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Nanoindentation of viral capsids provides an efficient tool in order to probe their elastic properties. We
investigate in the present work the various sources of stiffness heterogeneity as observed in atomic force
microscopy experiments. By combining experimental results with both numerical and analytical modeling, we
first show that for small viruses, a position-dependent stiffness is observed. This effect is strong and has not been
properly taken into account previously. Moreover, we show that a geometrical model is able to reproduce this
effect quantitatively. Our work suggests alternative ways of measuring stiffness heterogeneities on small viral
capsids. This is illustrated on two different viral capsids: Adeno associated virus serotype 8 (AAV8) and hepatitis
B virus (HBV with T = 4). We discuss our results in light of continuous elasticity modeling.
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I. INTRODUCTION

The elastic properties of viral capsids can be inferred us-
ing nanoindentation experiments. Because viral capsids’ sizes
range from tens to hundreds of nanometers, these experi-
ments are usually performed with an atomic force microscope
(AFM), whose operating size range is appropriate [1]. Cap-
sids of different virus families have been probed this way in
several works, exhibiting various interesting features [2–9].
Depending on the identity of capsids and the amplitude of
indenting force, one can observe elastic behavior with a lin-
ear or nonlinear response, plastic behavior, and eventually
mechanical rupture. From the biological point of view, all
these observations are relevant since they address the global
stability of viruses, as well as their deformability, which is
important physical information to fully understand the various
steps of their replication cycle.

Most past works dealing with nanoindentation of capsids
have focused on their linear response. This linear regime
allows the stiffness to be defined effectively as the ratio be-
tween the force applied and the indentation. Typical stiffness
ranges from 0.04 N m−1 for the influenza virus [5,10] to 3
N m−1 for the immature particle of HIV-1 in the presence of
envelope glycoproteins, for example [11]. From a structural
perspective, viruses are composed of mainly nucleic acids
packaged inside self-assembled protein shells and eventually
a surrounding lipid bilayer or membrane. For most viral cap-
sids, the self-assembly involves multiple copies of identical
proteins. Yet, the topology of a closed shell imposes that the
environment at the scale of a single protein is not unique:
at exactly 12 locations on the surface of the virus, proteins
belong to a capsomer or face that is pentameric (five proteins),
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while they belong to hexameric capsomers (six proteins) any-
where else. The precise location of pentamers determines the
global shape of the viral capsid [12]. It can be either reg-
ular with icosahedral symmetry, or irregular and elongated.
Focusing on icosahedral viruses, the three main symmetries
(twofold, threefold, and fivefold) strongly suggest that elastic
properties of capsids are not uniform [13].

Heterogeneities in stiffness measurements have been ob-
served on some viruses, such as the MVM parvovirus [4], or
bacteriophages φ29 [2]. In the former case, heterogeneities
have been attributed to the difference in virus orientation
during the adhesion on the substrate, thus offering differ-
ent capsomer or environments (with twofold, threefold, or
fivefold symmetry) on its highest altitude as probed by the
AFM tip. Yet, the effect was observed in the presence of
viral DNA. Analysis of the AFM images allowed us to cor-
relate mechanical properties with capsid orientation. In the
case of bacteriophages, the difference in stiffness was traced
back again to the orientation of the capsid during adhesion,
but this was interpreted as a signature of the asphericity of
the virus rather than inhomogeneity at the single capsomer
level. However, these observations of stiffness heterogeneity
are not systematic, and, for example, it is not possible to
detect significant variations of stiffness for some viruses like
Cowpea Chlorotic Mottle Virus (CCMV), depending on its
orientation [3]. As a consequence, the presence or absence
of stiffness heterogeneity and its origin are far from being
correctly understood. The purpose of the present work is to in-
vestigate quantitatively, both experimentally and theoretically,
signatures for these mechanical heterogeneities.

This paper is organized as follows. In the next section,
we present our experimental approach based on AFM-
nanoindentation for two different viral capsids, namely
Adeno-associated virus 8 (AAV8) and hepatitis B virus (HBV,
with T = 4 capsid conformation), and then the numerical and
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analytical approach in order to predict and interpret the results
of indentation experiments quantitatively. Both approaches
are combined and discussed in Sec. IV. These findings are
then discussed in light of past literature. Consequences of
future experiments are also expressed.

II. EXPERIMENTS OF AFM NANOINDENTATION
ON VIRAL CAPSIDS

A. AFM nanoindentation experiments

1. AAV purification

Stock of AAV8 vector particles was produced and purified
on CsCl gradients by calcium phosphate transfection of HEK-
293 cells as described previously [14]. The vector plasmid
AAVCMVeGFP included the enhanced green fluorescence
cDNA under the control of the cytomegalovirus promoter.
The total length of the vector was 3769 bases, including the
AAV inverted terminal repeats. The helper plasmids used for
production were pDG8. After purification and titration by
qPCR, the viral stock was kept at −80 ◦C.

