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Random logic networks: From classical Boolean to quantum dynamics

Lucas Kluge ,1,2,* Joshua E. S. Socolar,3 and Eckehard Schöll4,1

1Potsdam Insitute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
2Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam, Germany

3Department of Physics, Duke University, Durham, North Carolina 27708, USA
4Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany

(Received 28 August 2021; accepted 10 December 2021; published 28 December 2021)

We investigate dynamical properties of a quantum generalization of classical reversible Boolean networks.
The state of each node is encoded as a single qubit, and classical Boolean logic operations are supplemented by
controlled bit-flip and Hadamard operations. We consider synchronous updating schemes in which each qubit is
updated at each step based on stored values of the qubits from the previous step. We investigate the periodic or
quasiperiodic behavior of quantum networks, and we analyze the propagation of single site perturbations through
the quantum networks with input degree one. A nonclassical mechanism for perturbation propagation leads to
substantially different evolution of the Hamming distance between the original and perturbed states.
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I. INTRODUCTION

Random Boolean networks exhibit behaviors that lend
insights into a variety of fields, serving as generic models
describing the dynamics of complex systems ranging through
neural [1], social [2], protein interaction [3], and game
theoretic networks [4]. Studies of random Boolean networks
began in earnest with Kauffman’s introduction of a model
framework for gene regulatory networks, which consisted of
a set of N nodes, each having K random inputs from nodes
chosen at random [5]. At each time step, each node is updated
according to a randomly assigned Boolean logic operation on
its K inputs.

The number of possible states of a Boolean network is
finite (equal to 2N ). Thus for any initial condition and any
deterministic sequence chosen for updating the nodes, the
network eventually settles on a periodic attractor. The nature
of the set of such attractors for large networks has been a
major research topic [6–15], with special attention devoted
to a dynamical phase transition that occurs as either K or
the probabilities of assigning different Boolean functions are
varied.

The present work is motivated by the possibility of ob-
serving a dynamical phase transition or qualitatively different
dynamics in random networks of quantum mechanical gates,
where the classical states of the nodes are generalized to
qubit states and the set of Boolean operations is expanded to
include quantum logic functions. Random Boolean networks
generally involve high rates of dissipation, as multiple differ-
ent combinations of the input states to a given node produce
the same output state. A naïve introduction of quantum logic
into the system retains a high level of dissipation associated
with the information loss intrinsic to the projection opera-
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tions required to create a state of a qubit that is independent
of its previous state. Preliminary studies revealed that the
introduction of intrinsically quantum mechanical operations
leads to a reduction of the dynamics to a single stable fixed
point. Removing the projection operators from the quantum
system results in reversible dynamics whose classical analog
is found in the reversible Boolean networks introduced by
Coppersmith et al. [16,17]. In contrast to dissipative systems,
every state of a reversible Boolean network lies on a periodic
orbit; there are no transients. The key questions then concern
the distribution of periods (cycle lengths), the scaling of the
number of periodic orbits with N for different choices K or
the set of Boolean functions employed, and the stability of
cycles under single qubit perturbations.

In the present paper, we consider a modification of
reversible random Boolean networks that incorporates inher-
ently quantum operations at some or all of the nodes. We will
refer to these as “quantum networks.” A quantum network
consists of a set of qubits together with a set of operations
determining how each qubit is updated based on the states of a
subset of qubits referred to as its inputs. Like classical random
Boolean networks, these quantum networks are updated in
discrete time steps. Unlike their classical counterparts, how-
ever, the state space of the system is not necessarily discrete,
as a given qubit can be in an arbitrary superposition of its two
basis states (which we take to be the classical Boolean states).

In a quantum network, the operations analogous to Boolean
logic functions are unitary operations on the states of some set
of qubits. Classical reversible Boolean operations are a subset
of these, and a minimal extension of this set includes quan-
tum operations on single qubits. A typical operation might
consist, for example, of a classical (reversible) operation ap-
plied to several qubits, followed by a quantum operation that
creates a superposition of the 0 and 1 states of the out-
put (e.g., a Hadamard operation). To extend the results of
Coppersmith et al. to the quantum realm, we formulate
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the reversible dynamics in a way that allows for a nat-
ural insertion of quantum operations. Each node in the
Coppersmith model is now represented by two qubits, one
representing the current state of that node and the other
representing its state one time step in the past. This en-
ables an efficient formulation of the dynamics in which
the future state of the network depends only on the
present state. In a recent study, Franco et al. introduced
an equivalent formulation of the class of reversible quan-
tum networks and examined the behavior of networks with
N � 6 [18].

