9(d). The background represents the value
of S according to the color bar on the right.
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FIG. 9. Typical snapshots for different points in Fig. 7(c). (a) � = 0.0 and T = 0.005. (b) � = 0.3 and T = 0.08. (c) � = 1.4 and
T = 0.02. (d) � = 1.8 and T = 0.05. Figures (a)– (d) correspond to points 1–4 in Fig. 7(c), respectively.

coefficient S is maximal. Larger rigidity disparity � does
not mean the larger separation coefficient S. Additionally,
the position of the peak in the curves shifts to large � as T
increases.

To study in more detail the dependence of the segrega-
tion coefficient S on temperature T and the rigidity disparity
�, we plotted the phase diagram of the binary mixtures in
the T − � representation at p0 = 3.813 in Fig. 7(c). The
typical snapshots are shown in Fig. 9 for different regions
(points 1–4) in Fig. 7(c). Both mixing and demixing regions
are clearly shown in the diagram. When � < 0.5 or T < 0.01,
the segregation coefficient S is small and the mixture cannot
be separated, which indicates that large rigidity disparity and
strong thermal movement are two important conditions for
cell separation. However, high temperature and large rigidity
disparity are not always conducive to cell separation. There
exists the appropriate parameter region where the mixture
can be separated. When p0 decreases from 3.813, the demix-
ing zone in the diagram will shrink. However, the demixing
zone will expand and shift to small rigidity disparity and low
temperature when p0 increases from 3.813. Note that this
phase diagram does not change qualitatively when the other
parameters are varied.

We discuss the role of the average shape index p0 in the
separation of mixtures. The segregation coefficient S as a
function of p0 is shown in Fig. 10(a) for two cases. It is
found that the segregation coefficient S increases with p0 for
two cases. Since pA = p0 − �/2 and pB = p0 + �/2, both
pA and pB increases with p0 [shown in Fig. 10(b)]. The shape
index pA (for type A cells) for two cases is always smaller than
3.813, so type A cells are always solid-like. However, type
B cells are solid-like when p0 < 3.315 (3.063) and liquid-
like when p0 > 3.315 (3.063) at � = 1.0 (1.5). Obviously,
the mixture can be separated only when type A cells are solid-
like and type B cells are liquid-like. Therefore, it is impossible
to separate the mixture when p0 < 3.315 (3.063) at � = 1.0
(1.5). Increasing p0 from 3.0, type B cells gradually changed
from solid-like cells to liquid-like cells, so the segregation
coefficient S increases. Therefore, the two types of cells are
solid-like and liquid-like, respectively, which is the necessary
condition for the separation of mixtures.

We study the effect of the system size on demixing of
the mixture, the segregation coefficient S versus the total cell
number N is described in Fig. 11 for two cases. Since S
depends on M, to compare the segregation coefficient S for
different system size N , we fixed N/M = 16 for all cases. It

should be noted that for large system size, it takes a long time
for the system to reach equilibrium. We find no significant
change in the separation coefficient S when the system size N
changes, which indicates that the demixing in the mixed cell
tissues is not a finite size effect.

FIG. 10. (a) Segregation coefficient S as a function of the average
shape index p0 for different cases. (b) Shape indexes pA and pB as a
function of the average shape index p0 for � = 1.0 and 1.5. pA =
p0 − �/2 and pB = p0 + �/2. The black solid line represents the
shape index (3.813) of the rigid transition at zero temperature.
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FIG. 11. Segregation coefficient S as a function of the total cell
number N for different cases at p0 = 3.813. We demonstrate the
absence of finite size effects, showing the segregation coefficient S
is obtained irrespective of system size N .

