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Nonequilibrium, weak-field-induced cyclotron motion: A mechanism for magnetobiology
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There is a long-time quest for understanding physical mechanisms of weak magnetic field interaction with
biological matter. Two factors impeded the development of such mechanisms: first, a high (room) temperature
of a cellular environment, where a weak, static magnetic field induces a (classically) zero equilibrium response.
Second, the friction in the cellular environment is large, preventing a weak field to alter nonequilibrium processes
such as a free diffusion of charges. Here we study a class of nonequilibrium steady states of a cellular ion
in a confining potential, where the response to a (weak, homogeneous, static) magnetic field survives strong
friction and thermal fluctuations. The magnetic field induces a rotational motion of the ion that proceeds with the
cyclotron frequency. Such nonequilibrium states are generated by a white noise acting on the ion additionally to
the nonlocal (memory-containing) friction and noise generated by an equilibrium thermal bath. The intensity of
this white noise can be weak, i.e., much smaller than the thermal noise intensity.

DOI: 10.1103/PhysRevE.104.064407

I. INTRODUCTION

The influence of a weak, static magnetic field on biological
systems remains a controversial subject [1–4]. A weak dia-
magnetism is present in such systems [3], but it can produce
visible effects only for high magnetic fields (∼20 T) [5]. Ex-
perimental reports on the existence of weak-field biological
influences are too numerous to be wrong [1,2,4]. However,
they are frequently not reproducible, which asks for an expla-
nation [1,2,4]. Physical mechanisms that would describe such
influences in a sufficiently general molecular biology situation
are unclear [6–9].

Here we plan to study the influence of a weak static
magnetic field on the stochastic motion of an ion (Brow-
nian charge). Metal ions (Na+, K+, Ca2+, Mg2+, etc.)
play an important role in molecular biology. They can be
called its third ingredient along with DNA/RNA and pro-
teins [10]. Nearly 1/3 of all proteins employ metal ions for
their functioning [3,10]. Ions are important in bioenergetics,
communication (e.g., nerve impulse generation), osmotic reg-
ulation, metabolism, energy storage, etc. [3,10–13]. Hence, it
is natural to study their motion as a target of a static magnetic
field. Such a study should look at nonequilibrium states, since
under weak magnetic fields an ion’s translational motion is
classical, and then an equilibrium magnetic response (mo-
ment) is nullified by the Bohr–van Leeuwen theorem [14–20].
Its message is straightforward: once the magnetic field does
not do work on the charge, it does not influence charge’s
equilibrium state that depends only on its energy.

The main issue of envisaging possible nonequilibrium re-
sponses of a static magnetic field is that there is a huge
difference between the relaxation time induced by friction
(<10−9 s for ions in water) and the magnetic (cyclotron)
timescale (>10−3 s for weak fields) [6,8]. For example, con-
sider the free-ion diffusion (i.e., Brownian motion without

an external potential) that is a pertinent nonstationary (hence
nonequilibrium) cellular process [3]. Theoretically, it is in-
fluenced by a static magnetic field, since the diffusion is
impeded in directions perpendicular to the field due to a cir-
cular (cyclotron) motion induced by the magnetic field [21].
But, for weak fields this effect is completely diminished by
large translation friction (damping) in water: the influence
of the magnetic field on the perpendicular diffusion is on
the order of b2/γ 2, where b and γ are, respectively, the
cyclotron frequency induced by the magnetic field and the
friction coefficient in water. For the Earth magnetic field we
get b2/γ 2 ∼ 10−18; see (2.8).

Models that attempt to explain the effects of weak magnetic
fields postulate the existence of degrees of freedom moving
under a weak (or without) friction [2,22–26]. Such postulates
are so far unfounded, since the friction is large both in water
and inside proteins cavities, and its differences (e.g., due to
hydrophobic effects) are too small to account for the above
big gap [6,8,9].

We aim to propose mechanisms for the influence of weak
static magnetic fields that survive strong friction and room-
temperature fluctuations. To this end, we study an ion confined
in a potential generated by a protein or membrane. Cellular
ions are bound to proteins or diffuse freely in the cell; we
focus on the former type of ion motion [3,11,10]. An ion’s in-
teraction with the thermal environment generates friction and
noise, in addition to the regular force exerted by the confining
potential [3,27,28]. The potential is strongly confining for an
ion in a tight cavity, while it is weaker if the ion is bound
next to protein surface. If these three forces—together with
the Lorentz force generated by the magnetic field—were the
only ones acting on the ion, then its motion would quickly
reach an equilibrium state that does not feel the static mag-
netic field (the Bohr–van Leeuwen theorem); in particular, no

2470-0045/2021/104(6)/064407(17) 064407-1 ©2021 American Physical Society

https://orcid.org/0000-0002-6628-6676
https://orcid.org/0000-0003-2542-3504
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.064407&domain=pdf&date_stamp=2021-12-13
https://doi.org/10.1103/PhysRevE.104.064407


ASHOT MATEVOSYAN AND ARMEN E. ALLAHVERDYAN PHYSICAL REVIEW E 104, 064407 (2021)

cyclotron motion would be present. However, we take into
account that the chaotic cellular environment is capable of
generating additional noises, e.g., via fast conformational mo-
tion of protein [29–34]. We make natural assumptions that the
additional noise is white, i.e., it is generated by fast degrees of
freedom, and that it is weak: the white-noise intensity is much
smaller than that of the thermal noise. Accounting also for the
memory necessarily present in the aqueous thermal bath, we
find a stationary state, where the ion rotates with the cyclotron
frequency in a weak field and an aqueous environment. The
origin of this effect is that although the additional white noise
leads to a stationary state that is quantitatively close to the
equilibrium state in many of its features, it is nonequilib-
rium and involves violations of fluctuation-dissipation relation
(FDR). Due to this, the Bohr–van Leeuwen theorem does
not generally hold out of equilibrium [18,19]. The existence
of FDR violations is well established in active biophysical
processes; see Refs. [35,36] for reviews.

Thus, our model explains how the average cyclotron
motion can be sustained in the frictional and noisy cel-
lular environment. Note that many functional processes in
cation-driven proteins proceed on times comparable with the
cyclotron motion in weak magnetic fields [31]. Hence, the
cyclotron motion can influence such processes, e.g., via im-
posing the cylindrical symmetry of the cyclotron motion on
the shape of the ion-binding protein cavity [24].

We aimed to organize this paper such that its main re-
sult is available to both experimentalists and theoreticians.
Hence, we relegated detailed derivations of our results to
appendixes making our conclusions self-contained. The next
section discusses our basic model: an ion interacting with an
equilibrium thermal bath and subjected to an external white
noise. Section III shows that the magnetic field induces a cy-
clotron motion and diamagnetic response to a static magnetic
field. Section IV studies stochastic trajectories numerically for
several ranges of parameters, explains them via autocorrela-
tion functions, and confirms our analytical results. Here we
study overdamped and underdamped regimes of the stochastic
dynamics and show that the memory present in the aqueous
thermal bath facilitates underdamping. We summarize in the
last section with discussing again the main assumptions of
the model and providing a perspective on the future research.
This section also reviews two other physically consistent ap-
proaches for explaining influences of weak, static magnetic
fields, viz., the compass mechanism and radical pair reactions.
Appendix A compares the obtained nonequilibrium classical
magnetic moments with known scenarios of equilibrium and
dissipative quantum magnetism. Appendix B discusses rela-
tions between Langevin and Fokker-Planck equations, while
Appendixes C and D describes our technical tools and outlines
generalizations of our results.

II. THE MODEL

A. Langevin equation

We study ions bound in external potentials (generated by
membranes or proteins). Hence we shall neglect electrostatic
interaction between ions [3], focusing instead on their inter-
action with thermal bath and with external forces. Thus we

describe a single ion with mass m, charge Q, coordinate vec-
tor x(t ) = (x, y, z), and velocity v = ẋ ≡ dx

dt . The Langevin
equation divided over the mass m reads [27,28,37]

v̇(t ) = − γ

∫ t

t0

dt ′ κ e−κ|t−t ′| v(t ′) − ux(x) + Q

m
v × B

+ 1

m
η(t ) + 1

m
ξ(t ), (2.1)

where Q v × B is Lorentz’s force coming from an external
static magnetic field B (here × stands for the vector product),
ux(x) ≡ ∂u/∂x is the force generated by a potential u(x), and
where the friction force with magnitude γ and exponential
kernel has a well-defined memory time 1/κ . In (2.1) η(t ) and
ξ(t ) are independent Gaussian noises, where η(t ) is generated
by the equilibrium thermal bath, while ξ(t ) is generated by a
(random) time-dependent potential −(xξx + yξy + zξz ), which
operates in addition to the deterministic potential u(x) and
refers, e.g., to fast conformational motions of the protein; see
below for details.

The initial conditions for (2.1) are posed at t = t0. Param-
eters γ , κ, and Q|B|/m in (2.1) have dimension of frequency.
Here Q|B|/m is the well-known cyclotron frequency [2,4],
and mγ is the proper friction constant. Another frequency
comes via u(x), e.g., the isotropic harmonic potential brings
frequency ω0:

u(x) = ω2
0

2
|x|2 = ω2

0

2
(x2 + y2 + z2), (2.2)

where we note that the x coordinate system is located at
the bottom of the potential. Let δ(t ) and δi j be Dirac’s delta
function and Kronecker’s symbol, respectively. The averages
〈. . .〉 of the Gaussian noises read [27,28]

〈ηi(t )〉 = 0, 〈ξi(t )〉 = 0, i = x, y, z, (2.3)

〈ηi(t )η j (t
′)〉 = δi j q (θ/2) e−θ |t−t ′|,

〈ξi(t )ξ j (t
′)〉 = qwδi jδ(t − t ′). (2.4)

Here q and qw are noise intensities, 1/θ is the correlation
time of the η noise, while the ξ noise is white. Recall that if
in (2.1) the friction (∝ γ ) and the noise η(t ) are generated
by the same equilibrium thermal bath, then the fluctuation-
dissipation relation holds [28,37], i.e., the friction memory
e−κ|t−t ′| and the noise correlation e−θ |t−t ′| are the same:

θ = κ. (2.5)

Another aspect of the FDR is that the intensity of the
η(t ) noise relates to the thermal bath temperature T (kB is
Boltzmann’s constant) [27,28]:

q = 2mγ kBT . (2.6)

We shall assume that (2.5) and (2.6) hold, and then the
only nonequilibrium aspect in the problem comes from the
external white noise ξ(t ) that does not satisfy FDR, since it is
not accompanied by the corresponding friction (even if there
would be the additional friction, the FDR can be still violated
due to different temperatures of the noises).