2. HBV purification

HBV capsids were obtained from the assembly of Cp183
proteins produced in bacteria following a protocol detailed in
[15]. Cp183 capsids were expressed in E coli and purified sim-
ilarly as described previously for truncated Cp149. Plasmid
of pRSFT7-HBc183opt was transformed into E coli BL21*
CodonPlus (DE3) cells and grown at 37 ◦C in LB medium
culture. When OD600 reached around 2, an expression was
induced with 1 mM IPTG overnight at 20 ◦C. Cells were
collected by centrifugation at 6000 g for 20 min. For 1 L of
culture, cells were resuspended in 15 mL of TN300 buffer
(50 mM Tris, 300 mM NaCl, 2.5 mM EDTA, 5 mM DTT,
pH 7.5) and incubated on ice for 45 min with 1 mg/mL of
chicken lysozyme, 1X protease inhibitor cocktail solution,
and 0.5% Triton X-100. 6 μL of benzonase nuclease were
added to digest nucleic acids for 30 min at room temperature.
Cells were broken by sonication and centrifuged at 8000 g
for 1 h to remove cell debris. The supernatant was loaded
onto a 10–60 % sucrose gradient buffered with 50 mM Tris
pH 7.5, 300 mM NaCl, 5 mM DTT, and centrifuged in an
SW-32Ti Beckman Coulter swinging bucket rotor at 140 000 g
for 3 h at 4 ◦C. Capsids were identified in gradient fractions
by 15% SDS-polyacrylamide gel and precipitated by 40%
saturated (NH4)2SO4. After incubation on ice for 1 h and
centrifugation at 20 000 g for 1 h, pellets were resuspended
in 10 mL of purification buffer (50 mM Tris pH 7.5, 5%
sucrose, 5 mM DTT, 1 mM EDTA). The protein solution was
centrifuged again for 15 min to remove insoluble pellets. The
supernatant containing soluble capsids was dialyzed overnight
against purification buffer at 4 ◦C. The purified CP183 capsids
obtained in such an assembly process contain random short E
Coli nucleic acids [16,17].

3. AFM sample preparation for AAV8 and HBV

The viral stock of AAV8 or HBV capsids was diluted to
a concentration of approximately 6×108 capsids/μL in TN
1 mM [Tris 10 mM (pH = 7.4) and nickel(II) chloride (NiCl2)
1 mM]. Immediately after, 5 μL of the solution was deposited

onto mica disks previously cleaned using adhesive tape. After
20 min of incubation to favor adhesion, we added 30 μL of
TN 1 mM to the sample and another 70 μL of TN 1 mM in
the AFM liquid imaging cell before imaging.

B. AFM imaging and nanoindentation protocol

The samples were imaged using a Bruker Nanoscope V
Multimode 8 AFM using PeakForce Mode in liquid. We
used three different cantilevers: SNL and ScanAsyst-fluid+
with a nominal tip radius of 2 nm, and ScanAsyst-fluid
with a nominal tip radius of 20 nm. The SNL and the two
ScanAsyst cantilevers have a nominal spring constant of
0.35 and 0.7 N/m, respectively. We use mainly ScanAsyst
fluid+cantilevers to compare both AAV8 and HBV nanoin-
dentation and AFM imaging. We used the two cantilevers with
a tip radius of 2 nm (ScanAsyst fluid+) and 20 nm (ScanAsyst
fluid) to study the size tip effect in the AAV8 particles
(Supplemental Material Fig. 2) [18]. Also, we studied the ef-
fect of the stiffness of the cantilever in AAV8 nanoindentation;
for this, we used the SNL and ScanAsyst fluid+cantilevers
(Supplemental Material Fig. 3) [18]. Large-scale AFM square
images of 3 μm sides (512×512 pixels) at a 2 Hz scan rate
were obtained to verify the deposition conditions on a large
number of capsids. Figure 1 of the Supplemental Material [18]
shows a zoom of those large AFM images for AAV8 and HBV
capsids.

The capsids were then imaged one by one to perform
nanoindentation. Images were scanned at 2 Hz over scan
segments of 300–500 nm broad. The maximal force var-
ied between 200 and 300 pN. Using the Point and Shoot
feature of Bruker acquisition software, we defined a line
with 15 equidistant points over the capsid and 3 points far
from the capsid to get the surface reference force curve [see
Fig. 1(a)]. Additionally, a horizontal height profile that passes
through the highest point of the capsid is plotted and will
be used to determine the capsid radius Rcap,AFM used to nor-
malize the stiffness profile before alignment and averaging.
Nanoindentation data have been analyzed semiautomatically
using a homemade MATLAB code. Figure 1(b) shows the
force-displacement F (z) curves separately according to the
indentation position over the viral capsid. The black line is
the best curve among the three recorded over the surface far
from the capsid, and its slope represents the cantilever spring
constant kc. All those curves were aligned with the contact
point.

