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Life threatening cardiac arrhythmias result from abnormal propagation of nonlinear electrical excitation waves
in the heart. Finding the locations of the sources of these waves remains a challenging problem. This is mainly
due to the low spatial resolution of electrode recordings of these waves. Also, these recordings are subjected to
noise. In this paper, we develop a different approach: the AFV-DT method based on an averaged flow velocity
(AFV) technique adopted from the analysis of optical flows and the determinant-trace (DT) method used for
vector field analysis of dynamical systems. This method can find the location and determine all important types
of sources found in excitable media such as focal activity, spiral waves, and waves rotating around obstacles.
We test this method on in silico data of various wave excitation patterns obtained using the Luo-Rudy model
for cardiac tissue. We show that the method works well for data with low spatial resolutions (up to 8 × 8) and
is stable against noise. Finally, we apply it to two clinical cases and show that it can correctly identify the
arrhythmia type and location. We discuss further steps on the development and improvement of this approach.

DOI: 10.1103/PhysRevE.104.064401

I. INTRODUCTION

Nonlinear waves occur in various chemical and biological
excitable media such as the Belousov-Zhabotinsky (BZ) reac-
tion [1,2], the oxidation of CO on platinum [3], aggregations
of the Dictyostelium discoideum amoebae [4], and other bi-
ological and chemical systems. The most important practical
application of such waves are the electrical waves of excitation
in the heart, which are responsible for cardiac contraction [5].
Abnormal propagation of such waves result in life threatening
cardiac tachycardia and fibrillation [6,7].

In most cases, abnormal cardiac excitations occur from
abnormal sources of the waves, which can be subdivided
into two main classes [8]: focal activity, i.e., when waves
periodically originate from a certain region producing target
wave patterns; and rotational activity which can occur as the
rotation of electrical waves around an inexcitable obstacle in
the cardiac tissue or as rotating spiral waves in tissue without
obstacles. Finding the location of such sources in the heart
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and their classification is an important problem, because it
determines the treatment strategy for patients.

Focal and rotational sources of excitation are not unique
for heart tissue and also occur in other types of excitable
media such as in the BZ reaction as well as in the mor-
phogenesis of Dictyostelium discoideum. However, in these
excitable media, the source can easily be identified visually.
This differs significantly in clinical settings. During ablation
procedures, a mapping catheter is placed in the heart via
the blood vessels and the excitation wave is recorded with
a single or several electrodes. In the case where the patient
suffers an atrial periodic arrhythmia (e.g., atrial tachycardia),
multiple cycles can be recorded and the excitation pattern of
the patient can be visualized properly. However, in the case of
more severe and life threatening arrhythmias (e.g., ventricular
tachycardia or atrial fibrillation), this spatial resolution cannot
be acquired due to the complexity of the waves: they are no
longer periodic. Also, for most dangerous arrhythmias, data
acquisition of the excitation wave is not only challenging and
time consuming, but might not even be possible.

Hence one of the challenges in clinical practice is to
identify and classify the sources within low resolution data.
Although several methods to find abnormal wave sources
have been proposed [9–15], the authors in [16] conclude that
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further development of such methods remains an important
problem, especially development for methods to identify car-
diac sources in low resolution recordings.

In this paper, we develop and apply a different method
to this problem. The method is based on the calculation of
the averaged flow velocity adopting optical flow techniques
[17] and further analysis of the averaged velocity field using
the method of identification of a critical point in dynamical
systems from the reconstructed Jacobian matrix [18]. We
refer to this method as the AFV-DT method (averaged flow
velocity–determinant-trace method). We illustrate the appli-
cation of this AFV-DT method for in silico generated data for
all main types of excitation: focal activity, spiral waves, and
waves rotating around an obstacle. From these simulations, we
generate ultralow spatial resolution data based on the record-
ings of the transmembrane potential in these corresponding
8 × 8 spatial locations (these are thus electrodes). Such spatial
resolution is widely used in clinical practice [19,20]. We apply
our method to these data sets and study its performance in
normal conditions and with added noise. The method finds lo-
cations and determines types of excitation sources efficiently
and accurately. Finally, we apply our method to two clinical
data sets. We show that our method is able to identify the
location and source based on the local activation times (LATs)
for two patients with atrial tachycardia.

II. METHODS

A. Ionic model

We considered electrical waves generated by the Luo-Rudy
model [21]:

∂V

∂t
= − Iion

Cm
+ ∇ · (D∇V ) (1)

where V is the transmembrane potential, Cm = 1 μF/cm2 is
the membrane capacitance, D = 0.001 cm2/ms is the diffu-
sion current coefficient, Iion are the total ionic currents and
are determined by ionic gates, whose gating variables are
obtained as the solutions to a coupled system of nonlinear
ordinary differential equations, and the parameters are sim-
plified as in [22]. The Luo-Rudy model was integrated on
a 6 cm × 6 cm (800 × 800 grid) medium using the Euler
method and only the center region 3.5 cm × 3.5 cm (466 ×
466 grid) was considered for further analysis. The space
and the time steps are dx = 0.0075 cm, dy = 0.0075 cm and
dt = 0.00125 ms, respectively.