Equations similar to (2.1), i.e., Langevin equations with
magnetic field, were studied at many places in application
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to plasma physics or stochastic systems [18–21,38–44]. Our
focus will be on implications of (2.1) for ions moving in
cellular environment having a large friction (γ ∼ 1012 s−1)
and thermal fluctuations (T = 300 K).

B. Friction, memory, noise, and potential: Magnitudes
of involved parameters

For the Brownian ion moving in a viscous fluid (water)
the friction (i.e., energy dissipation) is generated by fluid’s
shear viscosity [37,45,46]. For the ion with mass m the fric-
tion constant mγ is estimated via the Stokes-Einstein formula
[27,28,45,46]:

mγ ∼ riη, (2.7)

where ri is the (effective) radius of the ion, and η is the
shear viscosity of the fluid; η = 10−2 g cm/s for water at
room temperature. Important biological ions (Na+, K+, Ca2+,
Mg2+) have roughly the same mass and size; e.g., for Ca2+

we have m = 40 g/mol = 6.7 × 10−23 g, ri ∼ 0.2 nm and we
get γ ∼ 1013 s−1 from (2.7). Ions bound inside of protein
interact with both protein degrees of freedom and water. The
protein viscosity is close to that of water, and we find the same
result γ ∼ 1012 − 1013 s−1 [47]. A similar estimate for 1/γ is
obtained by assuming that the ion is bound inside of a cage
of linear size l , and interacts with thermal motion of cage’s
walls. Then 1/γ ∼ l/vth = l/

√
kBT/m, which for l = 0.5 nm

produces γ ∼ 1012 s−1 [6].
The standard division of static magnetic field magnitudes is

as follows [1,4]: weak (�1 mT), moderate (>1 mT and �1 T),
high (>1 T and �20 T), and ultrahigh (>20 T). Modern NMR
medicine operates in the strong-field range 1−3 T, while the
Earth magnetic field is ∼50 μT. For definiteness, we shall
assume B = 1 mT, which for Ca2+ with m = 6.7 × 10−23 g,
and the charge Q = 3.2 × 10−19 Cl leads to the cyclotron fre-
quency b = QB

m ∼ 5 × 103 s−1. The choice of B = 1 mT is
motivated by its experimental relevance [1,4], and by the fact
that is the strongest among weak fields. This choice is 20 times
larger than the Earth magnetic fields, which is convenient
experimentally since the latter is normally always present [4].

Equation (2.1) contains memory described by the simplest
kernel κe−κ|t−t ′| with a well-defined memory time 1/κ . The
memoryless situation is recovered for κ → ∞, where we
get κe−κ|t−t ′| → 2δ(t−t ′) in (2.1), and hence the memoryless
friction −γ v [28,37]. The general mechanism for the memory
is that environmental relaxation processes have a finite char-
acteristic time, which (roughly) agrees with the memory time
1/κ [45,46]. Hence, for a Brownian ion moving in water, the
friction memory is present, since water molecules and the ion
have comparable masses [48,49]. The specific form e−κ|t−t ′|
in (2.1) holds for a particle diffusing in a viscoelastic medium
[50]. Such media describe the cell interior [51,52]. A virtue
of the kernel e−κ|t−t ′| is that we can construct from (2.1) a
Fokker-Planck equation also for any (nonlinear) potential; see
Appendix B. Note that the hydrodynamic theory of the friction
memory leads to kernels that are more complex than e−κ|t−t ′|
in (2.1). This theory is however not yet complete [53].

For an aqueous environment the memory time 1/κ can
be estimated via the cage-jump model [54,55], where a
given molecule diffuses by jumping from one cage (made by

neighboring molecules) to another. The characteristic time a
molecule spends in one cage is the memory time. This time
can be estimated as τ0 e�/(kBT ), where � is the energy barrier
(including the hydrogen-bonding contribution) that defines
the cage, τ0 ∼ 10−13 s, and � = 0.2 eV [55]. This estimate
for τ0 can be obtained via the linear size lc � 0.1 nm of the
cage and thermal velocity vth of cage’s walls: τ0 ∼ lc/vth =
lc/

√
kBT/mw, where mw is the mass of a water molecule.

Recalling kBT = 0.025 eV at room temperature, we get for
the memory time κ−1 ∼ τ0 e�/(kBT ) ∼ 10−10 s [3]. This is in
between of the hydrogen-bond rearranging time 10−11 s and
the water structural reorganization time 10−8 s [56].

Once the memory in friction is understood, the structure of
the η noise in (2.51) is recovered through the FDR (2.5). The
ξ noise in (2.1) is generated by fast conformational motions of
protein or membrane that interact with the bound ion [29,30].
These motions are described as noise [57]. We assume that
this noise is white, since the corresponding degrees of free-
dom have small characteristic times (10−15–10−13 s) [31].
Recall that ξ does not hold FDR.

For estimating the frequency ω0 of the harmonic potential
mω2

0x2/2 in (2.2), we note that that since the confined ion is
still subject to thermal fluctuations, we can take mω2

0l2/2 ∼
kBT , where l is the characteristic localization length. The
confining potential (2.2) can describe two different scenarios.
The first scenario is when the ion is localized next to the
protein (or membrane) surface. For this case we can estimate
l ∼ 1−1.5 nm. The second scenario is when the ion is tightly
bound inside of a protein cavity. Then l is a few times larger
than the ion radius: l ∼ 0.5 nm, hence ω0 ∼ 1011 s−1. Note
that for the harmonic potential (2.2) the probability density
of the coordinate x (in the stationary situation) is Gaussian;
see Appendix D. Hence, we can take l =

√
〈x2〉 − 〈x〉2, since

the particle is nearly absent for distances |x| > l (note that
〈x〉 = 0).

Since we are interested in weak magnetic fields, we use
in our estimates B ∼ 1 mT, and the room temperature 300
K of the biological environment. Thus, we accept for further
estimates the following hierarchy of inverse times (m = 6.7 ×
10−26 kg, and the charge Q = 1.6 × 10−19 Cl):

γ ∼ 1012 > ω0 ∼ 1011 > κ ∼ 1010

� b = QB/m ∼ 103 s−1. (2.8)

Finally, we should estimate the white-noise intensity qw

in (2.4) [the thermal nose intensity q is fixed from (2.6)].
We should require that qw is sufficiently small compared to
q; otherwise, the thermal averages (e.g. 〈x2〉) will change
significantly. Given (2.8) we can assume qw as small as qw �
10−2q. We cannot take qw much smaller than this value, since
then the influence of the white noise will be negligible. Note
that the assumption on the white feature of ξ is relaxed in
Appendix C.

III. DIAMAGNETISM IN HARMONIC POTENTIAL

Langevin Eq. (2.1) can be converted into the Fokker-Planck
equation for the joint probability of the involved random vari-
ables; see Appendix B. We look for the stationary regime,
where the probability density of random variables pertaining
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to the ion motion becomes independent from time [28,37].
For a particle in a confining (e.g., harmonic) potential this
stationary regime is reached from any state after a short re-
laxation time that scales as 10−9 s for parameters given by
(2.8); see (4.3). The solution of the stationary Fokker-Planck
equation is described in Appendix C. Here we shall discuss
this solution for the simplest case of the harmonic potential
(2.2). More general potential can (and must) be studied, but
the harmonic potential suffices for introducing and discussing
our main result.

We choose the magnetic field along the z axis in (2.1):
B = |B|ez. In the stationary state all linear averages nullify:
〈x〉 = 〈y〉 = 0 [due to (2.2)] and 〈vx〉 = 〈vy〉 = 0, because the
motion is confined. We get for the averages of the orbital
momentum (along the magnetic field) 〈L〉, square coordinate
〈x2 + y2〉 in the plane perpendicular to the magnetic field, and
〈v2

x + v2
y 〉 (see Appendix C):

〈L〉 = 〈xvy − yvx〉 = −b
qw

γ m2κ2
, (3.1)

〈
v2

x + v2
y

〉 = q

γ m2
+ qw

γ m2
× κ2 + ω2

0 + γ κ + b2

κ2
, (3.2)

〈x2 + y2〉 = q

γ m2ω2
0

+ qw

γ m2ω2
0

× κ2 + ω2
0

κ2
, (3.3)

where b denotes the cyclotron frequency:

b = QB/m. (3.4)

Equations (3.1)–(3.3) are special cases of the harmonic
potential solution derived in Appendix C; see (C26). How-
ever, (3.1) follows directly from the more general argument
discussed after (C24) that applies to anharmonic potentials as
well.

Note that the averages in (3.1)–(3.3) hold symmetry fea-
tures, e.g., 〈xvy〉 = −〈yvx〉, 〈v2

x 〉 = 〈v2
y 〉 etc.; see Appendix C.