AFM nanoindentation data analysis

We used two methods to extract the stiffness from the
capsid. In the first method, we considered the force curve as a
function of the cantilever displacement F (z) that contains the
deformation of both the cantilever and the capsid in the first
linear regime. Assuming the capsid and the cantilever behave
like two springs in series, the capsid stiffness kcap was calcu-
lated using the relation kcap = k(F (z)) = (keffkc)/(keff − kc).
The cantilever stiffness kc is determined using the thermal
noise method, and the effective stiffness keff is the slope of
the linear part of the F (z) curve. In the second method, kcap is
extracted from the force indentation F (δ) curve as simply its
slope. To obtain a F (δ) curve, we used the fact that for a given
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FIG. 1. Nanoindentation on AAV8 viral particles. (a) Typical image of an AAV8 viral particle deposited on the surface. Indentations are
performed at different locations represented by colored circles. Three additional indentations, shown by three black dots, were made away
from the capsid to obtain a reference surface curve that contains only the cantilever deformation. The topographic profile along the black line
is also shown. (b) Force-displacement curves for the different locations: left: gray points for virus-free locations; center: green points on the
border of viruses; right: blue points in the center. The black curve represents an indentation made on the surface and away from the position
of the virus (the best of the three surface curves recorded away from the viral capsid). By subtracting at a fixed force the two z-positions on
the black curve and a curve obtained within the capsid, it is possible to extract the capsid deformation δ. (c) Single-particle stiffness extracted
at different locations, either through force-displacement F (z) or force-indentation F (δ) curves. The indentation positions r along the x-axis
of the AFM image have been normalized using the capsid radius Rcap, AFM obtained from the height profile in (a). (d) Ensemble-averaged
stiffness at different locations (N = 58 viruses). For each lateral position, the symbol (square or losange) is the median of the local stiffness
distribution, and the bar represents the position of the first and third quartiles for the same distribution.

applied force F , the indentation δ is found by subtracting the
deformation of the cantilever from the total tip displacement.
Figure 1(c) show the stiffness profile using both calculation
methods. To superimpose N = 58 different indented capsid
profiles, we aligned them according to the two lowest points of
the profile. Then, the indentation positions r were normalized
using the capsid radius Rcap,AFM obtained from the capsid
height profile [Fig. 1(a)]. Finally, we determined a unique
stiffness profile where the diamond and square represent the
median of all the kcap values for position zero, for example.
The upper and lower error bars are 75% and 25% of the data
[see Fig. 1(d)].

III. MODELING AFM NANOINDENTATION
ON VIRAL CAPSIDS

A. Thin shell model for intrinsic stiffness heterogeneity

Thin shell elasticity is very well documented both in stan-
dard textbooks [19–22] and outstanding research publications
[23–25]. We will mainly recall in this subsection the main
results of interest for our study. In particular, we present
scaling derivations for the stiffness, which have been shown
to be appropriate in the regime of linear elasticity. Within
standard three-dimensional (3D) elasticity, the deformation of
a material from an unconstrained configuration is character-
ized mainly by two tensors: the strain tensor, which quantifies
the relative material deformation, and the stress tensor, which
quantifies the strength and orientation of forces arising from
this deformation. In the simplest case of unidimensional ma-

terial, the linear relationship between longitudinal strain ε

and stress σ is called Hooke’s law and it defines the Young
modulus as Y = σ/ε, which is an elementary measurement of
the stiffness of the material.

The concept of stiffness can be extended to different mate-
rial geometry. In the case of thin shells like viral capsids, it is
defined as the ratio between the applied mechanical force and
the indentation length. In the case of a homogeneous spherical
thin shell of width t and radius R, the stiffness results from the
balance of in-plane stretching/compression and out-of-plane
bending. Introducing the 2D stretching modulus as κs = Y t
and the 2D bending modulus (also known as the flexural rigid-
ity) as κb = Y t3/[12(1 − σ 2)], where σ is the Poisson ratio of
the material, we define the dimensionless number associated
with stretching/bending balance, which is also known as the
Föppl–von Karman number (FvK):

γ = κsR2

κb
. (1)

The scaling of stiffness is obtained by estimating the en-
ergetic budget associated with small indentation � of the
spherical shell [19,26–28]. This indentation modifies the cur-
vature of the shell locally over a distance d from a value R−1

to ρ−1 ∼ R−1 − 2�/d2. The bending cost is of order �Eb ∼
κb(ρ−1 − R−1)2d2 ∼ κb�

2/d2. The meridians are also com-
pressed by the indentation resulting in a strain ε ∼ �/R. The
compression cost is of order �Es ∼ κsε

2d2 ∼ κsd2�2/R2.
The actual deformation spread d is obtained by minimiz-
ing the sum of bending and compression energies leading
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to de ∼ R1/2(κb/κs)1/4 ∼ Rγ −1/4. The net energy associated
with the indentation is therefore written as �Etot ∼ k�2 with
the stiffness

k ∼
(

κsκb

R2

)1/2

∼ κsγ
−1/2. (2)

This result is strictly valid for small enough indentation,
and more importantly for small FvK numbers. Indeed, it has
been shown by Lidmar et al. that closed shells with large FvK
numbers are strongly faceted with icosahedral symmetry [29].
This phenomenon is related to the presence of topological
defects, not taken into account in the scaling derivation pre-
sented so far. From a structural point of view, these defects
are associated with a few numbers of capsomers (local group
of proteins) having five proteins, while all other capsomers
are composed of six proteins. This can be understood first
from a geometrical point of view: the virus shape and in
particular its icosahedral symmetry can be reproduced by a
simple triangulation network model in which each triangle
represents three proteins, according to the classical Caspar and
Klug approach [30]. Now equilateral triangles in a hexagonal
phase are known to produce a perfect tiling of a flat plane or
any surface having zero curvature in at least one direction. In
contrast, pentagons made of equilateral triangles form a 3D
conical-like structure naturally and therefore curve a surface
locally in two distinct directions. This observation can be
made more precise by considering the distribution of stress
within thin shells. The equations describing the mechanical
equilibrium of thin shells are known as the two Föppl–von
Karman equations. These highly nonlinear coupled equations
involve the out-of-plane deflection w(r) and the in-plane
stress σi j (r). More precisely, with the introduction of Airy
stress function χ , which is related to the stress tensor σi j by
σi j = εikε jl∂k∂lχ , where εi j is the antisymmetric unit tensor,
the second FvK equation reads