Spatial distributions of the membrane potential V are
shown in Figs. 1(a) and 2(a) for focal activity and a spiral
wave, respectively. The resulting membrane potential is used
to record the 8 × 8 grid within our computational domains.
In numerical simulation, the spatial resolution of our grid is
75 μm × 75 μm, but such an 8 × 8 grid corresponds to the
current resolution of panoramic basket catheters which can
cover the majority of atrial tissue with a spatial resolution
of 5 mm [20,23]. We find that the typical wavelength of a
spiral wave in our model is λ = 23.3 mm, and with such

FIG. 1. Localization of a focal source using our AFV-DT method
on the simulation in the Luo-Rudy model with GNa = 16, GK =
0.423, GSi = 0.02. (a) A snapshot of the spatial distribution of the
transmembrane potential V . (b) The spatial resolution of V is de-
creased to the 8 × 8 grid. (c) The spatial resolution of (b) is increased
to a 29 × 29 grid, by means of a bilinear interpolation protocol. (d)
The flow velocity C̃ of the potential V , where the time delay is set to
δt = 10 ms and α = 6.4. The white hexagon denotes the focal source
where C̃x = 0 and C̃y = 0 (see Table I). Model parameters are the
same as in Fig. 3 of [22].

wavelength, the resolution of our 8 × 8 grid is 0.22λ × 0.22λ.
These 8 × 8 grid data are shown in Figs. 1(b) and 2(b), and
the membrane potential in the 8 × 8 grid is equal to the
corresponding grid’s membrane potential in the high reso-
lution simulation. The 8 × 8 grid data is interpolated to the
29 × 29 grid before running calculations, which are shown in
Figs. 1(c) and 2(c) and will be discussed later.

B. Time averaged flow velocity: Main equations

The flow velocity was calculated by adopting optical flow
techniques originally developed in computer vision [17]. We
assume that on a spatial 2D grid (x, y), we know the val-
ues of the variable V at each time t , which we denote as
Vi, j,k , where i, j denote x, y space directions and k denotes
the time direction, respectively. Similarly, Vi, j,k+δ denotes the
variable V in the subsequent time t + δt . δt is the time delay
between Vi, j,k and Vi, j,k+δ . If there was an obstacle or an
inexcitable region inside the two-dimensional (2D) domain to
which waves do not propagate, we assume that for all spatial
points (i, j) inside this region and for all time k, Vi, j,k = Vobs,
where Vobs = const is a parameter which will be defined and
discussed later. Based on values Vi, j,k and Vi, j,k+δ , we calculate
averaged gradients using the equations

∂xVi, j,k ≈ 1
4 (Vi+1, j,k − Vi, j,k + Vi+1, j+1,k − Vi, j+1,k

+Vi+1, j,k+δ − Vi, j,k+δ + Vi+1, j+1,k+δ − Vi, j+1,k+δ ), (2a)
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∂yVi, j,k ≈ 1
4 (Vi, j+1,k − Vi, j,k + Vi+1, j+1,k − Vi+1, j,k

+Vi, j+1,k+δ − Vi, j,k+δ + Vi+1, j+1,k+δ − Vi+1, j,k+δ ), (2b)

∂tVi, j,k ≈ 1
4 (Vi, j,k+δ − Vi, j,k + Vi, j+1,k+δ − Vi, j+1,k

+Vi+1, j,k+δ − Vi+1, j,k + Vi+1, j+1,k+δ − Vi+1, j+1,k ). (2c)

We substitute these values into the following iterative equations for the velocity Ci, j,k = (Cx,Cy)i, j,k of each grid point through
the optical flow method:

Cn+1
x = C̄n

x − ∂xV
(
C̄n

x ∂xV + C̄n
y ∂yV + ∂tV

)/
[α2 + (∂xV )2 + (∂yV )2], (3a)

Cn+1
y = C̄n

y − ∂yV
(
C̄n

x ∂xV + C̄n
y ∂yV + ∂tV

)/
[α2 + (∂xV )2 + (∂yV )2], (3b)

where n is the iterative number, and we set C0
i, j,k = 0 as the initial value, and

C̄i, j,k = 1
6 (Ci−1, j,k + Ci+1, j,k + Ci, j−1,k + Ci, j+1,k )

+ 1
12 (Ci−1, j−1,k + Ci+1, j−1,k + Ci−1, j+1,k + Ci+1, j+1,k ). (4)

α is a weighting factor to prevent noise in the estimated
derivatives and is normally proportional to the except noise
in the estimate of

√
(∂xV )2 + (∂yV )2 [17]. In simulations, we

calculate α in the following way. At each time step k′ we
calculate αk′ as twice the average value of

√
(∂xV )2 + (∂yV )2

in all grid points. We then find α as the average value for one
period of spiral waves or focal activity:

α = 1

N

N∑
k′=1

αk′ , (5)

where N = T/�t and T is a period of waves. The α is
determined as a parameter in the iteration processes before
calculating the vector field. According to the catheter elec-
trodes sampling frequency 1 kHz [24], the time intervals for
recording data are �t = 1 ms in all figures.