Equation (3.1) shows that the response to the magnetic field is
diamagnetic, i.e., 〈L〉

B < 0. For the considered harmonic poten-
tial (2.2), 〈L〉 does not depend on the shape ω2

0 of the potential
and on the intensity q of the thermal noise; cf. (3.1). Such
dependences emerge for anharmonic potentials [see (C21) in
Appendix C], but the fact of diamagnetic response stays.

Now 〈L〉 nullifies for three cases; see (3.1). First, 〈L〉 = 0
when κ → ∞ in (3.1), since now we get that for long times
the system described by (2.1) holds FDR with white noises
and memoryless friction (with a certain effective tempera-
ture). Hence it relaxes to an equilibrium state that does not
contain the magnetic field b (the Bohr–van Leeuwen theorem),
and leads to 〈L〉 = 0. In the same limit κ → ∞ we get from
(C23) the known thermal expression for 〈v2

x + v2
y 〉 = 2〈v2

x 〉.
Second, 〈L〉 = 0 for qw = 0 (zero intensity of the white noise)
where FDR again holds. Third, 〈L〉 = 0 for b → 0 (zero mag-
netic field). Note that 〈L〉 increases in a (unrealistic) limit
κ → 0, because now the friction term nullifies, as seen from
(2.1). For a nullifying friction the finite-intensity white noise
brings a large amount of energy into the system, forcing the
oscillator to move faster over trajectories more remote from
the origin, and thereby increasing 〈v2

x + v2
y 〉, 〈x2 + y2〉 and

also 〈L〉; see (3.1)–(3.3).
The average orbital momentum in (3.1) can be expressed

via magnetic moment Mc = Q〈L〉/2 [16], where Q is the ion’s

charge. Using (2.6) we find for the magnetic moment

Mc = −qw

q

kBT Q2B

m2κ2
. (3.5)

Since 〈x2 + y2〉 is the square of the characteristic radius,
the (average) angular velocity 〈�〉 that corresponds to 〈L〉 in
(3.1) is obtained as

〈�〉 = 〈xvy − yvx〉
〈x2 + y2〉 = −b

[(
1 + q

qw

)
κ2

ω2
0

+ 1

]−1

. (3.6)

We confirm in Appendix D that (3.6) is indeed the average
of the angular velocity:

� = xvy − yvx

x2 + y2
. (3.7)

It is seen from (3.6) that 〈�〉/(−b) < 1. Using (2.8) we
conclude that even for qw

q as small as ∼10−2 [see the discus-

sion after (2.8)] we can get 〈�〉/(−b) ∼ 1, because κ2

ω2
0

∼ 10−2

in (3.6). Thus the average angular velocity 〈�〉 is of the same
order of magnitude as the cyclotron frequency b, despite the
large friction and the strong thermal noise (stronger than the
nonequilibrium noise).

The timescale 1/b of the cyclotron motion is much larger
than the other characteristic times including the relaxation
time; see (2.8) and the discussion after it. Hence (3.6) de-
scribes a rotation of a probability cloud, rather than a rotation
along a well-defined orbit; see Sec. V for more details on
this. The linear velocity of the cyclotron motion is estimated
as 1 nm × 103 s−1 ∼ 10−6m/s [see (2.8)] that by its order of
magnitude coincides with the ordered motion velocity inside
of the cell (Ref. [28], p. 24). In contrast to (free) diffusion,
such an ordered motion is driven by active sources via energy
dissipation [28]. Times ∼10−3 s are typical for the functional
activity of many metalloproteins [31], e.g., for Ca2+ specific
binding to calmodulin [58]. Hence (3.6) supports the hypothe-
sis that the additional ordered motion induced by a weak mag-
netic field can influence functional activity of proteins [24].
In particular, the influence can be realized via imposing on
cation-binding cavity (calmodulin) the cylindrical symmetry
that is inherent in the average cyclotron motion. The estimates
for the angular speed given in Ref. [24] do not support the
hypothesis, since they do not account for the strong friction
and thermal noise. Note that if several cations are bound in a
protein (e.g., calmodulin can bound up to four Ca2+), then the
collective average orbital moment of all the cations equals the
sum of individual contributions given by (3.1).

We emphasize that the application of (3.1) to magne-
tobiological effects is not that it corresponds to a directly
observable collective magnetic moment generated via (3.5);
i.e., the application is based on 〈�〉 in (3.6), and not on the
magnetic moment Mc in (3.5). Appendix A compares (3.5)
with the quantum diamagnetic moment that is produced by
electron motion inside of atoms, a quantum effect responsi-
ble for the water diamagnetism [15]. We conclude that the
magnitude of (3.5) is smaller than the electronic diamagnetic
moment of water molecule. The physical content of these dia-
magnetic effects is quite different: (3.1) produces an ordered
motion with a velocity reasonable for a strongly frictional
cell environment, while the quantum diamagnetism relates
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to a zero-temperature intra-atom motion of frictionless elec-
trons. At any rate, both (3.5) and the water diamagnetism are
very small for the considered range of small magnetic fields.
Appendix A also compares (3.5) with the spin paramagnetic
moment at the same temperature T , and concludes that (3.5)
can be larger than this paramagnetic moment.

IV. AUTOCORRELATION, CHARATERISTIC TIMES, AND
NUMERICAL RESULTS

A. Relaxation and rotation times

Above, we calculated features of the stationary state for
the ion. Now we turn to studying the stochastic ion’s motion
from the viewpoint of random trajectories. We focus on x
and y coordinates of (2.1) under harmonic potential (2.2) and
introduce the complex coordinate ζ = x + iy. The advantage
of using ζ is that rotations on the xy plane are described via
the phase of ζ .

The autocorrelation function 〈ζ (t1)ζ ∗(t2)〉 studies the
stochastic motion in the time window (t1, t2), assuming that
t1 and t2 are much larger than the relaxation time, but t1 − t2
can be arbitrary. The behavior of 〈ζ (t1)ζ ∗(t2)〉 depends on the
involved timescales, and allows to distinguish between under-
damping, where on times smaller than the relaxation times
the ion makes rotations, from overdamping (no rotations). We
deduce (see Appendix E for the derivation)

〈ζ (t1)ζ ∗(t2)〉 =
3∑

n=1

Cneiωnt =
3∑

n=1

Cne−u′
n t−i u′′

n t ,

t = |t1 − t2|, (4.1)

un = u′
n + i u′′

n, n = 1, 2, 3, (4.2)

where un (with real part u′
n and imaginary part i u′′

n) are the
roots of the characteristic equation:

u3 − (κ + ib) u2 + u
(
γ κ + ω2

0 + ibκ
) − ω2

0κ = 0. (4.3)

Cn in (4.1) are t-independent prefactors that are determined
from the initial conditions at t1 = t2; cf. (3.1). Autocorrelation
functions of other quantities are expressed as in (4.1), but
with different prefactors Cn. We are not interested in Cn. We
emphasize that (4.3) does not depend on the noises η(t ) and
ξ(t ) in (2.1).

Thus, u′
n > 0 in (4.1) and (4.2) correspond to inverse re-

laxation times, while un
′′ refer to rotation frequencies. Indeed,

for t � u′−1
n , we get 〈ζ (t1)ζ ∗(t2)〉 = 〈ζ (t1)〉〈ζ ∗(t2)〉 = 0. We

also refer to u′′−1
n as rotational period, leaving out 2π fac-

tor. We have rotational (underdamped) motion if u′
n � un

′′
holds for at least one index n. Otherwise, the motion is
overdamped. Consider a particular simple case in (4.3). For
κ � 1, i.e., in the memoryless friction regime, (4.3) leads to
u′

1 � κ � u1
′′, u′

2, u2
′′, u′

3, u3
′′. Hence the contribution from

n = 1 quickly disappears from (4.1), and we are left with
two roots of the quadratic equation u2 − u(γ + ib) − ω2

0 = 0
found from (4.3). For a small b, these two roots predict that
the transition from overdamping to underdamping takes place
at γ ∼ 2ω0. For not so large κ the underdamping is facilitated,
since the friction γ in (4.3) is multiplied by κ . Note that when

parameters in (2.8) are put into (4.3) we get that relaxation
times scale as 10−9 s.

B. Numerical results

We solved numerically the (x, y) components of (2.1) and
(2.2), i.e., the planar motion under the magnetic field directed
along the z axis. The numerical solution employs the Euler-
Maruyama method [28] with the time step 10−4. The ratios of
parameters are kept realistic, as in (2.8), except for the mag-
nitude of the cyclotron frequency b that is taken larger than
its relative value in (2.8) for making numerically visible the
influence of the magnetic field. However, b is still 100 times
smaller than other frequencies in (2.8). Hence, the reported
numerical results allow to check our analytical results and also
visualize the effect of a relatively weak magnetic field.

Figures 1–4 show realizations of random trajectories—
both projected to the angle variable

∫ t
0 ds �(s) given by (3.7)

(first row of figures) and in the (x, y) plane (second row)—for
various ranges of parameters. Parameters of Fig. 1 are those of
underdamping due to memory: the relaxation times are larger
than the rotation periods: u′′

2
−1 � u′−1

2 and |u′′
3|−1 � u′−1

3 in
(4.1). For times smaller than the relaxation time(s), there are
almost deterministic rotational trajectories with small stochas-
tic effects. For times comparable with relaxation times, these
trajectories start to shift randomly; see the second (bottom)
row of Fig. 1. The first (top) row of Fig. 1 visualizes motion
of the ion for longer time intervals, each color for a separate
random trajectory. The vertical axis shows the angle rotated
around the origin (0, 0), and a constant slope means constant
angular velocity �. The slope is constant for times smaller
than the relaxation time u3

′−1 � 2. For some trajectories the
slope can be constant over longer times. As shown in the
first row of Fig. 1, ions rotates randomly both clockwise and
counterclockwise. However, the angular velocities are not the
same and on average the ion will rotate clockwise due to the
magnetic field, as predicted by (3.6). The empiric average—
calculated via just 19 200 random trajectories—agrees well
with the theoretical average (3.6). Along a single trajectory
the average cyclotron motion is seen as a slow rotation of
the probability cloud generated by faster motions, since the
cyclotron period is the longest timescale.