Our goal is to identify any new effects that arise when
unitary operations are included that lead the system out
of the discrete classical state space. We focus here on the
cycles that arise in small networks and on the divergence of
trajectories that differ initially in the state of a single qubit. To
study the latter, we extend the concept of classical Hamming
distance to one that is well suited to describing a special set
of quantum networks employing only Hadamard operations
and controlled-NOT gates. We study the divergence of trajec-
tories in networks in which each qubit receives information
from a single other qubit, and describe qualitative differences
between the quantum and classical cases.

II. QUANTUM GENERALIZATIONS OF REVERSIBLE
BOOLEAN NETWORKS

To establish notation, we introduce an example classi-
cal reversible Boolean network and describe the formalism
for representing it as a quantum circuit. We then describe
a particular extension of the set of Boolean truth functions
to intrinsically quantum mechanical operations, which will
produce the quantum dynamics we are interested in studying.

Consider the reversible classical Boolean networks intro-
duced by Coppersmith et al. [16,17]. A network consists of
N spin variables which can be in state s = −1 or +1. (Note:
We use s here rather than σ to avoid confusion with Pauli σ

matrices below.) The time evolution of each of the Boolean
variables depends on the values of K other variables. The
network updating rule is given by

s(i)
t+1 = s(i)

t−1F (i)
(
S(i)

t

)
, (1)

where s(i)
t is the value of spin i at discrete time step t , S(i)

t
represents the state vector consisting of the K input spins to
node i at time t , and F (i) is a Boolean function of K inputs.
Each node is updated using its own value at time t − 1 and
the output of a truth function F (i). Because s(i)

t can take only
the values ±1, this model can be written in the equivalent form

s(i)
t+1s(i)

t−1 = F (i)(S(i)
t ), (2)

which makes manifest the time-reversal invariance of the
dynamics.

A simple example circuit is the N = 2, K = 2 case shown
in Fig. 1. It consists of two nodes: s(1) is updated according
to the OR function s(1) ∨ s(2); and s(2) is updated according
to the AND function s(1) ∧ s(2). Figure 1(a) shows the wiring
diagram indicating which nodes are inputs to each node, and
Fig. 1(b) shows the results of applying Boolean functions F (1)

and F (2) to each possible configuration of input states, i.e., the
truth table.

FIG. 1. Classical circuit of a two-node reversible Boolean net-
work with a connectivity of two. Top: (a) A classical representation
of the network, (b) with related truth table for the binary logic
functions F (1) (OR) and F (2) (AND). (c) Fundamental logic gates,
operation U on the left and SWAP of two qubits on the right. The
operation U applied to qubit 3 is controlled by qubits 1 and 2.
(d) Corresponding logic circuit. The upper two qubits represent the
state at time t , while the lower ones correspond to the time t − 1.
I is the identity operator, and X is the Pauli-X (spin-flip) operator.
Operations are executed sequentially from left to right to execute the
update rule [Eq. (1)].

Following Coppersmith et al., we choose to study the case
in which the Boolean variables are updated synchronously.
To perform the necessary operations, we first introduce one
auxiliary bit for each node in the network. This bit holds the
updated value of the node until all the operations at a given
time step are completed, after which the values of the original
bit and the corresponding auxiliary bit are swapped so that
the original qubit assumes a new value and the auxiliary qubit
holds the value of the original on the previous time step, and
the operations for the next time step can begin.

An elementary operation is represented by the diagram in
Fig. 1(c), where each line represents one bit, with lines 3 and
4 representing the auxiliary bits corresponding to bits 1 and 2,
respectively. (For simplicity, we have relabeled s(1)

t , s(2)
t as s(1),

s(2) and s(1)
t−1, s(2)

t−1 as s(3), s(4).) Time proceeds from left to right,
and the open and solid dots on lines 1 and 2 indicate that the
operation U is controlled by the values of those bits. Open and
solid dots correspond to states s = −1 and +1, respectively.
In order for U to be applied to s(3), s(1) and s(2) must take
the specified values at time t . In this example, s(3) just after
time t will be the result of applying U if and only if s(1) = 1
and s(2) = −1. Otherwise, s(3) will remain unchanged. The ×
symbols connected by a vertical line indicate the bit values are
swapped.