C. Time averaged flow velocity: Data flow

Before iterating, the data have to be preprocessed. In most
of the examples, the data we simulated was recorded on the
8 × 8 grid, located inside the 3.5 cm × 3.5 cm area to mimic
the spatial accuracy of clinical recording. These 8 × 8 data
Vi, j,k were then linearly interpolated to a 29 × 29 grid. The
data are extended to the 31 × 31 grid (i, j vary from 0 to 30).
For that, the boundary layers of 29 × 29 grid were copied into
the corresponding additional layers of the 31 × 31 grid (the
layer 1 of 29 × 29 grid was copied into the layer 0 of the 31 ×
31 grid, and the layer 29 of the 29 × 29 grid was copied into
the layer 30 of the 31 × 31 grid). These additional layers are
used to impose no-flux boundary conditions used to determine
the value of ∂xVi, j,k , ∂yVi, j,k , ∂tVi, j,k , and α through Eqs. (2)
and (5).

The iteration procedure starts with Eq. (4) where we set
C0

i, j,k = 0 (i, j vary from 0 to 30), as the initial value, and
then we obtain from Eq. (4) that C̄0

i, j,k = 0. Note that C̄i, j,k is
defined on a grid 29 × 29 (thus for i, j changing from 1 to 29).
Then, C1

i, j,k is calculated by Eq. (3) also on a grid 29 × 29 (i, j

changing from 1 to 29), based on the value of C̄0
i, j,k , ∂xVi, j,k ,

∂yVi, j,k , ∂tVi, j,k , and α.

To calculate the next value of C̄i, j,k for all 29 × 29 grids,
we use Eq. (4) and extend Ci, j,k to the 31 × 31 grid (i, j
vary from 0 to 30). Calculations for nonboundary elements in
Eq. (4) are straightforward. For the calculation of boundary el-
ements, we assume that elements indexed outside the 29 × 29
grid are equal to the corresponding inner layer elements. For
example, if i = 1, C0, j,k equal to C1, j,k . As a result, we obtain
the next value of C̄i, j,k , and by substituting it into Eq. (3)
and continuing the iteration processes, we get C2

i, j,k , C3
i, j,k , …

Cn
i, j,k . In this paper, we performed n = 128 iterations, which

were sufficient for the iteration processes to converge. The
final value of C128

i, j,k was used as the flow velocity.
If Ci, j,k is located inside the obstacle, it will be initially

zero, i.e., C0
i, j,k = 0. Inside the obstacle ∂xVi, j,k , ∂yVi, j,k , and

∂tVi, j,k are all equal to zero except at the boundary of the
obstacle. Because Eq. (4) will average the vector in the space
at each step of the iteration, the value of C̄i, j,k will be affected
by Ci, j,k at the neighboring points (Ci−1, j,k , etc.). Thus if C̄i, j,k

is located at the boundary of the obstacle, it will be affected by
Ci, j,k outside the obstacle where Ci, j,k �= 0. Therefore, C̄i, j,k

at the boundary inside the obstacle will become a nonzero
vector, and in turn Ci, j,k at the boundary inside the obstacle
will also become nonzero, etc. After several iterations, the
inner obstacle area will form a stable distribution of nonzero
Ci, j,k . The value of the voltage inside the obstacle Vi, j,k = Vobs

is a parameter of the algorithm. In most of the cases we use
Vobs = −84 mV, which is equal to the resting potential in
the used model. Later we show that the performance of the
algorithm does not depend on the particular choice of Vobs.

In general, for velocity calculation from the values of the
membrane potential Vi, j,k and Vi, j,k+δ at time t and at a sub-
sequent time t + δt , δt should be in a narrow range, which is
often unknown a priori: too large or too small δt values will
affect the final result. Interestingly, we found that the choice
of δt for flow velocity averaged in the range 0.5T –1.5T (in
this paper, we chose 1.0T ) using the equation given below is
not so essential:

C̃i, j,k =
k+N/2∑

k′=k−N/2

Ci, j,k′ . (6)
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FIG. 2. Localization of the rotation center of a spiral wave using
our AFV-DT method. (a) A snapshot of the spatial distribution of
the transmembrane potential V . (b) The spatial resolution of V is
decreased to a 8 × 8 grid. (c) The spatial resolution of V is increased
to a 29 × 29 grid by means of a bilinear interpolation protocol.
(d) The averaged flow velocity C̃ of the potential V is shown. The
white circle denotes the rotation center of the clockwise spiral, where
C̃x = 0 and C̃y = 0. (e) The red PS trajectory line is obtained by
the modified Jacobian-determinant method with a time delay 2 ms
[13] on the high resolution grid. The blue rotation center trajectory is
obtained by our AFV-DT method on the low resolution grid. (f) The
numerical values of ∇ × C̃ · ẑ. All other parameters are the same as
in Fig. 1.