Figure 2 shows a moderately damped situation, since ω0 is
9 times smaller than in Fig. 1. Rotations are still visible. In
contrast to Fig. 1, the trajectories are more irregular; see the
first row of Fig. 2. Here the longest relaxation time u′−1

1 cor-
responds to the component with the longest rotational period
u′′−1

1 (very slow rotation). Indications of this are seen in the
first row of Fig. 2: some slopes are “flat” with zero rotation
on average. Again, we reproduce the theoretical prediction
(3.6) via averaging over random trajectories (in figures we
employed 19200 random trajectories, though in certain cases
a much smaller number of trajectories is sufficient). Figure 3
demonstrates a memoryless underdamped situation: now both
κ and ω are larger than γ , and certain relaxation times are
larger than the rotation periods. Both Fig. 3 and Fig. 1 demon-
strate rotational motion, but the underlying mechanisms are
different: for Fig. 3 it is due to a large ω0 (i.e., strongly
confining potential), while for Fig. 1 it is due to memory in
friction. Note that trajectories in the second row of Fig. 1 are
more regular than those in Fig. 3.
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FIG. 1. The figure shows stochastic trajectories obtained from solving the x and y components of Langevin equation (2.1) [see also (B2),
(B3), and (B6)] for the harmonic potential (2.2). It is seen that despite a strong friction, the random motion of the ion in a confining potential
involves rotating trajectories, if the friction has memory (underdamping due to memory). The parameters are b = 1, γ = 100, κ = 10, ω0 =
90, qw = 0.1, q = 1, σ ≡

√
〈x2〉 = √〈y2〉; see (2.3) and (3.3). Top row: the angle

∫ t
0 ds�(s) around the origin for 20 different trajectory

realizations. The angular velocity �(t ) is given by (3.7). Its average is 〈�〉 = −0.775 according to (3.6). Each color refers to a separate
realization of the random motion. There are trajectories, where the angular velocity � stays constant for a long time (rotations). Inset: the
thick blue (dotted-dashed) line in the inset is the average over 19 200 independent realizations and the thick black (dashed) line shows
the theoretical result for 〈�〉t ; see (3.6). Second row: four random trajectories in the (x, y) plane; the red point denotes the origin (0, 0).
For stochastic trajectories, the darker (brighter) points refer to recent (earlier) times. It is seen that the trajectories resemble deterministic
rotations due to the memory and despite a strong friction. The relaxation times and rotational periods are, respectively, (u′−1

1 , u′−1
2 , u′−1

3 ) =
(0.1122, 1.8454, 1.8265) and (u′′−1

1 , u′′−1
2 , u′′−1

3 ) = (−943.6, 0.0104, − 0.0105); cf. (4.3) and (4.2). Thus, for t > 3 the system is in the
stationary state, but rotations are well visible, since u′′−1

2 � u′−1
2 and |u′′

3|−1 � u′−1
3 in (4.1). The difference between u′′

2 and |u′′
3| is due to b �=

0. The relaxation times and rotational frequencies are, respectively, (u′−1
1 , u′−1

2 , u′−1
3 ) = (0.0011, 0.00922, 0.2407) and (u′′−1

1 , u′′−1
2 , u′′−1

3 ) =
(−6.883, 0.840, −22.27). The relaxation times are much shorter than the rotation periods.

Figure 4 shows a memoryless situation (i.e., a large κ) and
loosely confining potential (moderate ω0). In this overdamp-
ing regime, the relaxation times are much smaller than the
rotation times u′′−1

n � u′−1
n , n = 1, 2, 3. This is the standard

overdamping regime, because now (4.3) has three real roots
under b → 0: the large rotation periods are due to the small
perturbation of the magnetic field. Hence no deterministic
rotation is there on short times. The trajectories in the bottom
row of Fig. 4 resemble those of the ordinary random walk
with a very slow convergence of the empiric

∫ t
0 ds �(s) to its

theoretical value.
Note the spread of

∫ t
0 ds �(s) among Figs. 1–4: it is the

largest for Fig. 1, where the short-time motion is rotational,
and smallest for Fig. 4, when there are no deterministic rota-
tions and

∫ t
0 ds �(s) changes due to random walk.

V. SUMMARY
A. Assumptions and results

To understand the influence of a weak, static magnetic
field on the stochastic motion of a cellular ion we adopted

a Brownian (Langevin-equation based) model (2.1) with the
following assumptions:

(1) The equilibrium thermal bath of the ion gener-
ates friction and noise. They relate to each other via the
fluctuation-dissipation relation (2.5). Both friction and noise
have a finite memory, which comes from the fact that the bath
consists of particles with the size not much smaller than that
of the ion (e.g., water molecules). Hence, the friction is not
given by the ordinary (Ohmic) expression, and we accepted
the simplest (exponential) model for the memory; see (2.1).

(2) The ion moves in a confining potential. This can be a
tight protein cavity or a weaker confinement of the ion next to
the protein surface.

(3) Besides the noise acting from the equilibrium bath,
there is a weak white noise generated by nonequilibrium cel-
lular processes, e.g., those coming from fast protein degrees of
freedom; cf. (2.1). Hence, the stationary state reached by the
ion is not equilibrium, though in absence of the magnetic field
it does have equilibrium features, since the nonequilibrium
(white) noise is weak.

In this model we found the following results:
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FIG. 2. The same as in Fig. 1, but for ω0 = 10, i.e., the potential (2.2) is less confining. It is seen that deterministically rotating trajectories
of Fig. 1 are absent, though some signs of rotations are still visible. Now 〈�〉 = −0.083 from (3.6). The relaxation times and rotation
periods are, respectively, (u′−1

1 , u′−1
2 , u′−1

3 ) = (1.0917, 0.2236, 0.2168) and (u′′−1
1 , u′′−1

2 , u′′−1
3 ) = (−129.9, 0.030, −0.031). The relaxation

time u′−1
2 � u′−1

3 is still some 10 times larger than the rotation period u′′−1
2 � |u′−1

3 |.

FIG. 3. The same as in Fig. 1, but with κ = 1000 and ω0 = 1000, i.e., the potential is more confining than in Fig. 1, but the memory time
is 100 times shorter than in Fig. 1. We see that certain patterns of rotation are clearly visible (cf. Fig. 2), but still they are less deterministic
than those in Fig. 1 (underdamping due to a strongly confining potential). Now 〈�〉 = −0.083 from (3.6). The relaxation times and rotation
periods are, respectively, (u′−1

1 , u′−1
2 , u′−1

3 ) = (0.001, 0.040, 0.040) and (u′′−1
1 , u′′−1

2 , u′′−1
3 ) = (−40.16, 0.000 97, − 0.000 97). The shortest

rotation periods are much smaller than the relaxation times: u′′−1
2 � |u′′

3|−1 � u′−1
2 � u′−1

3 .
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FIG. 4. The same as in Figs. 1 and 2, but for parameters: κ = 1000, ω0 = 20: memoryless friction and loosely confining potential. With
these parameters we are in the regime of the ordinary overdamped (no rotation) Brownian motion. The average angular speed induced by the
magnetic field is small: 〈�〉 = −3 × 10−5; cf. (3.6).

(i) A weak static magnetic field induces a nonzero av-
erage orbital moment (3.1) (diamagnetic response to the
magnetic field), and leads to rotation with cyclotron frequency
(3.6). The cyclotron period has the same order of magnitude
(millisecond) as functional motion of many proteins [31].
Likewise, the linear velocity that corresponds to this cyclotron
motion has the same order of magnitude as other ordered
motions in the cell. These results support the hypothesis by
Ref. [24] that cyclotron motion of ions may be relevant for
their specific binding.

(ii) Cyclotron angular velocity does survive room tem-
peratures and the high friction of the thermal bath (water
molecules and/or thermal excitations of protein degrees of
freedom).

(iii) The orbital moment (3.1) generates diamagnetic
moment (3.5), which is small for the considered weak mag-
netic fields. Hence, our effects are not about macroscopic
magnetization. However, the diamagnetic moment (3.5) can
be observed at large magnetic fields (10 T), if the ion
concentration and the white-noise intensity are sufficiently
large. This can validate our finding on systems that are ex-
perimentally manageable, but artificial from the biological
viewpoint.

(iv) Once the nonzero diamagnetic moment relies on the
memory of equilibrium thermal bath, we have shown how
the memory influences the Brownian motion of the ion. This
memory leads to specific underdamping, where (despite a
large friction), the ion moves along rotating trajectories for
times shorter than the relaxation time. This motion random-
izes for times comparable with the relaxation times. A weak
magnetic field biases those rotations in a certain direction on

much longer times and leads to an average motion cyclotron
with the cyclotron frequency.

(v) It is possible to keep a nonzero magnetic moment also
for an external noise with a finite characteristic frequency (in-
finite frequency corresponds to the white noise); see Appendix
C. Then, the magnetic moment can be paramagnetic and it
nullifies together with the noise frequency.