Finally, we discuss the possibility of realizing our model
in the experiment setups. The experiment proposed by Sahu
and coworkers [27] is very convenient to determine whether
or not large-scale demixing prediction is directly relevant for
biology. In the experiment, bidisperse cell mixture is con-
sist of both wild-type keratinocytes and E-cadherin-knock-out
keratinocytes, which allows us to study differential adhesion
and its effect on cell sorting without heterotypic tensions.
Because E-cadherin is a crucial component of adherens
junctions, E-cadherin-knock-out keratinocytes (primary ker-
atinocytes in which the E-cadherin has been knocked down)
are softer than wild-type keratinocytes. Therefore, there exists
a rigidity disparity in the two-component mixture. Wild-type
keratinocytes and E-cadherin-knock-out keratinocytes corre-
spond to type A and B cells in the model, respectively. First, it
is necessary to obtain the mixture with large rigidity disparity,
which may be achieved by changing the experimental condi-
tions (e.g., temperature, calcium concentration, the persistent
motion of cells, differential mechanical stiffness of the cells,
etc.). Next, a large number of snapshots of the monolayer
need to be obtained in the experiment. From the snapshots,
we can calculate the segregation coefficient for different cases.
Additionally, the sorting mechanism in our model might hap-
pen in an embryo. For example, we can hold an embryo to
a constant dose of an inhibitor (Latrunculin, cytochalasin,
or blebbistatin) of the actin cytoskeleton [47]. The inhibitors
inhibit the role of the actin cytoskeleton which can determine

the stiffness of a cell along with the microtubules [48,49].
Therefore, we can obtain the mixed cells with rigidity dis-
parity by adjusting the dose or type of inhibitors. We hope to
observe large-scale demixing in these experiments.

IV. CONCLUSION AND OUTLOOK

By using the Voronoi-based cellular model, we studied
mixing and demixing in a binary mixture of rigidity disparity
cell tissues in the absence of the explicit heterotypic line ten-
sion. When the average shape index p0 is fixed, the demixing
behavior of the bidisperse cell mixture is determined by the
rigidity disparity � and temperature T . When T (or �) is too
small or too large the segregation coefficient S is small and the
mixture cannot be separated. There exists the optimal T or �

at which the segregation coefficient S is maximal and the mix-
ture can be separated. Specifically, the greater the difference
of the cell rigidity does not mean that the mixture is easier to
separate. Therefore, we observed large-scale demixing under
suitable system parameters, which shows that a rigidity dis-
parity alone is sufficient to drive large-scale demixing. Only
when the two kinds of cells are solid-like and liquid-like,
respectively, may the mixture be separated. There is no signif-
icant change in the separation coefficient S when the system
size N changes. Our results on the one hand suggests that the
sorting of progenitor cells may occur very early in the devel-
opment process before robust heterotypic interfacial tensions
are established. On the other hand, our results also confirm the
possibility of large-scale demixing in the confluent systems,
where the interactions between particles are multibody and
the particles can change their shape to completely fill space
(the packing fraction is precisely at unity). We hope that our
results can be realized in the experiments of binary mixtures,
for example, mixtures of wild-type and E-cadherin-deficient
keratinocytes [27]. Finally, our research could have potential
applications in biological processes including embryonic de-
velopment, cancer metastasis, and wound healing require cells
to move collectively in dense tissues, which is very different
from isolated cell motion.

ACKNOWLEDGMENTS

This work was supported, in part, by the National Nat-
ural Science Foundation of China (Grant No. 12075090),
the Key-Area Research and Development Program of
GuangDong Province (Grant No. 2019B030330001), the
Science and Technology Program of Guangzhou (Grant No.
2019050001), the Natural Science Foundation of Guang-
dong Province (Grant No. 2017A030313029), and the Major
Basic Research Project of Guangdong Province (Grant No.
2017KZDXM024).

[1] C. Maggi, A. Lepore, J. Solari, A. Rizzo, and R. Di Leonardo,
Soft Matter 9, 10885 (2013).

[2] W. Yang, V. R. Misko, K. Nelissen, M. Kong, and F. M. Peeters,
Soft Matter 8, 5175 (2012).

[3] I. Berdakin, Y. Jeyaram, V. V. Moshchalkov, L. Venken, S.
Dierckx, S. J. Vanderleyden, A. V. Silhanek, C. A. Condat, and
V. I. Marconi, Phys. Rev. E 87, 052702 (2013).

[4] S. N. Weber, C. A. Weber, and E. Frey, Phys. Rev. Lett. 116,
058301 (2016).

[5] S. Kumari, A. S. Nunes, N. A. M. Araujo, and M. M. T. Gama,
J. Chem. Phys. 147, 174702 (2017).

[6] M. Mijalkov and G. Volpe, Soft Matter 9, 6376 (2013).
[7] C. Reichhardt and C. J. Olson Reichhardt, Phys. Rev. E 88,

042306 (2013).