In this case, the averaged flow velocity does not signifi-
cantly depend on δt .

The central 27 × 27 points (2–28) of the averaged flow
velocity C̃i, j,k were displayed, because the velocity of the
boundary layer is unreliable due to the no-flux boundary con-
dition. Examples of the resulting averaged flow velocity are
shown in Figs. 1(d) and 2(d) for focal activity and a spiral
wave, respectively. All vectors in the figures are normalized.

D. Critical points

Complex waves can be classified around critical points,
which are located at the intersection of two contour lines
C̃x = 0 and C̃y = 0. Each critical point is categorized by us-
ing the trace (τ ) and the determinant (�) of the Jacobian

matrix [18]:

J =
(

∂C̃x
∂x

∂C̃x
∂y

∂C̃y

∂x
∂C̃y

∂y

)
. (7)

The symbols used to represent the pattern, the kind of the
pattern, and the corresponding determinant-trace conditions
are shown in Table I.

III. RESULTS

A. Numerical results for focal activity

We analyze focal activity in the Luo-Rudy model (1). The
waves are generated by the periodic stimulation of a small area
(the diameter is 0.5 cm) [25]. The stimulation is performed by
the constant current Istim = −80 μA/cm2 during 1 ms [26]
and the period of stimulation is T = 100 ms. Changing the
diameter of the stimulated area between 0.1 and 1.0 cm does
not affect the results. The spatial distribution of the potential
V at a certain moment is shown in Fig. 1(a). In Fig. 1(b),
we show the same pattern on a low resolution 8 × 8 grid,
with a spatial resolution of 5 mm. This 8 × 8 grid data is
interpolated onto a 29 × 29 grid [Fig. 1(c)] on which the
averaged flow velocity C̃ = (C̃x, C̃y) of the potential V is
calculated [Fig. 1(d)]. The white hexagon at the center shows
the location of the focal source found by our AFV-DT method.
In particular, this is a point where the averaged flow velocity
C̃x = 0 and C̃y = 0, and the Jacobian matrix at this point
satisfies the corresponding conditions on the trace (τ ) and the
determinant (�) (� > 0, τ 2 > 4�, τ > 0) (see Table I). The
found location of the focal source almost exactly coincides
with the true location.

B. Numerical results of spiral waves

We analyze a spiral wave generated by the same parameters
as used in Fig. 1. In this case, the spiral wave is meandering
with a rotation period of T = 54.3 ms. A snapshot of the
spatial distribution of the transmembrane potential V is shown
in Fig. 2(a). Figure 2(b) shows the same pattern on a low
resolution 8 × 8 grid, with a spatial resolution of 5 mm. These
8 × 8 grid data are interpolated onto a 29 × 29 grid [Fig. 2(c)]
on which the averaged flow velocity C̃ = (C̃x, C̃y) of the po-
tential V is calculated for a time delay of δt = 10 ms and
α = 12 (T = 54 ms) [Fig. 2(d)]. The white circle at the center
shows the location of the rotation center of the clockwise
rotating spiral wave found with our AFV-DT method. It is
found as a point where the averaged flow velocity C̃x = 0
and C̃y = 0, and the Jacobian matrix at this point satisfies the
corresponding conditions on the trace (τ ) and the determinant
(�) (� > 0, τ 2 < 4� and ∇ × C̃ · ẑ < 0) (see Table I).

In Fig. 2(e) we compare the trajectory of the phase singu-
larity (PS) determined by the modified Jacobian-determinant
method [13] (the red line), and the trajectory of rotation center
determined by our AFV-DT method (the blue line). The red
trajectory is obtained on the high resolution 400 × 400 grid
and the blue trajectory on the 8 × 8 grid. We see that the PS
of the spiral wave found on the high resolution data by the
modified Jacobian-determinant method [13] is located very
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TABLE I. The pattern, kind, and determinant-trace conditions of different complex waves. τ is the trace and � is the determinant of the
Jacobian matrix, respectively.

Pattern symbols Kind Condition

focal source � > 0, τ 2 > 4� and τ > 0

focal sink � > 0, τ 2 > 4� and τ < 0

rotation center (clockwise) � > 0, τ 2 < 4� and ∇ × C̃ · ẑ < 0

rotation center (counterclockwise) � > 0, τ 2 < 4� and ∇ × C̃ · ẑ > 0

saddle � < 0

close to the rotation center of the spiral wave found by our
method based on the low resolution data. Figure 2(f) also
shows the numerical values of ∇ × C̃ · ẑ. Here, the sign of
∇ × C̃ · ẑ at the rotation center determines the rotation direc-
tion of a spiral wave. Namely, if ∇ × C̃ · ẑ > 0, the spiral
wave rotates counterclockwise, while if ∇ × C̃ · ẑ < 0, the
spiral wave rotates clockwise. The data clearly show that the
spiral wave rotates clockwise.