B. Discussion

A quasistatic magnetic field is not screened by biologi-
cal matter (in contrast to electric field) and hence penetrates
into an organism without changing its shape and magnitude.
This is one reason why magnetic fields apply in biology
and medicine. However, mechanisms due to which the static
magnetic field influences biosystems are not clear [6–9]. One
of few cases where the influence mechanism was clarified
includes magnetotaxis phenomena, where certain animal taxa
(bacteria, birds, bats, insects, lobsters, salamanders, turtles)
are able to sense the Earth magnetic field via synthesizing
magnetic particles and joining them in clusters [3,59,60].
They can respond to weak magnetic fields for the same reason
as the compass responds to the Earth magnetic field, viz., due
to a strong ferromagnetic interaction between the microscopic
magnetic moments that is larger than the thermal energy [60].
Magnetic particles have medical applications, e.g., they are
used in magnetic hyperthermia for a local temperature in-
crease [61]. There are more subtle proposals for controlling
biological processes (e.g., ion channel functioning) via mag-
netic particles and external magnetic fields; see Ref. [62] and
also Ref. [63] for a critical review.
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Another situation where a well-known physical effect is
applied to magnetobiology includes (bio)chemical reactions
with radical pairs [64–68]. Here, the reaction rate depends
on spins of reacting radicals, whose coherent (frictionless
and noiseless) quantum dynamics involves quasidegenerate
energy levels and hence may be susceptible to weak magnetic
fields. The necessary condition for this effect is that the en-
vironmental influences (dephasing and relaxation) acting on
spins are negligible for reaction times. The radical pair mech-
anisms are investigated in the context of several scenarios of
animal magnetoreception [69,70]. These mechanisms were so
far established in vitro only [66], and they also suffer from
fragility and nonreproducibility [64,65]. They cannot apply
for describing all scenarios, where weak magnetic fields are
relevant for biology [6,7].

Magnetobiological experiments motivate us to ask how a
weak magnetic field can influence ions in a warm and wet cel-
lular environment, i.e., at room temperatures and high friction
[6–9,22,24]. So far, there are no theoretical mechanisms that
can explain how the influence of a weak, static magnetic field
on ions can survive room temperatures and high friction. In
particular, the influence of weak magnetic fields is absent in
two approaches that are frequently applied for describing cel-
lular physics. First, the high friction nullifies the influence of
the magnetic field in the free diffusion. Second, the Bohr–van
Leeuwen theorem leads to zero response to a static magnetic
field in any (classical) equilibrium system of confined charges
[14–20]. The theorem requires that the coordinate-velocity
stationary probability depends on its arguments via the energy
only (e.g., Gibbs distribution). Then, the theorem rigorously
follows from the fact that the magnetic field does not do work,
i.e., it does not show up in the energy. On the other hand, the
ion motion in a wet and warm cellular environment is certainly
classical. Hence, all classical stationary state that depends on
the magnetic field has to be nonequilibrium.

Our results provide a mechanism that can explain how
a weak (static, homogeneous) magnetic field can influence
cellular motion of ions. Above assumptions are necessary for
obtaining a magnetic response that survives high friction and
room temperatures. The first assumption is necessary, because
if the equilibrium noise is white—and hence the friction is
local (Ohmic)—then the external white noise does not violate
the FDR, i.e., the magnetic response is zero thanks to the
Bohr–van Leeuwen theorem. Likewise, if we assume that the
equilibrium noise is white, but the external noise has a corre-
lation time larger than other characteristic times, then FDR is
violated, but still the magnetic response is smaller than (3.1)
due to a large friction of the thermal bath; see Appendix C.
The assumption on a sufficiently tight confining potential is
necessary. Otherwise, the rotational motion of ion will be ab-
sent; cf. (3.6). Finally, the assumption on the nonequilibrium
noise is also necessary; otherwise, the static magnetic field
will not influence the orbital motion of the ion again due
to the Bohr–van Leeuwen theorem. Estimating the magnetic
moment of ions without friction and/or thermal noise [24] is
not relevant for the cellular environment.

The assumption on the white (zero correlation time) char-
acter of the nonequilibrium noise is reasonable for an ion
interacting with fast protein degrees of freedom, e.g., side-
chains rotamers and methyl groups [31], quadrupole moments

of π -covalent bonds within the cation-π interaction scenario
[71], etc. Characteristic times of such degrees of freedom vary
between 10−15 and 10−12 s, and they are normally described
as an external noise acting on ions [57]. Such a fast noise
normally does not correlate with slower protein degrees of
freedom [47]; hence, we assumed that random forces in (2.1)
do not correlate.

Predictions of our approach can be checked on artificial
systems, where various parameters of the model can be tuned.
Artificial ion channels [72–74] are possible candidates for
this, since they can provide a sufficiently good confinement
of ions inside of pores, together with the possibility to tune
(change) features of the solvent. One may envisage that in
such systems both the white-noise magnitude and the mag-
netic field can be taken sufficiently large for our effect to
be observable via the orbital momentum generated magnetic
moment; see Appendix A.

Several pertinent topics are left for future work. (1) We
shall need a clear theory for fluctuations in stochastic cy-
clotron motion; see Appendix C for initial steps. (2) Since
the prediction for the cyclotron motion of cellular ions re-
lates to nonequilibrium, the nonreproducibility of certain
magnetobiological experiments can be possibly explained via
metastability (fragility) of nonequilibrium states. (3) Once
there is a possibility for a cyclotron motion in a high-friction
and high-temperature cellular environment, we shall research
time-dependent electromagnetic fields and possible resonance
phenomena. This research will be facilitated if the memory
parameter κ can be smaller than its value in (2.8). Then,
the relaxation times obtained from (4.3) will increase sizably,
since their dependence on κ is nonlinear. (4) Another pertinent
topic is to incorporate electrostatic interactions between the
ions that are neglected here. Indeed, the Bjerrum length for
bound cations is only a few times smaller than the intercation
distance estimated from the concentration. (5) Future research
can establish relations of our results with active matter under
magnetic field [38,39,41] and electromagnetic noise [17,43].
(6) It will be interesting to generalize this model such that it
accounts for a weak magnetic field influence on ion channels
[12,13,52]. Nonequilibrium noises are abundant for this sit-
uation though they are not Gaussian and white [73,75]. The
generalized model has to account for asymmetry, nonlinear-
ity and anisotropy of the ion confining potential, selectivity
filters, etc. Ion channels became relevant in the fight against
COVID-19, once the recent literature suggested that its ionic
E-channel is critical for its survival [76–78].
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APPENDIX A: COMPARING THE NONEQUILIBRIUM
CLASSICAL AND EQUILIBRIUM QUANTUM AVERAGE

MAGNETIC MOMENTS

1. Comparison with quantum noise

In the context of (2.1) and (2.5), let us emphasize that
the very possibility of applying any classical Langevin
description demands that the characteristic (correlation) of the
noise is smaller than the quantum correlation time kBT/h̄ [79].
For (2.1) this first of all implies

κ � kBT/h̄, (A1)

because h̄/(kBT ) is the characteristic correlation time of the
quantum noise [79]. Moreover, the difference in (A1) should
be sufficiently large so that the correlation frequency of ξ(t )
in (2.1), which was assumed to be much larger than κ (i.e.,
effectively white), also holds (A1). In (2.8) we estimated κ ∼
1010 1/s, while kBT/h̄ ∼ 1013 1/s.

The orbital magnetism announced in (3.1) is a nonequi-
librium classical phenomenon. We want to compare it with
magnetic effects predicted by equilibrium quantum physics
[15,16]. There are at least two types of such effects: para-
magnetism of nuclear spins and diamagnetism of atoms and
molecules that is due to the quantum cyclotron motion of
electrons bound in atoms.

2. Comparison with quantum paramagnetism

Nuclear spins have a tiny equilibrium paramagnetic av-
erage magnetic moment even at room temperature [15,16].
This polarization is experimentally visible at magnetic fields
B >∼ 1T due to a sufficiently large number of identical nuclei.
Hence, it is interesting to compare the magnitude of this
quantum equilibrium effect with the nonequilibrium magnetic
moment Mc = QL/2 generated according to (3.1) [cf. (3.5)]:

Mc = −qw

q

kBT Qb

mκ2
, b = QB

m
, (A2)

where Q is the elementary charge and b is the cyclotron
frequency.

The interaction energy of the nuclear spin 1/2 with the
magnetic field Bez (directed along the z axis, e2

z = 1) is
[15,16]

−h̄ Q B ŝz/(2m), (A3)

where ŝz is the z component of the spin-1/2 operator (third
Pauli’s matrix), and m is the nucleus mass, which is taken to
be equal to the ion’s mass in (2.1) (they anyhow have the
same order of magnitude), and where h̄|Q|/(2m) is Bohr’s
magneton. The g factor in (A3) is set to 1, since we aim at
qualitative estimates. Hence, M̂ = h̄Qŝz/(2m) is the magnetic
moment operator [16]. Its equilibrium average value is

〈M̂〉 = h̄Q

2m
tanh

[
h̄QB

4mkBT

]
= h̄2Qb

8mkBT
, (A4)

where we employed tanh[ h̄QB
4mkBT ] � h̄QB

4mkBT , which holds due to
high (room) temperatures. We now get from (A2) and (A4)

|Mc|
〈M̂〉 = qw

q

8

κ2

(
kBT

h̄

)2

. (A5)

If now (A1) holds, say by two to three orders of magnitude,
then |Mc| exceeds 〈M̂〉 even for qw � q. Above, we com-
pared the (average) magnetic moment (A2) with the average
spin moment (A4) at the same temperature. This is the most
meaningful comparison, but we can also compare (A2) with
the spin magnetic moment (A4) at T = 0, where (A4) reduces
to the (nuclear) Bohr magneton 〈M̂〉 = h̄Q/(2m) :

|Mc|
〈M̂〉(T = 0)

= qw

q

2 b

κ2

(
kBT

h̄

)
.

For parameters from (2.8), we estimate this ratio as ∼ qw

q ×
10−3.