∇4χ (r)

κs
= s(r) − KG(r), (3)

where s(r) is the defect density and KG(r) is the Gaussian
curvature [23]. With this equation, it is straightforward to re-
alize that the morphology of a surface with nonzero Gaussian
curvature is necessarily coupled to the presence of defects,
in order to minimize the elastic stress within the shell. In the
simplest case these defects, known as disclinations, are the
pentamers. Moreover, the number of these defects is fixed
by the topology of the surface, as can be seen by the Euler
relation [31]. For closed shells, this constraint imposes having
exactly 12 pentamers. It has been shown by several authors
that most structures obtained using self-assembly will have
defects that are regularly spaced, giving rise to the icosahedral
symmetry previously mentioned [32,33].

As the presence of these defects is obviously related to
the mechanical properties of the shell, it is expected that the
stiffness is different at these locations. Several authors have
analyzed both numerically and experimentally the influence
of these defects [26,28,34–36]. In the limit of small FvK
numbers, for which the shell shape is spherical, it is possible
to extend the previous scaling for the stiffness estimate by
modifying the stretching contribution to the energy. Indeed,

for a hemispherical cap of curvature R−1 and lateral exten-
sion d , subjected to vanishing boundary force σrr (r = d ) = 0,
the in-plane stretching energy yields �Es = (π/384)κsd6/R4

[37–39]. (This approximation has been made for the sake of
simplicity. We checked that the scaling results are not altered
when nonzero boundary force σb is taken into account.) Note
that this formula allows us to recover the previous scaling
result for stretching energy as a function of indentation � by
considering the hemisphere’s curvature change R−1 → ρ−1 ∼
R−1 − 2�/d2. In the presence of a central disclination of
charge s, the stretching energy becomes

�Es5 = �Es + κsd2

32π

(
s2 − πsd2

R2

)
. (4)

Expanding this energy in � upon curvature change leads to
correcting the stiffness associated with indentation on pen-
tamers (s = π/3) to

k5 ∼ k6 − πκs

48
(5)

with k6 ∼ κsγ
−1/2. This estimate shows that there is a slight

reduction in stiffness associated with pentamers, but its am-
plitude is not expected to be significant.

In the opposite limit of large FvK number, the scaling be-
havior has been derived by Widom et al. [28]. In this limit, the
viral capsid becomes faceted with icosahedral symmetry, and
indentation experiments are expected to give different results,
whether a vertex (i.e., a pentamer) or a face (i.e., a hexamer)
of the icosahedron is probed. In the latter case, indentation is
performed on a flat triangular face. The resulting stiffness in
this idealized geometry can be found in the classical textbook
by Timoshenko [22] by solving the first FvK equation for the
out-of-plane deformation profile with appropriate boundary
conditions. The result scales like

kface ∼ κb

R2
∼ κsγ

−1. (6)

Finally, upon indentation of an icosahedron’s vertex, the force
is mostly transmitted within the plane of each face. This
problem has also been considered in the classical textbook by
Landau [19]. In this case, the in-plane deformation induced
by a force localized at the edge of a face has been shown to
depend in a logarithmic way on the distance to the edge. The
stiffness scales therefore as

kvertex ∼ κs

ln R/a
∼ κs(ln γ )−1, (7)

where a is a small cutoff distance associated with the presence
of the core of the pentamer. The comparison of these two
stiffnesses kface and kvertex is expected to be more favorable
to experimental discrimination. In particular, the stiffness of
pentamers is expected to be larger in this regime. These results
have been derived by Widom et al. using the expected elastic
behavior of an icosahedron, so they should be valid for what-
ever shell structure fulfills this symmetry. This is expected
to be the case for large FvK numbers, where the dominant
stretching cost over bending induces such a shape, but it might
also be valid for very small structures which are intrinsically
faceted like T = 1 viral capsid. These structures are so small
that they are composed of pentamers only, giving rise to a
strongly faceted shape.
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B. Numerical simulations of nanoindentation

To complement our analytical and experimental ap-
proaches, we developed numerical simulations of the inden-
tation of thin shells. The elastic properties are reproduced by
using the classical model of a triangulated surface. Within
such a numerical model, in-plane deformations are taken
into account with bond deformations, varying their lengths,
whereas out-of-plane deformations are taken into account
varying dihedral angles between adjacent faces or triangles
[23]. The elastic energy is written as

Eelas =
∑
〈i, j〉

1

2
ks(〈i, j〉 − 0)2 +

∑
α,β

kb(1 − cos θα,β ), (8)

where 〈i, j〉 is the length of the edge 〈i, j〉. When the latter
length is different from the preferred one 0, the bond is
stretched or compressed by a spring force proportional to the
spring stiffness ks. Furthermore, kb sets the bending energetic
cost for nonzero angle θα,β between the two given adjacent
faces α, β. Following the works of Seung et al., for example,
the relation between stretching and bending modulus in the
analytical and numerical model is given by [23]

ks =
√

3

2
κs, kb = 2√

3
κb. (9)

To mimic as much as possible real viral capsids, we analyze
the structure of AAV8, which has a T number of 1. Since
this small structure might not be large enough in terms of
a triangular subunit, we divide each capsomer with a 5×5
subtriangular lattice preserving the icosahedral symmetry and
the nonskew capsid shape. For AAV8, we used a radius of
R = 12.5 nm.