C. Numerical results for waves rotating around obstacles

A large class of arrhythmias in the heart are organized
by waves rotating around obstacles or heterogeneities, such
as complex anatomical structures, blood vessels, and even
damaged tissues [7,27–29]. To test how our method performs
for such sources, we made simulations of wave propagation
in tissue with multiple obstacles that are constructed with
no-flux boundary conditions. Figure 3 shows an example of
such simulations. The initial conditions for the algorithm are
voltage calculated by Eq. (1) in all medium except obsta-
cle and voltage −84 mV inside the obstacle. In this initial
state, the partial derivative ∂xVi, j,k , ∂yVi, j,k , ∂tVi, j,k and velocity
C0

i, j,k = (C0
x ,C0

y )i, j,k in Eq. (3) are both equal to zero inside
the obstacle. However, Eq. (4) will average the velocity field
in the space. In the process of iterating Eq. (3), a nonzero
and stable velocity field can also be obtained at the obstacle.
We also performed an additional study in which we calcu-
lated flow velocity for various values of potentials inside the
obstacle (−50 mV, −30 mV, 0 mV). We find that change of
potential does not affect the results. In Fig. 3(a), the wave
rotates around a 1 cm diameter obstacle. In Fig. 3(b), there
are multiple obstacles, and the wave rotates around one of
them. Figures 3(c) and 3(d) show the same data on a low
resolution 8 × 8 grid. The averaged flow velocity C̃i, j,k =
(C̃x, C̃y)i, j,k of the potential V and location and type of sources
found by our AFV-DT method are shown in Figs. 3(e) and
3(f). We see that the location determined by our method is
close to the geometric center of the obstacle. When there
are multiple obstacles distributed in the tissue, our method
correctly identifies the true obstacle around which the rotation
occurs.

D. Effect of noise

We also check whether our method is robust against noise
[13,14,30]. We add spatiotemporal white noise σ (x, y, t ) [30]
to the right-hand side of Eq. (1) to study the effect of noise on
the averaged flow velocity method, in which 〈σ (x, y, t )〉 = 0,
〈σ (x, y, t )σ (x′, y′, t ′)〉 = ηδ(x−x′)δ(y−y′)δ(t−t ′). We use the
same parameters in the Luo-Rudy model as those used in
Fig. 1 and with η = 0.02 to generate focal activity and spiral
wave. Figures 4(a) and 4(b) are snapshots of the focal activity
and spiral wave with spatiotemporal white noise. Figures 4(c)
and 4(d) are the one-dimensional spatial distributions of mem-
brane potential V corresponding to the black line in Figs. 4(a)
and 4(b), respectively. We see that the wave fronts of focal
activity and spiral wave are no longer smooth. Figures 4(e)
and 4(f) show the low resolution records on the 8 × 8 grid.
Figures 4(g) and 4(h) show the averaged flow velocities, from
which the focal source and the rotation center of the spiral
wave were correctly identified using the AFV-DT method.

E. Local activation time

In previous examples, we applied the proposed AFV-DT
method on the transmembrane potential of in silico data.
However, current clinical cardiac mapping systems record
electrograms, whose shapes substantially differ from trans-
membrane voltage. From these electrograms recorded at
multiple locations on the endocardial surface, clinical systems
determine the moment of passing of the excitation front at a
given location; this is called the local activation time (LAT).
Based on the spatial distribution of these LATs, high density
activation maps are created and electrophysiologists make a
conclusion on the type and location of the arrhythmia based
on these technologies. However, as these maps are challenging
and operator dependent, we aim for mathematical technolo-
gies to overcome these issues. Therefore, to apply our tool to
clinical data sets, we needed to modify our AFV-DT method
in order to be able to apply it not only on the transmem-
brane voltage, but also on the distributed LAT data. These
adaptions were stepwise illustrated in Fig. 5. At first, based
on the spiral wave example from Fig. 2(a), we derived the
LATs of the spiral on a low resolution 8 × 8 grid. The LAT
was defined as the time when the wave front arrives at the
given electrode location, namely when the voltage at the grid
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FIG. 3. Localization of the rotation center of the wave rotating
around an obstacle using our AFV-DT method. Panels (a) and (b)
are snapshots of the spatial distribution of the membrane potential
V for waves rotating around a 1 cm diameter obstacle. The dotted
parts denote the obstacles. Panels (c) and (d) show the spatial distri-
bution of the membrane potential V on 8 × 8 grid. (e) The averaged
flow velocity C̃. The white circle denotes the rotation center of the
clockwise rotating wave, where C̃x = 0 and C̃y = 0. (f) The averaged
flow velocity C̃ of the rotating wave in tissue with multiple obstacles.
The obstacles on the left and the bottom have a diameter of 1 cm and
the obstacle on the top have a diameter of 0.5 cm. All other model
parameters are the same as in Fig. 1. The period of the rotating wave
is T = 70.6 ms, the time delay δt = 10 ms and α = 10.