3. Comparison with quantum diamagnetism

Turning to quantum diamagnetism, let us quote the stan-
dard Langevin formula for the average magnetic moment of a
molecule (atom) that is created by the external magnetic field
via induced cyclotron motion of its electrons [14–16]:

〈M〉d = −ZQ2r2
i B

6me
, (A6)

where ri is the molecule’s radius, Q is the electron charge, me

is the electron mass, and Z is the number of electrons in the
molecule. Note that albeit (A6) is a quantum effect (we recall
that classically there is no equilibrium magnetism) it does not
contain h̄ explicitly [14–16]. It also does not contain any direct
reference to the temperature, since it refers to the ground-state
motion of electrons inside of the molecule.

Let us now see that (A6) correctly reproduces the diamag-
netic volume magnetic susceptibility of water (i.e., the main
substance of any cell). To this end, note that (A6) leads to the
macroscopic magnetic moment χd B/μ0 [15], with suscepti-
bility:

χd = −Nwμ0ZQ2r2
i

6me
, (A7)

where μ0 = 1.3 × 10−6 and Nw is the number of wa-
ter molecules in meter3. In normal conditions Nw = 1

3 ×
1029 meter−3, (this comes from the water density 1 g/cm3

and the molar mass of water 18 g/mol), ri = 2 × 10−10 m,
Q = 1.6 × 10−19 Cl, Z = 10, and me = 9 × 10−31 kg. Putting
these numbers into (A7) we obtain

χd = −7.4 × 10−5, (A8)

which is close but still larger by its absolute value than the
standard value −9 × 10−6 for water [3]. This discrepancy can
be explained by noting that there is a (positive!) paramagnetic
contribution to be added to (A8). Overall, the water diamag-
netism is explained by (A6).

We compare (A2) with (A6):

Mc

〈M̂〉d

= qw

q

6

Z

kBT me

m2r2
i κ

2
. (A9)

Putting into (A9) standard estimates for the ion (room
temperature, ri = 2 × 10−8 cm, m = 3 × 10−23 g, me = 9 ×
10−28 g, κ ∼ 1010 s−1, and Z ∼ 10), we find that

Mc

〈M̂〉d

∼ qw

q

6

Z
, (A10)
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i.e., Mc and 〈M̂〉d have the same order of magnitude for q ∼
qw. The macroscopic magnetic moment is larger for water,
since its concentration is larger. Indeed, the concentration of,
e.g., bound potassium (K+) ions in a cell is roughly 1025 m−3

[11], i.e., some 4 orders of magnitude smaller than the water
concentration.

Recall that the physical meaning of Mc is different from
that of 〈M̂〉d . The latter refers to electron motion inside of
atoms. The electron motion is frictionless and noiseless: 〈M̂〉d

refers to the ground state of an atom with its electrons subject
to a self-consistent field [15,16]. In contrast, Mc refers to ion
rotation on scales >∼1 nm and subject to both strong friction
and room-temperature thermal noise; see (2.8).

Finally, let us mention that besides frictionless and noise-
less 〈M̂〉d , there is a theoretical possibility of a dissipative
equilibrium quantum diamagnetism for the ion’s motion. It
is described by the quantum Langevin equation with a local
friction and with the quantum noise with correlation time (A1)
[42]. This effect is however suppressed by friction [42], i.e., it
is small under the strong cellular friction (2.8).

APPENDIX B: FOKKER-PLANCK EQUATION

We are interested in long-time (stationary) averages gener-
ated by (2.1). For reaching the stationary state, it is necessary
and sufficient that the potential u(x) is confining, i.e., it goes
to infinity for |x| → ∞ [28,37]. Moving from (2.1) to the
Fokker-Planck equation is not straightforward, since (2.1)
is an integrodifferential equation and contains the nonwhite
noise η(t ). To facilitate the construction of the Fokker-Planck
equation below, we represent the friction in (2.1) via a linear,
first order in time equation that contains an additional variable
r. To this end, define

r ≡ γ

∫ t

t0

dt ′ κ e−κ|t−t ′| v(t ′), (B1)

ṙs = −κ rs + γ κ vs, s = x, y, z. (B2)

Solving (B2) with initial conditions at t = t0 and taking
t0 → −∞ we get back (B1). The limit t0 → −∞ is a natural
one, since we are eventually interested in the stationary state.

Likewise, the noise ηs (s = x, y, z) in (2.4) is represented
for t0 → −∞ as a solution of a linear, first order in time
differential equation with white noise εs(t ):

η̇s = −θηs + θ
√

q εs(t ), 〈εs(t )〉 = 0,

〈εs(t )εs′ (t )〉 = δss′δ(t − t ′), (B3)

We define b = QB
m as the cyclotron frequency. For sim-

plicity take m = 1 and Q = 1. To recover the solution
containing mass (m) and charge (Q), replace in formulas
below:

q → q

m2
, qw → qw

m2
, b → QB

m
. (B4)

Together with the new variables introduced in (B2), (B3),
the Langevin equation (2.1) reads, after setting B = bez (the
z axis is chosen along the magnetic field) and using (B3) and
(B1):

v̇ = −r + b v × ez − ux + η + ξ. (B5)

Projecting (B5) on the (x, y, z) plane we find

v̇x = −rx + b vy − ux + ηx + ξx,

v̇y = −ry − b vx − uy + ηy + ξy,

v̇z = −rz − uz + ηz + ξz. (B6)

Equations (B2), (B3), and (B6) are differential, first order
in time, and contain only white noises εs and ξs. Hence, for
the joint probability P({s, vs, rs, ηs : s = x, y, z}; t ), that now
contains additional variables rs and ηs, we obtain the Fokker-
Planck equation following the standard recipe (see (B10) and
(B11) [37]:

∂t P =
∑

s=x,y,z

{−vs ∂sP + (rs + us − ηs)∂vs P

+ ∂rs [(κrs − γ κvs)P]

+ θ ∂ηs (ηsP) + 1

2
qθ2 ∂2

ηs
P + 1

2
qw ∂2

vs
P
}

+ b
(
vx∂vy − vy∂vx

)
P. (B7)

For general (confining, but not necessarily harmonic) po-
tentials u(x), Eq. (B7) is not solvable even in the stationary
limit t → ∞, where ∂t P = 0. In this limit, (B7) is solvable
only when FDR is valid globally, e.g., (2.5) holds and also
qw = 0. Then, (B7) produces for t → ∞ the Gibbs distribu-
tion for the joint probability of velocity v and coordinate x
[28,37,79]:

P(v, x) = 1

Z
e− m

kBT ( v2

2 +u(x))
, Z =

∫
dvdx e− m

kBT ( v2

2 +u(x))
.

(B8)

Note that (B8) does not contain the magnetic field, because
the latter does not appear in the energy m( v2

2 + u(x)) that
determines the Gibbs density. This is the Bohr–van Leeuwen
theorem [14–16]; see Refs. [17,18,20] for recent discussions.
Equation (B8) is confirmed below.

1. Derivation of the Fokker-Planck equation

First we recall the recipe of writing down the Fokker-Plank
equation from the Langevin equation. Consider the following
white-noise Langevin equations (assuming summation over
repeated indices):

d

dt
ξi = hi(ξ, t ) + gi j� j (t ), 〈�i(t ) � j (t

′)〉 = δi jδ(t − t ′).

(B9)

Then the corresponding Fokker-Plank equation reads
[28,37]

∂

∂t
P = − ∂

∂xi

(
D(1)

i (x, t ) P
) + ∂2

∂xi∂x j

(
D(2)

i j P
)
, (B10)

D(2)
i j = 1

2 gik g jk, D(1)
i (x, t ) = hi(x, t ). (B11)

Using (B10) and (B11), we get (B7) from (B2), (B3), and
(B6).
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APPENDIX C: EQUATIONS OF MOMENTS

1. Solving the Fokker-Planck equation via moments

We turn to exact equations for second-order moments. The
advantage of this method is that it is able to get useful in-
formation (though not to solve completely) on the case with
nonlinear potential.

We multiply (B7) by a function ψ (xs, vs, rs, ηs) (s =
x, y, z) and integrate over all random variables defining the
average as 〈 f 〉 = ∫

dV f P, where dV ≡ ∏
dxsdvsdrsdηs.

The probability distribution P nullifies at infinity, since the
potential u(x) is confining. Hence, after partial integration we
get

∫
dV f ∂α (gP) = −

∫
dV P g∂α f ≡ −〈g∂α f 〉, (C1)

for any functions f , g of random variables, where α is one
of the variables of integration. Using (C1) we get for any
function ψ :

∂t 〈ψ〉 =
∑

s=x,y,z

{
〈vs∂sψ〉 − 〈

(rs + us − ηs)∂vsψ
〉

− 〈
(κrs − γ κvs)∂rsψ

〉

− θ
〈
ηs∂ηsψ

〉 + 1

2
qθ

〈
∂2
ηs
ψ

〉 + 1

2
qw

〈
∂2
vs
ψ

〉}

− b
〈
vx∂vyψ

〉 + b
〈
vy∂vx ψ

〉
. (C2)

In the stationary state, the moments are time independent:
∂t 〈ψ〉 = 0. We now determine some moments from imposing
a natural symmetry on the system.