The thin shell interacts both with the flat substrate on which
it is lying, and with the approaching spherical or conical tip.
This is realized by adding an adhesion energy to all vertices,
Eads = ∑

i V (ri ). For both interactions, we chose a Morse po-
tential V (r) = V0(1 − e−r/a)2, which is naturally repulsive at
a very short distance and attractive at a larger distance. In the
limit of very large distance, the adhesion force vanishes ex-
ponentially. We added a steric cost to each face to prevent the
tip from entering the triangular network, i.e., we also consider
the repulsion of the barycenter of each face. Contact points
with the substrate modeled as an infinite rigid flat plate are not
allowed to slide tangentially, and they are fixed at their initial
position. In our simulation, we set V0 = 2kBT 	 1.2 kcal/mol
and a = 2 Å. For some simulations, we forbade the motion of
bottom vertices in order to prevent the shell from rolling.

The relaxation is done using Langevin dynamics:

ri(t + dt ) = ri(t ) − dt

ζ
∇(Eelas + Eads) +

(
2

kBT

ζ
dt

)1/2

η,

(10)
where ri represents the position of the vertex, η is a ran-
dom force, and ζ is the damping coefficient. We chose ζ =
1 kcal/mol/nm to get good agreement with the experimental
diffusion time of a capsomer, and the integration time step
dt = 400 fs. We assumed quasistatic nanoindentation, so that
the tip is lowered by 9 pm between each relaxation iteration
that lasts 2 μs. We ensured that an equilibrium state is reached
between each tip descent. Finally, since we restricted our

investigations to spherical viruses or weakly faceted viruses
for which the FvK number γ 	 O(1) or 10, we set ks =
200kBT 	 120 kcal/mol and kb = 80 kBT 	 50 kcal mol−1 at
ambient temperature T = 298 K.

From the simulations, the elastic energy of relaxed config-
urations is obtained, and the position of the center of the AFM
tip is saved and subtracted from its initial position to give the
indentation depth. The maximal indentation depth is set to
δmax = 0.3R, provided the tip has not reached the substrate in
the off-centered configurations. When coordinates of the tip in
the x-y plane are not zeros, the position of the tip is carefully
computed so that indentations begin at the contact of the nu-
merical cap. Data are taken between each relaxation step, and
each nanoindentation experiment is repeated several times. A
quadratic fit of the form Eelas = k

2�2 using the NONLINEARFIT

method of MATHEMATICA enables us to extract the effective
stiffness k of the virus for each experiment, and error bars are
the corresponding root-mean-square deviations resulting from
the repetitions.

C. Geometrical model for position-dependent stiffness

The scaling results from the previous section assume that
the indentation is performed thanks to a pointlike force ap-
plied precisely on the top of the virus. A real AFM tip has,
of course, a finite radius of curvature of order a few tens of
nanometers, and its value is often similar to the radius of
curvature of the virus itself. This observation suggests that
great care should be the rule while considering the geometry
of indentation experiments. Anticipating any misalignment of
the tip with the highest point of the virus, we model in this
section the variation of stiffness while several lateral positions
relative to the top point of the shell are vertically indented with
a finite-size tip. We consider two types of tip: a spherical tip
and a conical tip ending with a hemisphere.

The precise geometry considered, and the definition of
the model parameters, are shown in Fig. 2. In the case of
a spherical tip, these cartoons illustrate an obvious effect
that leads to strong variation of measured stiffness as the tip
goes from the top to the edge of the spherical shell: upon
performing identical vertical indentations at different lateral
positions from the top to the edge, the corresponding shell
deformation decreases while approaching the edge. In the
figure, this is highlighted by simply observing the intersection
of the two spheres. However, real indentation is expected
to induce deformation at a larger scale, as was already dis-
cussed in the previous section. Accordingly, the spreading of
the deformation is estimated by de ∼ Rγ −1/4. Nevertheless,
the estimation of the overlap region provides a simple way
of quantitatively evaluating the influence of the lateral tip
position. In particular, the quantity of interest is the radial
indentation length �r , which represents the maximal radial
deformation along the new rotated axis in direction θ . After a
lengthy but straightforward geometrical calculation, one gets
for a thin shell of radius R and a spherical tip of radius Rt

�r =
1 + �̃

R−�̃
−

√
1 + (

�̃

R−�̃

)2( 1−cos θ2

cos θ2

)
1 + �̃

R−�̃

(11)
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FIG. 2. Geometrical model for indentation. (a) The shell to be
indented has a radius R. Upon vertically indenting on a length �,
the shell surface deforms horizontally over a typical length 2d . The
deformed area is assumed to have a constant curvature radius ρ.
(b) Ideal force-indentation curve in the linear regime. The vertical
downward arrow represents the change of force needed to perform
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formations (yellow areas) achieved by identical vertical indentation
for two different lateral positions, for a spherical tip (C) or a conical
tip (D).

together with the relation between lateral tip position r and an-
gle cos θ =

√
1 − ( r

R+Rt
)2 and the new variable �̃ = � cos θ

1+ Rt
R

.