A Boolean function is represented as a sequence of 2K = 4
operations, each implementing a single row in the correspond-
ing truth table. We use the symbol I to represent an identity
operation and X to represent a bit flip (spin flip). The Boolean
logic is represented as shown in Fig. 1(d), where the four
operations in the box labeled F (1) leave the auxiliary bit s(3)

unchanged or flip this state, depending upon the value of
s(1) ∨ s(2). The analogous procedure is applied to s(4) in the
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box labeled F (2), depending upon the value of s(1) ∧ s(2). To
complete a single time step, two SWAP operations are per-
formed, so that s(1) and s(2) (representing the values at time
t) now take the updated values of s(3) and s(4), respectively,
and s(3) and s(4) take the values of s(1) and s(2) on the previous
time step.

The classical logic operations can be described as follows,
using a notation that generalizes to quantum logic operations.
We take each node to be a two-level system (qubit) and work
in the computational basis |0〉 and |1〉, where s = −1 and +1
correspond to |0〉 and |1〉, respectively. The state of an isolated
qubit is denoted by ξ . The identity operation, denoted I , leaves
the state unchanged. The bit-flip operation takes ξ = |0〉 to
ξ = |1〉 and |1〉 to |0〉, which is the action induced by the
Pauli-X operator, denoted in the diagram by X . (In 2 × 2
matrix notation, X is represented by the Pauli matrix σx.)
If the only operations used in the circuit are (controlled) I
and (controlled) X , each qubit is always in one of the two
computational basis states, and the dynamics is equivalent to
a classical, reversible Boolean network.

The SWAP operation also generalizes to quantum
systems, as the values of two qubits can be exchanged
without loss of information [7]. We use the symbol W to
denote a SWAP, where W (ξ (1) ⊗ ξ (2) ) = ξ (2) ⊗ ξ (1), e.g.,
W |01〉 = |10〉, where |01〉 stands for |0〉 ⊗ |1〉.

To introduce nontrivial quantum superpositions and inter-
ference effects, we add one additional operation to our set:
the Hadamard operation H that takes |0〉 to 1√

2
(|0〉 + |1〉)

and |1〉 to 1√
2
(|0〉 − |1〉), corresponding to the matrix oper-

ation 1√
2
(σx + σz ). We note that the Hadamard operation in

combination with classical operations can generate entangled
states of the network. For example, beginning with a state
of two qubits |00〉, applying H to the first qubit produces
the state 1√

2
(|00〉 + |10〉). If X is then applied to the second

qubit while controlled by the first, we obtain the entangled
state 1√

2
(|00〉 + |11〉). As explained below, the restriction of

quantum operations to I , σx, and H allows us to introduce
a measure analogous to the Hamming distance between two
network states. We introduce this measure in Sec. III A.

In the computational basis, it is clear that the controlled op-
erations F (i), which each leave all ξ

(i)
t unchanged and change

only the auxiliary qubit at node i, can be performed in any
order within a time step as long as the SWAP operations are
all delayed until the end of the step. Under this protocol, each
time step corresponds to a synchronous update of all of the
ξ (i). For each i, the SWAP causes the auxiliary qubit at node
i at the end of step t to take the value ξ

(i)
t , preparing it to be

operated upon in step t + 1.
We use the symbol U to represent the unitary propagator

that advances the entire system through one complete time
step. U acts on a vector consisting of 22N basis states for the
system of N nodes, each of which has two associated qubits.
Each basis state has the form ξ (1) ⊗ ξ (2) ⊗ · · · ⊗ ξ (2N ), where
ξ (i+N ) is the state of the auxiliary qubit at node i. For the
classical operations, the set of all states accessible from a
given initial state consists entirely of the finite set of basis
states, which immediately implies that the trajectory of the
system on repeated application of U must be periodic.