2. Moments constrained by the symmetry

We now assume that the potential is spherically symmetric:

u(x, y, z) = u
(√

x2 + y2 + z2
)
. (C3)

This assumption holds well for ions bound in (next to) pro-
teins [23,24]. Our system is rotation symmetric in the (x, y)
plane perpendicular to the magnetic field, since all the forces
in (B5) (besides the magnetic field term) are spherically sym-
metric. This means that f (Ax, Bx ) and f (Ay, By) have same
statistics for any function f and random variables Ai, Bi ∈
{s, vs, ηs, rs; s = x, y}. Again from the rotational symmetry,
rotating system by 90°, the coordinate transformation is Ax →
Ay and Ay → −Ax. Therefore, 〈 f (Ax, By)〉 = 〈 f (Ay,−Bx )〉,
and

〈AxBx − AyBy〉 = 0 and 〈AxBy + AyBx〉 = 0, (C4)

where A, B can be x, vy, ηx, etc. For f (x, y) = xy we have
〈 f (Ax, Ay)〉 = 〈 f (Ay,−Ax )〉, implying that components of the
same quantity are uncorrelated: 〈AxAy〉 = 0; e.g., 〈xy〉 = 0
and 〈vxvy〉 = 0. These results also follow from (C2).

3. Working out the moment equations

Turning to moments generated via (C2), let us recall that
many moments are equal or cancel each other. Hence, we

denote

〈Ax, By〉± ≡ 〈AxBy ± AyBx〉,
〈Ax, Bx〉± ≡ 〈AxBx ± AyBy〉, (C5)

where, e.g., 〈x, vy〉− ≡ 〈xvy − yvx〉 or 〈x, x〉+ = 〈x2 + y2〉.
Using a function ψ = g(x, y, z) in the stationary regime of

(C2) we find

0 = 〈vx∂xg〉 + 〈vy∂yg〉 + 〈vz∂zg〉, (C6)

hence

g = xy : 〈xvy〉 + 〈yvx〉 = 0

g = x2; y2; z2 : 〈xvx〉 = 〈yvy〉 = 〈zvz〉 = 0

g = u(x, y, z) : 〈vxux + vyuy + vzuz〉 = 0. (C7)

One can easily show that first-order moments, i.e., average
values of the random variables, are all zero. Then consider
ψ = ηxηy, η2

x , η2
y in (C2):

〈
η2

x

〉 = 〈
η2

y

〉 = 1

2
qθ, 〈ηxηy〉 = 0. (C8)

Another set of simple relations is found by putting ψ = ηi j
and ψ = ηir j (i, j = x, y) into (C2):

〈viη j〉 = θ 〈xiη j〉, (C9)

〈riη j〉 = γμ 〈xiη j〉, μ = κθ

κ + θ
. (C10)

Similar relations are gotten from ψ = r2
x , r2

y , xrx, yry and
xry + yrx:

〈viri〉 = κ〈xiri〉, 〈vx, ry〉+ = κ〈x, ry〉+,
〈
r2

i

〉 = γ κ〈xiri〉.
(C11)

In the following formulas the left column denotes the func-
tion ψ to be employed in (C2), while the result are reported
on the right using notations (C5):

vxηx + vyηy : (θ2 + γμ)〈x, ηx〉+ + 〈ux, ηx〉+
+bθ〈x, ηy〉− = θ q (C12)

vyηx − vxηy : (θ2 + γμ)〈x, ηy〉− + 〈ux, ηy〉−
−bθ〈x, ηx〉+ = 0 (C13)

v2
x + v2

y : κ〈x, rx〉+ = θ〈x, ηx〉+ + (〈uzvz〉 + qw )

(C14)

xvy − yvx : 〈x, ry〉− = 〈x, ηy〉− (C15)

vxry − vyrx : γμ〈x, ry〉− + 〈ux, ry〉−
+κ〈vx, ry〉− = bκ〈x, rx〉+, (C16)

where in (C16) we used (C10). This system of equations is
closed (assuming expressions with u are known). Note that
〈x, ηx〉+ and 〈x, ηy〉− are interesting quantities that appear in
intermediate steps of the solution: they refer to, respectively,
power and torque of the noise. Likewise, 〈x, rx〉+ and 〈x, ry〉−
refer to the friction force. The next three equations contain the
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quantities that we are interested in:

xry − yrx : γ κ〈x, vy〉− = −〈vx, ry〉− + κ〈x, ry〉− (C17)

rxvx + ryvy : γ κ〈vx, vx〉+ = (γ + κ )κ〈x, rx〉+ + 〈ux, rx〉+
−γμ〈x, ηx〉+ + b〈vx, ry〉− (C18)

xvx + yvy : 〈x, ux〉+ = 〈vx, vx〉+ + b〈x, vy〉−
+〈x, ηx〉+ − 〈x, rx〉+. (C19)

Now we assume θ = κ , i.e., FDR (2.5) holds. Equations
(C12)–(C19) are solved as

〈x, vy〉− = −b
q′

w

γ κ2
+ 1

γ κ2
〈ux, ηy − ry−〉

〈vx, vx〉+ = q

γ
+ q′

w

γ

b2 + γ κ + κ2

κ2

+ b〈ux, ηy − ry〉− + κ〈ux, rx − ηx〉+
γ κ2

(C20)

〈x, ux〉+ = q + q′
w

γ
+ 〈ux, rx − ηx〉+

γ κ
, q′

w ≡ qw + 〈uzvz〉.

This is the farthermost point where we can reach with a
general spherical symmetric potential.

Assuming that FDR (2.5) holds, we write (C20) as

〈L〉 ≡ 〈xvy − yvx〉 = −b
q′

w

γ κ2
+ 2 × 1

γ κ2
〈ux(ηy − ry)〉,

(C21)

q′
w ≡ qw + 〈uzvz〉, (C22)

〈
v2

x + v2
y

〉 = q

γ
+ q′

w

γ

b2 + γ κ + κ2

κ2
+ 2

× b〈ux(ηy − ry)〉 + κ〈ux(rx − ηx )〉
γ κ2

, (C23)

〈xux + yuy〉 = q + q′
w

γ
+ 2 × 〈ux(rx − ηx )〉

γ κ
, (C24)

where L = xvy − yvx is the z component of the orbital mo-
mentum (i.e., the component along the magnetic field), and
where r − η is the excess force acting on the ion; cf. (B5).

It is seen from (C21) that generally 〈L〉 �= 0. Note that
for a harmonic potential ux ∝ x and we get 〈ux, ηy − ry〉− =
〈ux(ηy − ry)〉 = 0 in (C20) and (C21), as seen from (C15).

Another simplification of this potential is that 〈uzvz〉 ∝
〈zvz〉 ∝ 〈 d

dt v2
z 〉 = 0, and hence q′

w = qw in (C21). Hence,
we obtain from (C21) the harmonic potential expression (3.1).
Note that for anharmonic potentials the term 〈ux, ηy − ry〉−
does not generally nullify, but the sign of 〈L〉/B stays negative,
i.e., the response is still diamagnetic, as we checked numeri-
cally.

Now 〈L〉 nullifies for three cases; see (C21). First, 〈L〉 = 0
when κ → ∞ in (C21), since now we get that for long times
the system holds FDR with white noises and memoryless
friction. Hence, it relaxes to the Gibbs distribution (B8) that
does not contain the magnetic field b. This leads to 〈L〉 = 0.
In the same limit κ → ∞ we get from (C23) the known ther-
mal expression for 〈v2

x + v2
y 〉 = 2〈v2

x 〉. Second, 〈L〉 = 0 for
qw = 0 (zero intensity of the white noise) where FDR again
holds. Now we should note that q′

w = 〈uzvz〉 = 〈uz〉〈vz〉 = 0
in (C22), because within the (stationary) Gibbs distribution
(B8), the coordinate and momentum factorize and 〈v〉 = 0.
In (C24) q/γ is already the result of the Gibbs distribution,
as seen from (B8), (2.6) upon using (B4). Hence, (C24) plus
the Gibbs distribution imply 〈ux(rx − ηx )〉 = 0. For the same
reason 〈ux(ηy − ry)〉 = 0 in (C23), which leads to 〈L〉 = 0 in
(C21). Third, 〈L〉 = 0 for b → 0 (zero magnetic field), this
time because the spherical symmetry holds for the stationary
state, which, e.g., leads to 〈uxηy〉 = −〈uxηy〉 = 0 after invert-
ing x → −x.

4. Harmonic potential

In the case of harmonic potential u = ω2
0

2 (x2 + y2 + z2)
the moments that contain potential term become 〈ui f j〉 =
ω2

0〈xi f j〉 for i, j = x, y, z. After this replacement, (C12)–
(C19) becomes a solvable system of linear equations. The
additional factor 〈uzvz〉 in (C22) nullifies, since for the har-
monic potential the motion in the z direction separates from
the motion in the (x, y) plane and then 〈uzvz〉 = 1

2ω2
0〈 d (z2 )

dt 〉 =
0 in the stationary state.

For more generality, we shall replace the external white
noise in (2.4) with correlation function 〈ξi(t )ξ j (t ′)〉 =
qwδi jδ(t−t ′) by a colored noise with correlation function:

〈ξi(t )ξ j (t
′)〉 = δi j qext θext/2 e−θext |t−t ′|. (C25)

Then (without assuming κ = θ ) we can find the following
general formulas:

γ
〈
v2

x + v2
y

〉 = q
θ2

κ2

(
ω2

0 + θ2 + γμ
)(

ω2
0 + κ2 + γμ

) + b2θ2

(
ω2

0 + θ2 + γμ
)2 + b2θ2

+ qext
θ2

ext

κ2

(
ω2

0 + θ2
ext + γμext

)
(ω2

0 + κ2 + γμext ) + b2θ2
ext(

ω2
0 + θ2

ext + γμext
)2 + b2θ2

ext

,

γω2
0〈x2 + y2〉 = q

θ2

κ2

(
ω2

0 + θ2 + γμ
)(

ω2
0 + κ2 + γμ κ2/θ2

) + b2κ2

(
ω2

0 + θ2 + γμ
)2 + b2θ2

+ qext
θ2

ext

κ2

(
ω2

0 + θ2
ext + γμext

)(
ω2

0 + κ2 + γμext κ2/θ2
ext

) + b2κ2

(
ω2

0 + θ2
ext + γμext

)2 + b2θ2
ext

,

γ 〈L〉 = γ 〈xvy − yvx〉 = q
θ2

κ2

b(κ − θ )(κ + θ )(
ω2

0 + θ2 + γμ
)2 + b2θ2

+ qext
θ2

ext

κ2

b(κ − θext )(κ + θext )(
ω2

0 + θ2
ext + γμext

)2 + b2θ2
ext

(C26)
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where μ is defined in (C10), and where

μext = κθext

κ + θext
. (C27)

Now (3.1)–(3.3) of the main text are found from (C26)
under κ = θ , θext → ∞ and qext = qw, i.e., in the white-noise
limit for the external noise. Assuming κ = θ in (C26), we find

〈L〉 = qext θ
2
ext

γ κ2

b(κ − θext )(κ + θext )(
ω2

0 + θ2
ext + γμext

)2 + b2θ2
ext

. (C28)

For κ = θext the FDR effectively holds and we are back to
the equilibrium situation; hence, 〈L〉 = 0, as seen from (C28).
Note that for κ > θext, we get from (C28) a paramagnetic re-
sponse 〈L〉 > 0, which is a simple consequence of L|κ=θext = 0
[19].