064411-7

https://doi.org/10.1039/c3sm51223a
https://doi.org/10.1039/c2sm07382j
https://doi.org/10.1103/PhysRevE.87.052702
https://doi.org/10.1103/PhysRevLett.116.058301
https://doi.org/10.1063/1.4992797
https://doi.org/10.1039/c3sm27923e
https://doi.org/10.1103/PhysRevE.88.042306


BAO-QUAN AI AND RUI-XUE GUO PHYSICAL REVIEW E 104, 064411 (2021)

[8] C. Scholz, M. Engel, and T. Pöschel, Nat. Commun. 9, 931
(2018).

[9] Q. Chen and B. Q. Ai, J. Chem. Phys. 143, 104113 (2015).
[10] B. Q. Ai, Z. G. Shao, and W. R. Zhong, Soft Matter 14, 4388

(2018).
[11] S. R. McCandlish, A. Baskarana, and M. F. Hagan, Soft Matter

8, 2527 (2012).
[12] J. Stenhammar, R. Wittkowski, D. Marenduzzo, and M. E.

Cates, Phys. Rev. Lett. 114, 018301 (2015).
[13] Z. Ma, Q. Lei, and R. Ni, Soft Matter 13, 8940 (2017).
[14] J. Smrek and K. Kremer, Phys. Rev. Lett. 118, 098002 (2017).
[15] J. Harder and A. Cacciuto, Phys. Rev. E 97, 022603 (2018).
[16] A. Costanzo, J. Elgeti, T. Auth, G. Gompper, and M. Ripoll,

Europhys. Lett. 107, 36003 (2014).
[17] A. Nourhani, V. H. Crespi, and P. E. Lammert, Phys. Rev. Lett.

115, 118101 (2015).
[18] N. H. P. Nguyen, D. Klotsa, M. Engel, and S. C. Glotzer, Phys.

Rev. Lett. 112, 075701 (2014).
[19] A. Agrawal and S. B. Babu, Phys. Rev. E 97, 020401(R) (2018).
[20] B. Q. Ai, Y. F. He, and W. R. Zhong, Soft Matter 11, 3852

(2015).
[21] B. Q. Ai, B. Y. Zhou, and X. M. Zhang, Soft Matter 16, 4710

(2020).
[22] J. Shin, A. G. Cherstvy, and R. Metzler, New J. Phys. 16,

053047 (2014).
[23] D. Levis and B. Liebchen, Phys. Rev. E 100, 012406 (2019).
[24] P. Dolai, A. Simha, and S. Mishrac, Soft Matter 14, 6137

(2018).
[25] A. Wysocki, R. G. Winkler, and G. Gompper, New J. Phys. 18,

123030 (2016).
[26] L. Canty, E. Zarour, L. Kashkooli, P. Francois, and F. Fagotto,

Nat. Commun. 8, 157 (2017).
[27] P. Sahu, D. M. Sussman, M. Rubsam, A. F. Mertz, V. Horsley,

E. R. Dufresne, C. M. Niessen, M. Cristina Marchetti, M. L.
Manning, and J. M. Schwarz, Soft Matter 16, 3325 (2020).

[28] M. Feric, N. Vaidya, T. S. Harmon, D. M. Mitrea, L. Zhu,
T. M. Richardson, R. W. Kriwacki, R. V. Pappu, and C. P.
Brangwynne, Cell 165, 1686 (2016).

[29] X. Yang, D. Bi, M. Czajkowskic, M. Merkel, M. Lisa Manning,
and M. C. Marchetti, Proc. Natl. Acad. Sci. USA 114, 12663
(2017).

[30] Y. W. Li and M. P. Ciamarra, Phys. Rev. Materials 2, 045602
(2018).

[31] D. Bi, J. H. Lopez, J. M. Schwarz, and M. L. Manning, Nat.
Phys. 11, 1074 (2015).

[32] D. Bi, X. Yang, M. C. Marchetti, and M. L. Manning, Phys.
Rev. X 6, 021011 (2016).

[33] X. Li, A. Das, and D. Bi, Proc. Natl. Acad. Sci. USA 115, 6650
(2018).