point jumps above −35 mV [22]. As a result we acquired
LAT1, LAT2, . . . LATn at a certain grid point [Fig. 5(a)]. In
addition, there are several factors that might affect the accu-
racy of LAT detection in realistic situations. Therefore, we
also test adding Gaussian noise with different standard devia-
tions

√
η = 1, 2, 3, 4 ms on the LATs we detected to simulate

LAT variation [14]. This will be the input data of our modified
AFV-DT method. Second, based on these LATs, the spatial
pattern of the transmembrane voltage was reconstructed. For
that we precomputed the dispersion relation of our model.
More specifically, we stimulated a 1D cable based on the
Luo-Rudy model of different periods T , and for each period
we found the corresponding shape of the action potential V (t ).
Note that for each T , V (t ) is a periodic function of t , which
has a period T . Starting from this, we could process the LAT

FIG. 4. Localization of the focal source and spiral rotation center
of an arrhythmia using our AFV-DT method. Panels (a) and (b)
are snapshots of the spatial distribution of the membrane potential
V for the focal activity and the spiral wave with spatiotemporal
white noise. Panels (c) and (d) are the spatial distribution of the
membrane potential V corresponding to the black line in (a) and
(b), respectively. Panels (e) and (f) show the spatial resolution of V ,
decreased to the 8 × 8 grid. (g) The averaged flow velocity C̃ of the
focal activity with δt = 10 ms, α = 6.8, and T = 100 ms. The white
hexagon denotes the focal source. (h) The averaged flow velocity C̃
for the spiral wave with δt = 10 ms, α = 12.0, and T = 54.0 ms.
The white circle denotes the rotation center of the clockwise spiral.

data. First we calculated the time interval between two consec-
utive LATs as T1 = LAT2 − LAT1, T2 = LAT3 − LAT2 . . .

and then used the V (t ) curve of the corresponding period T1

to reconstruct the electrical signal between LAT1 and LAT2.
Reconstruction of electrical signal was performed as follows.
We know the period of the arrhythmia T1. Then based on
LAT1 at given location we reconstruct the electrical signal by
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FIG. 5. Localization of the rotation center from LATs using the
AFV-DT method. (a) The blue line is the reconstructed electrical sig-
nal and the red points are the LATs we detected. (b) A snapshot of the
reconstructed electrical signal based on the local arrival time. (c) The
averaged flow velocity C̃ of a spiral wave (δt = 10 ms, α = 12.9,
and T = 54 ms) without noise. The white circle denotes the rotation
center of the clockwise spiral, where C̃x = 0 and C̃y = 0. (d) The red
PS trajectory line is obtained by the modified Jacobian-determinant
method with a time delay 2 ms on the original transmembrane po-
tential with a spatial resolution of 400 × 400 [see Fig. 2(a)]. The
blue rotation center trajectory is obtained by the AFV-DT method
on the data obtained from the reconstructed electrical signal based
on the LAT with a spatial resolution of 8 × 8. (e) The averaged flow
velocity C̃ of a spiral wave (δt = 10 ms, α = 13.1, and T = 54 ms)
with added Gaussian noise with

√
η = 4 ms. (f) The black rotation

center trajectory is obtained by using the AFV-DT method on the data
obtained from the LATs with added Gaussian noise with

√
η = 4 ms.

placing to this point the action potential found in 1D simula-
tions for this period T1. We do it in such a way that at this point
V (t ) = −35 mV. As V (t ) is a periodic function, the choice of
a particular level does not matter. As a result we get the blue
line (electrical signal) shown in Fig. 5(a), where the red points
show the corresponding LATs. We repeated this algorithm for
each grid point and each time interval. Finally, we obtained the
spatial distribution of the transmembrane potential [Fig. 5(b)].
Using this spatial dependency we obtained the averaged flow
velocity and analyze it using our standard AFV-DT method.
The results of this described approach are shown in Figs. 5(c)

and 5(e), and its comparison with the high resolution modified
Jacobian-determinant method is shown in Figs. 5(d) and 5(f)
[similar to what we did in Fig. 2(e)]. The Gaussian noise
added in LAT for Figs. 5(e) and 5(f) is

√
η = 4 ms. We see

that the AFV-DT method works well on data derived from
LATs whether or not noise is added.

IV. DISCUSSION

In this paper, we propose several formulations of the AFV-
DT method to find the location of the excitation sources in
excitable media. Application of this method to clinical data is
the next important step in its development. In this paper, we do
not perform extended clinical studies of the AFV-DT method.
However, we illustrate below its applicability to two clinical
cases of atrial tachycardias.