FIG. 2. Complex eigenvalues of the classical circuit in Fig. 1.
The eigenvalues corresponding to the cycle of length 6 are marked
as red dots, those corresponding to the cycle of length 4 are marked
as black crosses, and the two cycles of length 3 are marked as blue
squares. Numbers indicate the degeneracies of the eigenvalues.

Reversibility ensures that each classically accessible state
appears in exactly one periodic cycle, and a matrix representa-
tion of U for a classical network must simply be a permutation
matrix with block diagonal form, where each block operates
on the subspace of states that form a single cycle. The charac-
teristic polynomial of a single block of dimension L is

p(λ) =

∣∣
∣∣∣∣∣∣
∣

−λ 1 · · · 0
... −λ 1

...
...

. . . 1
1 · · · · · · −λ

∣∣
∣∣∣∣∣∣
∣

(3)

=(−1)L(λL − 1), (4)

which has roots

λk = e2π ik/L (5)

for integer k ranging from zero to L − 1. The eigenvalues
of U thus consist of the union of complete sets of the Lth
roots of unity for a set of values of L that sum to 2N . Given
the full set of eigenvalues, one can uniquely determine all
of the periods by iteratively identifying the largest value of
L and removing one set of eigenvalues corresponding to it.
As an example, Fig. 2 shows the eigenvalues of the classical
reversible Boolean network of Fig. 1. Recall that Fig. 1(d)
shows four qubits, each represented by a horizontal line, that
store the values of two qubits for two time steps. Hence there
are 24 = 16 basis states, and one finds one cycle of length
6, one cycle of length 4, and two cycles of length 3. They
correspond to the matrix blocks of dimension L = 6, L = 4,
and L = 3 (twofold), respectively, associated with the eigen-
values marked by red dots, black crosses, and blue squares,
respectively.

When the Hadamard operation is added to the set of logic
operations, the distribution of eigenvalues of U takes a qual-
itatively different form; an example is shown in Fig. 3. The
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FIG. 3. Complex eigenvalues of the circuit in Fig. 1 with a
Hadamard operation included. All eigenvalues are nondegenerate
and have phases that are irrational multiples of 2π .

Hadamard operation is introduced before the first logic gate
on qubit 1 at time t − 1 (target-qubit) and is applied on every
update step U . First, while unitarity ensures that all eigenval-
ues fall on the unit circle, the eigenvalues are now generally
not roots of unity. For networks with two-input gates, the
inclusion of the Hadamard operation makes an infinite set of
superposition states accessible [19], which can accommodate
quasiperiodic trajectories [20] corresponding to eigenvalues
with phases that are irrational multiples of 2π . Second, there
is no degeneracy in the spectrum in this example.

The situation for K = 1 networks is qualitatively different.
Here, the use of operations consisting only of H , σx, I , and W
ensures that U is a member of the Clifford group Cn, defined
as follows. Let ri, j,... be a tensor product of 2N Pauli operators
{σ (1)

i ⊗ σ
(2)
j ⊗ · · · }. Cn consists of all unitary operators U of

dimension 2N for which

Uri, j,...U
† = ri′, j′,... moduloU (1) (6)

for every ri, j,..., where U (1) represents an overall phase factor
of no physical significance [21]. An important property of
Cn is that it contains a finite number of elements [22,23].
As a result, one can show that Um = U for some integer m,
which implies that all trajectories in these K = 1 networks are
periodic and the eigenvalues are roots of unity.

III. PROPAGATION OF PERTURBATIONS

A. Distances between states

In this section we introduce a measure for characterizing
how perturbations spread through our K = 1 networks. For
classical networks, the evolution of the Hamming distance is
often used for this purpose. It is defined as the number of
nodes whose values differ between states at the same time step
on two different trajectories. Coppersmith et al. [17] studied
evolution of the Hamming distance [24] in reversible networks
for two states that initially differ at only a single node.

A straightforward generalization of the Hamming distance
to quantum states is useful when a state ψ ′ can be written
as r′

i, j,...ψ . We define the distance between ψ ′ and ψ as the
number of factors in the first N terms in ρi, j,... that differ from
the identity. This definition reduces to the classical Hamming
distance in cases where the elements in r′

i, j,... include only the
identity and the classical bit flips represented by σx. The re-
striction to the first N terms picks out the factors representing
the current states of the qubits, leaving out the auxiliary qubits
that represent the state at time t − 1.