5. Particular cases

To understand the influence of κ > θ in (C26), let us take
κ = 2θ . We find γ 〈L〉 = − qext

κ2 + 27
16

q
γ 2 , i.e., a paramagnetic

correction to the diamagnetic contribution.
Next, let us study the limit κ � θext and γ � θext, and also

neglect b2θ2
ext in (C28):

〈L〉 = qextθ
2
extb

γ
(
ω2

0 + γ θext
)2 . (C29)

Note from (C29) that H tends to zero together with θext.
For an ion in shallow potential with a sufficiently small ω0,
there can be an intermediate regime, where ω2

0 � γ θext.
Hence we get

〈L〉 = bqext/γ
3. (C30)

Comparing this formula with (3.1), we see that under
natural condition qext ∼ qw, (C30) is much smaller than the
absolute value of (3.1); cf. (2.8). Note that (C30) holds qual-
itatively also when θext � κ; e.g., for θext = κ/2 we get from
(C28)

〈L〉 = 3qextκ
2b

16γ
(
ω2

0 + κ4

4 + κγ

3

)2 � 27qextb

16γ 3
. (C31)

Let us finally note from (C26) the form of 〈x2 + y2〉 for
κ � θext and negligible b2κ2 and b2θ2

ext:

γω2
0 〈x2 + y2〉 = q + qext

ω2
0

κ2 + 1 + γ

θext

ω2
0

θ2
ext

+ 1 + γ

θext

� q + qext. (C32)

APPENDIX D: MEAN AND VARIANCE OF ANGULAR VELOCITY

For the harmonic potential (2.2) the joint probability density for the coordinates and velocities is Gaussian, as seen, e.g., from
the fact that (2.1) is a linear equation with Gaussian noises [37]. Introducing a column vector φ = (vx, vy, x, y)T (transposed row
vector), we get from (3.1)–(3.3) for this joint density

P(φ) = 1

(2π )2
√

det �
exp

[
−1

2
φT�−1φ

]
, (D1)

� =

⎛
⎜⎝

S 0 0 −H
0 S H 0
0 H R 0

−H 0 0 R

⎞
⎟⎠, � = �−1 = β

⎛
⎜⎝

R 0 0 H
0 R −H 0
0 −H S 0
H 0 0 S

⎞
⎟⎠, (D2)

where 2H = 〈xvy − yvx〉, 2S ≡ 〈v2
x + v2

y 〉, 2R ≡ 〈x2 + y2〉, and β ≡ (SR − H2)−1. Then, probability density (D1) reads

P(φ) ∝ exp

[
−1

2

(
βR

(
v2

x + v2
y

) + βS
(
x2 + y2

)) + βH (xvy − yvx )

]
.

From this equation we calculate the marginal density P(x, y) and conditional density P(vx, vy | x, y):

P(x, y) ∝ exp

[
−x2 + y2

2R

]
(D3)

P(vx, vy|x, y) = P(φ)

P(x, y)
∝ exp

[
−βR

2

(
v2

x + v2
y

) + βH (xvy − yvx )

]
(D4)

∝ exp

[
−βR

2

(
vx + Hy

R

)2

− βR

2

(
vy − Hx

R

)2]
. (D5)

Equations (D3)–(D5) imply [E(X ) ≡ 〈X 〉, and E(X |Y ) means the conditional average]:

3E[vx|x, y] = −Hy

R
and E[vy|x, y] = Hx

R
(D6)

E
[
v2

x

∣∣x, y
]= (Hy

R

)2

+ 1

βR
and E

[
v2

y

∣∣x, y
] =

(Hx

R

)2

+ 1

βR
. (D7)
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1. Mean and variance of the angular velocity �

We define the angular velocity in the (x, y) plane:

� = xvy − yvx

x2 + y2
, (D8)

and look at its average:

E[�] = E[E[�|x, y]] = E

[
E

[
xvy − yvx

x2 + y2

∣∣∣∣x, y

]]
, (D9)

= E

[
x

x2 + y2
E[vy|x, y

]− y

x2 + y2
E
[
vx|x, y

]]
, (D10)

= E

[
x

x2 + y2

Hx

R
+ y

x2 + y2

Hy

R

]
= H

R
. (D11)

Note that � has a singularity at ρ ≡ x2 + y2 = 0. Thus, we study the statistics of � at a fixed ρ. From (D11) it is easy to see
that E[�|ρ] = E[�]. Next, we calculate

E[�2|ρ] = E

[
x2v2

y + y2v2
x − 2xyvxvy

(x2 + y2)2

∣∣∣∣ρ
]

(D12)

= E

[
x2E[v2

y |x, y]

(x2 + y2)2 + y2E[v2
x |x, y]

(x2 + y2)2 − 2xyE[vxvy|x, y]

(x2 + y2)2

∣∣∣∣ρ
]

(D13)

= E

[
x2 + y2

(x2 + y2)2

1

βR
+ x4 + y4

(x2 + y2)2

(H

R

)2

+ 2x2y2

(x2 + y2)2

(H

R

)2∣∣∣∣ρ
]

(D14)

= RS − H2

R

1

ρ2
+ H2

R2
, (D15)

and thus

〈�〉 = H

R
, Var[�|ρ] = 1

ρ2

RS − H2

R
. (D16)

It is seen that 〈�2〉 does not exist due to a divergence induced by the factor 1
ρ2 . Indeed, the calculation of 〈�2〉 involves the

integral ∝ ∫
0 dρ ρ ρ−2, which diverges logarithmically.

APPENDIX E: CALCULATION OF AUTOCORRELATION
FUNCTIONS

Since the Fokker-Plank equation (B7) does not account
for autocorrelation functions, we will use the Fourier method
[16] for solving Langevin equation (B5) directly. To make
the solution more transparent, we restrict ourselves with the
harmonic potential (2.2) and consider only the white noise,
i.e., q = 0 and qw > 0 in (B5). These restrictions suffice for
having a well-defined average angular motion induced by the
magnetic field; cf. (3.1). Note as well that q = 0 does not
alter the time dependence of autocorrelation function for the
harmonic potential.

Hence we focus on x and y coordinates of (2.1) that read
together

ζ ≡ x + iy, ξ ≡ ξx + iξy, (E1)

ζ̈ (t ) = ξ (t ) − ω2
0 ζ − ibζ̇ (t ) − γ

∫ t

−∞
dt ′ κ e−κ|t−t ′| ζ̇ (t ′),

(E2)

where in (2.1) we took t0 = −∞ aiming to focus on the
stationary state. We took m = 1 in (E2).

Equation (E2) belongs to the class of linear oscillators
driven subject to nonlocal friction and noise. Such sys-
tems were studied in Refs. [18,19,21,38–41,44,80]. We apply
Fourier’s transform to ζ and ξ in (E2):

X (t ) =
∫

dω eiωt X̃ (ω), X̃ (ω) =
∫

dt

2π
e−iωt X (t ), (E3)

where X (t ) = [ζ (t ), ξ (t )] and X̃ (ω) = [ζ̃ (ω), ξ̃ (ω)], and get
from (E2):

ζ̃ (ω) = ξ̃ (ω)

iω
(
iω + γ κ

κ+iω + ib
) + ω2

0

. (E4)

Now, (2.4) and (E1) lead to 〈ξ (t1)ξ ∗(t2)〉 = 2qwδ(t1 − t2).
This implies 〈ξ̃ (ω1)ξ̃ ∗(ω2)〉 = qw

π
δ(ω1 − ω2) from (E3).

Hence, we find from (E4)

〈ζ (t1) ζ ∗(t2)〉 =
∫

dω1 dω2 eiω1t1−iω2t2 〈ζ̃ (ω1)ζ̃ ∗(ω2)〉 (E5)

= qw

π

∫
dω eiω(t1−t2 )

× |ω − iκ|2
|(ω − iκ )

(
ω2 + ωb − ω2

0

) − γ κω|2 .

(E6)
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For t1 − t2 > 0 only the poles with positive imaginary parts contribute to (E6), since the integration contour can be closed
above the real axis [in total, (E6) has 6 simple poles]. It turns out that those poles ω1, ω2, and ω3 (with imaginary parts) are the
roots of a cubic equation

(ω − iκ )
(
ω2 + ωb − ω2

0

) − γ κω = 0. (E7)

Equation (E7) produces (4.3) after introducing ω ≡ iu. To show that all roots of (4.3) have positive real parts we can employ
the generalized Routh-Hurwitz criterion [81]. Recall that the usual Routh-Hurwitz criterion applies to polynomials with real
coefficients [82].
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