[34] L. Yan and D. Bi, Phys. Rev. X 9, 011029 (2019).
[35] T. Nagai and H. Honda, Phys. Rev. E 80, 061903

(2009).
[36] X. Trepat and E. Sahai, Nat. Phys. 14, 671 (2018).
[37] S. Alt, P. Ganguly, and G. Salbreux, Phil. Trans. R. Soc. B 372,

20150520 (2017).
[38] D. Barton, S. Henkes, C. Weijer, and R. Sknepnek, PLoS

Comput. Biol. 13, e1005569 (2017).
[39] F. Giavazzi, M. Paoluzzi, M. Macchi, D. Bi, G. Scita, M. L.

Manning, R. Cerbino, and M. C. Marchetti, Soft Matter 14,
3471 (2018).

[40] D. M. Sussman, Phys. Rev. Res. 2, 023417 (2020).
[41] D. M. Sussman and M. Merkel, Soft Matter 14, 3397

(2018).
[42] D. M. Sussman, Comput. Phys. Commun. 219, 400

(2017).
[43] S. Henkes, K. Kostanjevec, J. M. Collinson, R. Sknepnek, and

E. Bertin, Nat. Commun. 11, 1405 (2020).
[44] S. Sadhukhan and S. K. Nandi, bioRxiv: https://doi.org/10.

1101/2021.08.21.457184 (2021).
[45] N. B. Ouchi, J. A. Glazier, J. Rieu, A. Upadhyaya, and Y.

Sawada, Physica A 329, 451 (2003).
[46] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.104.064411 for (i) simulation algorithm for
the Voronoi model and (ii) segregation coefficient, which in-
cludes Refs. [27,32,42].

[47] H. Y. G. Lim and N. Plachta, Nat. Rev. Mol. Cell Biol. 22, 548
(2021).

[48] B. Doss, M. Pan, M. Gupta, G. Grenci, R. Mege, C. T. Lim,
M. P. Sheetz, R. Voituriez, and B. Ladoux, Proc. Natl. Acad.
Sci. USA 117, 12817 (2020).

[49] M. Gupta, B. Doss, C. T. Lim, R. Voituriez, and B. Ladoux, Cell
Adhesion and Migration 10, 554 (2016).

064411-8

https://doi.org/10.1038/s41467-018-03154-7
https://doi.org/10.1063/1.4930282
https://doi.org/10.1039/C8SM00444G
https://doi.org/10.1039/c2sm06960a
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1039/C7SM01730H
https://doi.org/10.1103/PhysRevLett.118.098002
https://doi.org/10.1103/PhysRevE.97.022603
https://doi.org/10.1209/0295-5075/107/36003
https://doi.org/10.1103/PhysRevLett.115.118101
https://doi.org/10.1103/PhysRevLett.112.075701
https://doi.org/10.1103/PhysRevE.97.020401
https://doi.org/10.1039/C5SM00651A
https://doi.org/10.1039/D0SM00281J
https://doi.org/10.1088/1367-2630/16/5/053047
https://doi.org/10.1103/PhysRevE.100.012406
https://doi.org/10.1039/C8SM00222C
https://doi.org/10.1088/1367-2630/aa529d
https://doi.org/10.1038/s41467-017-00146-x
https://doi.org/10.1039/C9SM01084J
https://doi.org/10.1016/j.cell.2016.04.047
https://doi.org/10.1073/pnas.1705921114
https://doi.org/10.1103/PhysRevMaterials.2.045602
https://doi.org/10.1038/nphys3471
https://doi.org/10.1103/PhysRevX.6.021011
https://doi.org/10.1073/pnas.1715810115
https://doi.org/10.1103/PhysRevX.9.011029
https://doi.org/10.1103/PhysRevE.80.061903
https://doi.org/10.1038/s41567-018-0194-9
https://doi.org/10.1098/rstb.2015.0520
https://doi.org/10.1371/journal.pcbi.1005569
https://doi.org/10.1039/C8SM00126J
https://doi.org/10.1103/PhysRevResearch.2.023417
https://doi.org/10.1039/C7SM02127E
https://doi.org/10.1016/j.cpc.2017.06.001
https://doi.org/10.1038/s41467-020-15164-5
https://doi.org/10.1101/2021.08.21.457184
https://doi.org/10.1016/S0378-4371(03)00574-0
http://link.aps.org/supplemental/10.1103/PhysRevE.104.064411
https://doi.org/10.1038/s41580-021-00363-9
https://doi.org/10.1073/pnas.1917555117
https://doi.org/10.1080/19336918.2016.1173800