Given two states related at time t = 0 by ψ ′
0 = r′

i, j,...ψ0

and a set of allowed quantum operations that is restricted to
elements of the Clifford group, we have at time t = 1

ψ ′
1 = Ur′

i, j,...ψ0 (7)

= Ur′
i, j,...U†Uψ0 (8)

= (
Ur′

i, j,...U†
)
ψ1 (9)

= ρi, j,...ψ1 (10)

for some ρi, j,..., by Eq. (6). Thus the generalized Hamming
distance remains a useful measure of the distance between the
future trajectories of the states.

We emphasize again that this extended version of the
Hamming distance applies only for networks in which each
gate has at most a single input. We also note that any entan-
glement arising in one trajectory is necessarily mirrored in the
other, as the elements of ρi, j,... act on single qubits, preserving
any entanglement among the different qubits.

B. Components of K = 1 networks

A network drawn from a random ensemble with fixed
K may contain subsets of nodes forming connected com-
ponents that have no effective inputs from any other nodes
and no outputs to any other nodes. An input to node i from
node j is not effective if the value of F (i) is completely
independent of ξ

( j)
t .

The numbers and sizes of these independent components
strongly depend on the in- and out-degree distributions of
the network. The dynamics generated on a given connected
component is completely independent of the dynamics of the
rest of the network, and it is clear that a perturbation occurring
at a single node in a random Boolean network can propagate
through only a single connected component. We are therefore
interested in the dynamics supported by a single connected
component of a network; we leave aside the question of
combinatorial effects arising from multiple independent per-
turbations applied in independent components.

We discuss here only components of K = 1 networks,
where each node has in-degree equal to one, which allows
for an analysis of the spread of perturbations using the gener-
alized Hamming distance measure. For dissipative (classical)
K = 1 networks, a connected component must consist of a
single loop of nodes with dead-end chains emanating from
it (where the loop may be just a single node with a self-
input). The dynamics generated by such structures has been
characterized in detail [6]. Here, however, we are interested
in reversible networks, which exhibit qualitatively different
dynamics from their dissipative counterparts. It is convenient
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FIG. 4. Examples of single network components. Black dots in-
dicate nodes and arrows indicate directed inputs. (a) A chain, and
(b) a chain with an additional node attached. For both cases, the chain
starts with the node following the dotted arrow. The label “F = const”
indicates that the first node of the chain (open circle) is not affected at
all by the value of the node supplying its input due to a trivial choice
of the associated logic function F . (c) A loop and (d) a loop with an
additional node attached.

to identify two special cases: (1) a chain, in which the first
node receives a constant input and the last has no output
[see Fig. 4(a)], and (2) a loop, in which each node receives
its input from a neighbor such that the set of input edges
forms a closed ring [see Fig. 4(c)] [16]. All more complex
components consist of a single loop or a constant node with
directed trees emanating from it. The simplest examples are
shown in Figs. 4(b) and 4(d): a chain and a loop with one
additional node added.

For reversible networks, the meaning of the specification
“K = 1” is slightly different because all nodes receive time-
delayed self-inputs in addition to inputs from other nodes.
K = 1 here means that each node has exactly one input com-
ing from the value of a node at the current time. Using the
implementation in which auxiliary nodes hold the informa-
tion about time-delayed values, each node effectively receives
K + 1 inputs, one being the auxiliary bit.

We emphasize here that the reversibility of the network dy-
namics is a logical property, not a guarantee of time-reversal
symmetry. The directed links in the network generally break
time-reversal symmetry by introducing different mechanisms
for propagating information forwards or backwards across any
given link. For better understanding of the construction of
such components, Fig. 5 shows how a loop is realized in the
quantum circuit formalism.

To avoid confusion, we use the term “loop” for a set of
nodes connected topologically in a circle, “cycle” for the time-
periodic dynamics of a network in state space, and “circuit” to
refer to a quantum network.