In the limit of small indentation, this result simplifies to
�r 	 �

√
1 − ( r

R+Rt
)2. A weaker deformation of the shell in

the radial direction is therefore associated with a weaker elas-
tic response [see Fig. 2(b)]. Under the assumption of linear
elasticity, the effective stiffness which is position-dependent
is written, therefore, as

k(sphere)
eff (r) = k(0)

√
1 −

(
r

R + Rt

)2

. (12)

In the case of a conical tip of opening angle α, and termi-
nated with a hemisphere of radius Rt , the radial indentation
also depends on the position, at least when the spherical part
of the tip is in contact with the shell. However, when the
conical part is in contact with the shell, the radial indentation
associated with a vertical indentation � is identical regardless
of the lateral position. This is because one of two principal
curvatures of the cone is zero, and therefore the overlap with a
spherical shell along this direction is the same whenever there
is a contact. More precisely, the indentation is independent of
the position for r > (R + Rt ) cos α, i.e., when θ = π/2 − α,
and its constant value is simply �r = � sin α. The stiffness is
therefore

k(cone)
eff [r > (R + Rt ) cos α] = k(0) sin α. (13)

Note that although the radial indentation is constant, it is
expected that transverse deformation slightly increases with
the position as the conical imprint on the shell becomes larger.
The two estimations Eqs. (12) and (13) are simply based on
the geometry of shapes overlapping with the shell. It can be
complemented, for example, by the estimation of the bound-

ary length of the overlap region. This is demonstrated in the
Supplemental Material [18]. Nevertheless, the major position-
dependent effect is found with the true indentation length.

The previous estimation assumes that the shell does not
move laterally upon vertical indentation due to strong adhe-
sion with the substrate. In the limit of weak adhesion, the
shell is indeed expected to escape the imposed constraint of
indentation by rolling or sliding sideways. In the intermediate
adhesion regime, the shell will be both deformed and slightly
shifted sideways. This additional shift in the position is ex-
pected to lower the true indentation further, and therefore this
effect might reduce further the effective stiffness. The rele-
vance of this effect can be simply estimated in the following
way. We assume that the vertical indentation produces, in
addition to the true indentation along the symmetry axis of
the deformation, a horizontal shift �h. The relation between
vertical indentation �, true indentation �r , and horizontal
shift is written as �r = �

√
1 − ( r+�h

R+Rt
)2 to the lowest order

in �. The equilibrium is maintained by assuming the pres-
ence of a horizontal restoring force |Fadh| = kads�h, which
balances the horizontal contribution of the deformation force
|Fdeform| = k(0)�r

r+�h
R+Rt

. To the lowest order, the horizontal
shift is finally estimated as

�h 	 �
k(0)

kads

r

R + Rt
. (14)

Therefore the horizontal shift increases with lateral position,
and so does the horizontal force associated with adhesion
bonds. This estimate shows that adhesion bond rupture might
become more likely as the edge of the particle is approached
and that the shell might slip or roll away from the tip. Note that
the horizontal shift decreases for larger adhesion strength, as
it is inversely proportional to kads.

IV. COMPARING THEORY AND EXPERIMENTS
OF NANOINDENTATION OF VIRAL CAPSIDS

A. Geometrical stiffness heterogeneity

According to the protocol described in the previous experi-
mental sections, we performed nanoindentation experiments
with AFM on two different viral capsids: AAV8 and HBV
(T = 4 capsids) (Fig. 1). For each viral particle to be inves-
tigated, we recorded force-displacement curves at different
lateral positions across the particle [Fig. 1(a)]. The resulting
curves for one particular but representative capsid is shown
in Fig. 1(b), in which all the curves have been horizontally
aligned such that force increases at the same vanishing dis-
placement.

These curves show clearly that the elastic response is
strongly dependent on the lateral position of the tip with
respect to the top of the particle. Using the best force-
displacement curve recorded for the substrate, one can obtain
a similar picture on the force-indentation curves [Fig. 1(c)].
We recall here that the indentation δ is the net deformation
of the shell with respect to its initial configuration prior to
tip-shell contact. Both types of curve exhibit some oscillations
when vertical indentation is performed far from the top of
the shell [Fig. 1(b)]. This is likely to be associated with a
partial loss of substrate adhesion: as was discussed in the
analytical model, vertical indentation performed at a large
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distance from the top of the shell induces a weak deformation
of the shell, but it also exerts an increasing horizontal force on
the adhesion bonds between the capsid and the substrate.

Assuming a linear elastic response, the force curves can
be used to estimate the stiffness, as is shown in Fig. 1(c),
where this information is represented as a function of lateral
position for a single particle. This demonstrates very clearly
that the effective stiffness decreases as the indentation exper-
iment is performed on even not so distant lateral positions
from the capsid’s top. This observation survives when the
results on several particles are aggregated [Fig. 1(d)]. Notice,
however, that due to the oscillations in the force-displacement
curves for large lateral positions, the effective stiffness in
these regions has a larger uncertainty. We also performed
similar indentation measurements on HBV (T = 4 viral cap-
sids). In this case, we observed position-dependent stiffness,
although with a weaker amplitude, as will be discussed
later.

To investigate more quantitatively this position-dependent
stiffness and its dependence on various parameters of the sys-
tem, we used the molecular-dynamics simulations described
in the previous modeling sections. The indentation process is
reproduced by computing the change in elastic energy of a
triangulated surface constrained by the presence of a spherical
or conical tip [Figs. 3(a) and 3(b)] and a flat substrate.