A. Test of the AFV-DT method on two clinical datasets

We perform an initial test on how the developed AFV-DT
method works on clinical data. We apply it to two clinical
cases of human atrial tachycardia (AT), a stable periodic atrial
arrhythmia. The first presented case is part of the database
of AT excitation patterns collected between April and August
2017, for patients undergoing ablation of symptomatic ATs
at the AZ Sint-Jan Bruges Hospital (Belgium) [14]. The sec-
ond case is a single case from another database presented in
[31,32]. Data collection in both studies were approved by the
local ethics committee of the AZ Sint-Jan Bruges Hospital.
The endocardial mapping of these ATs was performed using
a single-electrode mapping and ablation catheter with a distal
3.5 mm tip and three 1 mm ring electrodes (THERMOCOOL
SMARTTOUCH, Biosense-Webster Inc., Diamond Bar, CA,
USA). More details on clinical aspects of two cases used in
our study can be found in the Supplemental Material section
“Additional information on clinical cases” [33].

In Fig. 6 (the upper row) we present the endocardial elec-
trode mapping of the first patient. The left two pictures show
different views of the points where the electrical activity was
recorded and they are color-coded by the derived LATs at
these electrodes. The Supplemental Material section “Collec-
tion and Projection of Clinical data” describes how the data
was collected and projected [33]. The right two pictures show
the 2D plane projection of the data and their linear interpo-
lation. Figure 6 (lower row) shows the same for the second
case.

To test our AFV-DT method for the linear interpolated data
of Figs. 6(b) and 6(d) we reconstruct the electrical signal
according to the LATs and then analyze the reconstructed
electrical signal with our method to find the critical points.

Due to substantial complexity (due to noise) in the clinical
data we have to increase the extent of averaging of the data
by appropriate choice of α, in order to find the dominating
critical point and filter out error points. The sink and saddle
will not be displayed in Fig. 7 because they correspond to
wave collisions.

We find that the LATs from Fig. 7(a) are generated by
focal activity. Our algorithm marked two close locations of
this source. For Fig. 7(b) we find that LATs are generated by a
wave clockwise rotating around an obstacle. Both findings are
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FIG. 6. Clinical recordings of electrical excitation patterns in patients with atrial tachycardia. Panels (a) and (c) show two views of the left
atrium obtained from clinical measurements by the CARTO mapping system. The colored points show the locations of the electrodes where
electrical activity was recorded. Color represents the activation time at the corresponding electrode locations mapped to the one period of the
arrhythmia. The period was 250 ms for case 1 and 440 ms for case 2. Panels (b) and (d) show the projection of the data to the 2D plane and
their linear interpolation. The shown landmarks, RSPV and LSPV, are the right superior and left superior pulmonary veins; RIPV and LIPV
are the right inferior and left inferior pulmonary veins; MV is the mitral valve. LAO the left anterior oblique view; anterior-posterior view
(which are two standard views in the CARTO system).

correct: the type and location of the found sources coincided
with clinical findings in these patients. Note that the fact that
the algorithm marked two points in Fig. 7(a) reflects that the
focal activity here is generated by an extended region and it
will not have any consequences for the ablation strategy of
this patient. The LAT data presented in Fig. 7(b) do not show
clear wave rotation around a scar and even show collision
areas in the lower left corner of the picture. However, the
AFV-DT method classifies this pattern as rotation. This hap-
pened due to extension of vector field inside the obstacle. Note
that data for this patient were also analyzed using directed
graph (DG) mapping [14,32] and it also classified this source
as localized rotation. For that particular patient cardiologists
also decided that this is a localized reentry around an an-
terior scar, and ablation based on that conclusion stopped
the arrhythmia. Thus we presume that the case for Fig. 7(b)
indeed corresponds to the rotation around the scar and it
was correctly identified by the AFV-DT method. Thus we
demonstrate that our AFV-DT method was able to determine
the type and location of sources organizing cardiac arrhyth-

mias in two clinical cases of patients with nonsustained atrial
tachycardia.

B. General discussion of the method:
Its limitations and development

In this paper we propose several formulations of the AFV-
DT method to find the location of sources of excitation in
excitable media. The method has two parts: (1) generation of
the averaged flow velocity; (2) analysis of the averaged flow
velocity.

In part 1 there are three critical parameters: the time delay
δt , the averaged time, and the weighting factor α. The value of
the time delay δt and averaged time can vary in a wide range
without significantly affecting the results. The weighting fac-
tor α has to be adjusted in clinical data to filter out noise and
errors. However, as this is the only parameter to be chosen,
its adjustment is straightforward. In part 2, the critical points,
where velocity equals zero, will be automatically identified
and categorized.
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FIG. 7. The background coloring corresponds to the interpolated
LATs of the electrical signal. The white region in the second figure
corresponds with scar tissue. (a) We show the averaged flow velocity
C̃ of the focal activity, where the time delay is set to δt = 10 ms,
α = 50, and T = 250 ms. The white hexagon denotes the source of
focal activity. (b) The averaged flow velocity C̃ of rotating wave,
where the time delay is set to δt = 10 ms, α = 50, and T = 440 ms.
The white circle denotes the rotation center.