C. Analysis of spreading perturbations

In this section we analyze the spatial propagation of small
perturbations within a single network component. Table I
shows the transformation of the Pauli matrices under the

FIG. 5. Logic circuit of a loop, consisting of N nodes. For sim-
plicity, we only display the three first nodes, at time t − 1 and t .
Labels N + 1, N + 2, and N + 3 on the left of the qubit line denote
the control bits at time t , whereas labels 1, 2, and 3 denote the target
bits at time t − 1. The dotted squares denote the position at which the
Hadamard operation will be inserted later on. Each pair of controlled
operations, applied to the same bit, represents a truth function F .
Each truth function F (i) uses bit i − 1 as an input and bit N + i
as a target. For a loop the last control bit N will work on the first
target bit 1.

Hadamard operation. Because our logic operations F (i) in-
volve only σx and I , and because the perturbations considered
are simple bit flips induced by σx, the ri, j,... operation re-
lating the perturbed and original trajectories contains only
σx and σz terms. Figure 6 shows the classical and quantum
mechanical spatial perturbation pattern for a chain (left col-
umn) and a loop (right column). Colored squares indicate
differences between two trajectories that initially differ by a
single bit flip. Blue and orange indicate σx and σz factors in
ri, j,....

Coppersmith et al. [17] already studied the pattern gen-
erated by small perturbations in the classical networks. As
displayed in Figs. 6(a) and 6(d), the pattern of the classical
Hamming distance shows 90◦-rotated Sierpinski gaskets [25],
which are generated by rule 90 of the automata scheme intro-
duced in [26]. Using our notation, the Boolean version of rule
90 can be written as

s(i+1)
t = s(i)

t+1s(i)
t−1. (11)

For our observed pattern, the time and space axes are ex-
changed with respect to the typical depiction of the rule
90 pattern. To show that this pattern results from Eq. (1),
Coppersmith et al. consider two trajectories, st and s′

t , on a
chain or loop, where the trajectories begin from initial config-
urations that differ in one bit: s(1)

0 s′(1)
0 = −1. Next, they define

the product of the two solutions as rt , with r (i)
t = s(i)

t s′(i)
t .

Rewriting Eq. (1) for the case of a chain or loop we obtain

s(i)
t+1 = s(i)

t−1F (i)
(
s(i−1)

t

)
, (12)

TABLE I. Mapping rules of the Hadamard gate (H ) for Pauli
matrices σi.

σi σx σy σz

HσiH † σz −σy σx
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FIG. 6. Spatial perturbation patterns and Hamming distance of a (a–c) 12-qubit chain and (d–f) loop plotted over time. The operators σx

and σy are marked in blue and orange, respectively. The panels labeled “Classical,” (a) and (d), show the spatial evolution in the classical
network. A colored square corresponds to a Pauli operator applied to the related qubit. The panels labeled “Quantum,” (b) and (e), correspond
to the quantum version. For the quantum systems one Hadamard operation has been applied to each of the target qubits before applying the
logic function (compare Fig. 1). Panels (c) and (f) display the total Hamming distance of both systems (red, classical; green, quantum), which
can be obtained by summing over all squares in one time step. The Hamming distance is always measured after the application of the final
SWAP operations.

where F (i)(s(i−1)
t ) = ±s(i−1)

t . The evolution of perturbations
r ( j)

t can then be expressed as

r ( j)
t+1 = r ( j)

t−1r ( j−1)
t , (13)

which mirrors Eq. (11). Note that the evolution of the pertur-
bation is independent of the initial values of the bits and also
independent of the functions F (i).

The evolution of a perturbation in the quantum network
can be written as follows using the notation defined above.
We denote ρi, j,... in Eq. (10) by {ρ (i)

1 ⊗ ρ
( j)
1 ⊗ · · · }, or, after

multiple time steps,

ρi, j,...,t = ρ
(i)
t ⊗ ρ

( j)
t ⊗ · · · . (14)

Let C and C̃ represent the controlled-NOT gates activated by
the control qubit being in state |1〉 or |0〉, respectively. The
propagator U consists of a sequence of operations uk that may
include I or H acting on single qubits, C or C̃ acting on pairs
of qubits, and finally a set of W (SWAP) operations. Consider
the action of one of these operations on each of the trajectories
we are comparing. A given I , H , or W operation clearly has
no effect on ρi, j,...,t , as it produces the same effect on both
trajectories. One can also confirm by direct enumeration that
the effects of C and C̃ on ρi, j,...,t are the same up to an overall
sign that is physically irrelevant; i.e.,