Fitting the expected quadratic dependence of elastic en-
ergy under the assumption of linear elasticity, we extract the
stiffness for different lateral positions [Fig. 3(c)]. The result-

ing stiffness variation, shown in Fig. 3(d), is similar to the
observed experimental stiffness change. Using numerical sim-
ulations also allows us to investigate the influence of various
parameters on the position-dependent stiffness, such as tip
geometry (spherical or conical) and elastic parameters.

Comparing both experimental and numerical indentations,
we observed first a strong variation of the stiffness. This effect
can be qualitatively understood by a simple geometrical model
previously mentioned: a vertical indentation performed at dif-
ferent lateral positions will correspond to weaker effective
deformation of the shell, resulting in a weaker restoring force.
From a quantitative point of view, this geometrical model
provides a simple prediction that can be compared to both
experiments and simulations. In the case of a spherical tip,
the expected stiffness decreases toward vanishing value, and
the simulations confirm this prediction. On the contrary for
a conical tip, the stiffness should first decrease similarly to
the spherical case, and then reach a nonzero constant value.
Again, this is also observed both in the experiments and in
the simulations. However, the latter curves show a stronger
decrease in the stiffness compared to the simple geometrical
model, suggesting the presence of other effects at play in the
real system.

The first major correction that can be brought to the geo-
metrical model is to consider horizontal displacement which
is concomitant with the vertical indentation. Within the sim-
ulations, we can indeed compute for each lateral position of
the tip the net horizontal shift of the shell center of mass as
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compared to the original position prior to indentation. This is
shown in Figs. 4(a) and 4(b), respectively, for a spherical and
a conical tip. It is observed within these plots that the hori-
zontal shift increases first linearly with the lateral position, in
qualitative agreement with scaling model prediction Eq. (14).
This horizontal shift could be associated with partial loss of
adhesion sites between the shell and substrate or with a more
global deformation of the shell. Plugging a linear horizon-
tal displacement �h = Ar in the original geometrical model
introduces a rescaling correction to the geometrical model
Eq. (12) in the form k(sp)

eff = k(0)
√

1 − [r/(R + Rt )]2(1 + A)2.
This predicts indeed a stronger decrease of stiffness as com-
pared to the original geometrical model. This argument can
also be applied to the conical model. Using A as an adjustable
parameter, the corrected geometrical model shows a better
agreement with experimental (Supplemental Material Fig. 2
[18]) and simulated data [Fig. 4(c)].

Simulations were also used to address the influence of
various parameters on the effective stiffness measured. This
is shown in Fig. 4(c), for example. The geometrical model
predicts that the value of constant stiffness for the conical tip
depends only on the opening angle of the cone [see Eq. (13)]
but not on the value of sphere radius terminating the cone.
This behavior is observed in the figure with two identical
plateaus of stiffness for two different sphere radii. Moreover,
the value of the plateau is expected to increase with α. Again,
this prediction is quantitatively reproduced in the simulations
[Fig. 4(c)].

B. Intrinsic stiffness heterogeneity

Up to this point, we demonstrated and discussed stiffness
heterogeneity depending strongly on the lateral position of the
tip. This raises the question of monitoring intrinsic stiffness
heterogeneity due to the shell’s structure itself. To address
this question, we changed the value of elastic parameters and
designed specific numerical experiments. The most promising

candidates for intrinsic stiffness heterogeneity are the pen-
tamers and hexamers of the shell. We imposed the orientation
of the shell on the substrate such that either a pentamer or a
hexamer is facing up the tip. For this last case, there are several
possible choices. However, the simplest case is to choose a
hexamer equidistant from three neighboring pentamers, i.e.,
this corresponds to any threefold symmetry axis of the icosa-
hedron. In other words, this hexamer is supposed to lie at the
center of the faces in the faceted shell representation. Next
we induced the same vertical indentation for different lateral
positions, and we deduced the effective position-dependent
stiffness. For the sake of simplicity, we used T = 9 shells to
performed nanoindentation experiments along different lateral
profiles, and we achieved a different degree of faceting by us-
ing different elastic parameters. Using this protocol, we were
able to compare the stiffness for different tip trajectories: from
central pentamer to peripheric pentamer, central pentamer to
peripheric hexamer, central hexamer to peripheric hexamer,
and central hexamer to peripheric pentamer. Note that this
procedure is different from most numerical works in the lit-
erature, where indentation is performed on top of the shell for
the various shell orientations encountered by the adsorption
process on the substrate. At low FvK number or equivalently
for roughly spherical shells, we observed that the stiffness de-
crease as a function of the position is similar, regardless of the
trajectory [Fig. 5(b)]. This agrees with the scaling prediction
of thin shell theory as presented earlier. In this regime, the
geometrical stiffness heterogeneity is dominant, and intrinsic
heterogeneity is likely to be very hard to measure in real AFM
data, as suggested by the observation in the simulations.