The AFV-DT method is a combination of the averaging
technique adopted from the analysis of optical flow [17] and
of the determinant-trace method used for classification of
equilibrium in theory of dynamical systems [18]. The flow
velocity method was used previously for the construction of
the velocity field in neuroscience [34]. In these researches,
they used different versions of the flow velocity to calcu-
late the velocity field based on phase field of the local field
potential, and did not average the velocity field. Using this
flow velocity method one can find a vector field showing
wave propagation directions. To analyze this vector field we
applied the determinant-trace method. A similar method was
used in the analysis of spatiotemporal patterns in brain ac-
tivity [35,36], to categorize the critical points. In this paper
we combine both approaches and apply them to characterize
electrical activity in cardiac tissue. Using the AFV-DT method
we can determine all types of the excitation sources in the
heart: focal activity, spiral waves, and waves rotating around
obstacles. The important feature of this method is that it is able
to find the type of the source in data with a very low spatial
resolution; even recording at only 8 × 8 spatial locations is
sufficient. We developed two modifications of the AFV-DT
method: one uses the transmembrane voltage as input, and
another method uses the LAT at given point as input. In the
latter case we reconstructed the transmembrane voltage from
the activation times using restitution curves of the model.

We showed that both realizations of the AFV-DT method
are robust with respect to noise. Finally, we applied our
methodology to two clinical cases of human atrial tachycardia
and found that our method can correctly determine the type
and location of the sources in clinical datasets. Also as the
AFV-DT method works well with transmembrane voltage, it
can also be applied to analysis of data obtained using optical
mapping of electrical activity of the heart as well [37].

In this paper, the data for transmembrane voltage or local
activation times were obtained by using the Luo-Rudy model
for cardiac tissue. For the modification of the AFV-DT method
to get to the LATs is not necessarily to use the Luo-Rudy
model for cardiac tissue and another model can be used to
reconstruct the transmembrane voltage. However, as we are

mostly interested in the vector field representing the propaga-
tion of the wave front, it would be good to use a model which
has a sufficiently steep upstroke and a gradual monotonic
repolarization phase of the action potential, to avoid possible
errors in the vector field direction due to the shape change.
We have also tried the FitzHugh-Nagumo model [38,39] to
reconstruct the voltage from the LAT patterns shown in Fig. 5.
The results presented in the Supplemental Material section
“Voltage reconstruction with different model” [33] show that
this model can also properly reproduce the velocity fields of
the excitation pattern.

The main aim of our paper is to propose another method to
determine the location and type of the sources in excitable
media which can work for low spatial resolution data. In
recent years there has been fast progress in cardiac mapping
techniques for electroanatomical mapping of the heart during
arrhythmia. These methods allow collection of information at
a large number of spatial points in a short period of time. For
example, using the RHYTHMIA system is possible to map
arrhythmia at more than 10 000 points [40], using AcQMap it
is possible to acquire voltage samples at a rate of 150 000 per
second [41]. However, methods of automatic analysis of such
large datasets were not sufficiently improved. As a result, in
complex cases, cardiologists need to use methods of identi-
fication of the arrhythmias, for example, pacing maneuvers,
such as PPI-TCL [42], which require substantial time. The
methods of automatic analysis of clinical recordings, such as
phase mapping [6,43], DG mapping [14,32], and the AFV-DT
method developed in our paper may help to overcome this
shortcoming and result in more effective ways of manage-
ment of cardiac arrhythmias in the operation room. We do
not want to claim at this stage that our method is better or
worse than other existing methods, such as phase mapping or
DG mapping. The direct comparison of the AFV-DT method
with phase mapping and DG mapping is definitely the most
important next step which has to be done in the future. We
think, however, that before such comparison additional studies
involving the AFV-DT method must be performed. This is
because both phase mapping and DG mapping methods were
already investigated on large data sets and in many different
situations. We think that the AFV-DT method should be ap-
plied to more examples of clinical data, studied using different
models for cardiac cells, and applied not only for isotropic
but also for anisotropic cardiac tissue, anatomical models of
the heart, etc. After that, a full comparison of the AFV-DT
method and phase mapping and DG mapping can be properly
performed.

V. CONCLUSION

We develop a different approach, called the AFV-DT
method, to identify the location and type of sources in ex-
citable media. This method can be applied to the spatial
voltage data and to the data on the local activation time of the
wave and works in two steps. It first generates the averaged
flow velocity field and then analyzes this vector field using
the determinant-trace method. As an input the method can
use the spatial voltage distribution data, or the spatial data
on the local activation times of the wave. As output, the
method provides the location and the type of the sources and
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determines all important types of sources: focal activity, spiral
waves, and waves rotating around an obstacle. The method
is robust, as it works with a very low spatial resolution (up
to an 8 × 8 grid) and is stable to added noise. We tested our
method on many computational data sets and on two clini-
cal examples of patients with atrial tachycardia and showed
that it can correctly determine the type and location of the
source of the arrhythmia. The method can be used to analyze
excitation patterns in numerical, experimental, and clinical
recordings.
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