On the contrary, we anticipate different behavior for con-
ditions in which faceted shells are expected, namely at higher
FvK number or for T = 1 shells. In this case, the stiffness
variation upon different tip trajectories is distinct [Fig. 5(c)].
First, the pentamers on top of the shell are stiffer than
hexamers. This is also confirmed by the value of the stiffness
plateau: for trajectories starting from a central pentamer, the
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plateau is higher if the trajectory ends on a peripheric pen-
tamer than on a peripheric hexamer. The analysis of the last
two trajectories is more involved, as it results from the balance
of both intrinsic and position-dependent stiffness. Going from
one central hexamer toward a distal pentamer, the stiffness
first increases, reflecting the intrinsic or structural variation,
before decreasing at larger distances, showing the geometrical
effect. This could be due to the presence of a ridge joining two
pentamers on the trajectory. Finally, going from one central
hexamer to a peripheric hexamer might end up in the defor-
mation of aligned pentamers, for a large lateral position. The
dispersion of trajectories shows nevertheless that the effective
position-dependent stiffness is strongly dependent on the tra-
jectory itself. At this stage, we are led to the following partial
conclusion: a closed shell that has a roughly spherical shape
does not exhibit significant intrinsic stiffness heterogeneity, as
all stiffness profiles superimpose. Therefore, the presence of
pentamers and hexamers does not necessarily lead to stiffness
heterogeneity. On the contrary, when the shell exhibits signifi-
cant faceting, stiffness heterogeneity is observed, and different
trajectories lead to different stiffness profiles.

Next, we tried to observe similar heterogeneity signatures
in the experiments on both viral capsids AAV8 (T = 1)
and HBV (T = 4) using several indentations performed at

various lateral positions. First, we compared the average tra-
jectory stiffness versus position along AAV8 and HBV capsids
measured for several viral particles [Fig. 6(b)]. For both cap-
sids, the general trend is a decrease of stiffness from the
center to the edge of the particle, in agreement with the
analytical and numerical model. It is possible to rescale the
stiffness with the top value and the position with the ap-
propriate size R + Rt , so that both profiles collapse onto a
single curve, up to the experimental error [Fig. 6(c)]. This
is consistent with the geometrical modeling proposed so far.
The median stiffness value on the top, 0.8 N/m for AAV8
and 0.3 N/m for HBV, is also consistent with other val-
ues from the literature [8,40,41]. Interestingly, we observed
that the trajectories are relatively spread around the average
trajectory, the effect being larger for AAV8 than HBV cap-
sids, as can be noticed from the values of the first and third
quartile of the local stiffness distribution. To relate these
results with the ones obtained in the simulation [Fig. 5(b)],
we extracted first the stiffness distribution on the top of the
viruses for AAV8 and HBV [Figs. 7(a) and 7(b)]. These dis-
tributions show multimodal features. It is possible to use these
modes of top stiffness distribution to select subpopulations
of profile [Figs. 7(c) and 7(d)]. In practice, this is per-
formed by inspecting the cumulative top stiffness distribution,
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which shows several significant slope ruptures (see Supple-
mental Material Fig. 4 [18]). These subpopulation profiles
are clearly distinguishable, and they strongly suggest the
presence of stiffness inhomogeneity. Now, within the simula-
tions, the exact orientation of the adsorbed particles is known,
and therefore it is likely that the observed subpopulations
of profiles in the experiment are representative of the very
same feature: the difference in orientation of adsorbed viral
particles generates different stiffness profiles. Using subpopu-
lation profiles, we recover the observations made in Fig. 6(b):
relative inhomogeneity is stronger for AAV8 than for HBV
capsids. Moreover, since the simulation suggests that hetero-
geneous stiffness profiles correlate to a faceted shape, we
confirm from our mechanical experiment that stiffness het-
erogeneity of AAV8 viral capsids is associated with a more
faceted shape than HBV viral capsid. This conclusion is in
agreement with the structural information on these viral cap-
sids, as AAV8 is a T = 1 shell (strongly faceted), and HBV is
a T = 4 shell (weakly faceted, more spherical) [40,42,43].

V. CONCLUSION

In the present work, we investigated the sources of stiffness
heterogeneities that can arise in indentation experiments of
nanosized shells like viral capsids. We first identified and ra-
tionalized a purely geometrical effect that reduces the stiffness
of the shell as the vertical indentation axis is shifted towards
the border of the shell. This is due to the decrease of the net de-
formation for identical vertical indentation. When compared
to simulations, the prediction of a geometrical model that
we proposed shows additionally that the adhesion properties
of the shell to the substrate are rather important to account
quantitatively for the observations. To our knowledge, this
geometric effect was already observed on the influenza virus
[44], but this time it has been quantitatively investigated.
It has some important consequences in the interpretation of
nanoindentation experiments, as the stiffness value might be

underestimated in the case of measurements with poor posi-
tioning precision.

The recognition of this geometrical effect allowed us
to define a new procedure to highlight intrinsic stiffness
heterogeneity coming from the structural and elastic
properties of the shell, and not from the relative geometry
between the tip and the shell. Within this procedure,
heterogeneity is evidenced by comparing stiffness trajectories
obtained by performing several indentation experiments while
scanning the investigated shell. Using simulations, we showed
that if the shell is rather spherical, all trajectories collapse
onto the expected geometrical profile. On the contrary,
for a faceted shell resembling an icosahedron, stiffness
trajectories are rather dispersed, reflecting intrinsic stiffness
heterogeneity. We measured this effect experimentally for two
examples of small viruses, namely AAV8 and HBV (T = 4).
The different degrees of intrinsic stiffness heterogeneity
found for these viruses are consistent with their structure:
AAV8 is a T = 1 shell, with strong faceting, while HBV
capsid is a T = 4 shell with weaker faceting (more spherical
shape); accordingly, the dispersion of stiffness profiles is
larger for AAV8 than for HBV.
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