C · [ρ (i) ⊗ ρ ( j)] · C† = ±C̃ · [ρ (i) ⊗ ρ ( j)] · C̃† (15)

for any ρ (i) and ρ ( j) in the set {I, σx, σy, σz}. Thus, as long
as the W operations are all performed after all of the others,
we see that ρi, j,...,t for our K = 1 networks does not depend
on the logic functions associated with the directed links in
the network graph. (Note that this is qualitatively similar to
that of dissipative K = 1 loops, where a single bit flip creates
a difference between two trajectories that simply propagates
around the loop one step at a time, and the difference between
the two is independent of whether a link performs a COPY or a
NOT operation.)

We now investigate the changes induced when quantum
operations are added, considering perturbations applied to
an initial state ψt=0 [compare Eq. (1)]. From the 2N qubits
needed to calculate the evolution of the network, Figs. 6(b)
and 6(e) display qubits 1, . . . , N for every time step after
the application of the swap operations. In the quantum case,
Hadamard operations are applied to each target qubit before
applying the logic function. Both types of component, the
chain and the loop, exhibit remarkable spatial propagation
patterns that are substantially less complex than their classical
counterparts. In the following we will discuss the quantum
patterns in more detail. They are obtained by calculating
Eq. (13) for each operation within the network.

For present purposes, we limit our investigation to net-
works in which the Hadamard operator H is applied at every
target qubit once per time step. This subset contains networks
that show markedly different properties than the networks
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TABLE II. Mapping rules under the action of a controlled-X gate
for tensored Pauli operators representing differences between two
trajectories. Each process can be reversed by another application of
the controlled-X gate. Row labels represent control qubits; column
labels refer to the target qubit. Table entries are given in the form
“control ⊗ target.” X , Y , and Z represent σx , σy, and σz.

Target
Control I X Y Z

I I � I I � X Z � Y Z � Z
X X � X X � I Y � Z −Y � Y
Y Y � X Y � I −X � Z X � Y
Z Z � I Z � X I � Y I � Z

realizable by classical operations alone. We refer to the net-
works with Hadamard operators as “quantum networks” and
to those with no Hadamard operators as “classical networks.”
Exploration of the behavior of mixed cases in which H is
applied only to a subset of the qubits is beyond the scope of
the present paper.

We begin by studying the evolution of a perturbation on a
simple loop. Surprisingly, it spreads in only one direction, as
shown in Fig. 6(e). The following pattern emerges:

σ (1)
x

H−→ σ (1)
z

F−→ σ (1)
z ⊗ σ (2N )

z
W−→ σ (N )

z ⊗ σ (N+1)
z (16)

H−→ σ (N )
x ⊗ σ (N+1)

z
F,W−−→ σ (1)

z ⊗ σ (2N )
x (17)

H−→ σ (1)
x ⊗ σ (2N )

x
F−→ σ (2N )

x
W−→ σ (N )

x (18)

H−→ σ (N )
z

F−→ σ (N )
z ⊗ σ (2N−1)

z

W−→ σ (N−1)
z ⊗ σ (2N )

z (19)

H−→ σ (N−1)
x ⊗ σ (2N )

z
F,W−−→ σ (N )

z ⊗ σ (2N−1)
x (20)

H−→ σ (N )
x ⊗ σ (2N−1)

x
F−→ σ (2N−1)

x
W−→ σ (N−1)

x . (21)

Each σi denotes a Pauli matrix, representing a term in
the tensor product ρi, j,... that relates the trajectory states ψt

and ψ ′
t . All terms that are not explicitly listed are identity

elements. The operations applied to the qubits are denoted by
letters on top of the arrows. The presence of two letters on the
same arrow indicates that the first operation does not change
the state. Superscripts 1, . . . , N denote the target qubit, and
N + 1, . . . , 2N denote the control qubits. The Pauli opera-
tors transform under the application of a single-input gate
as indicated in Table II. Note that Z elements are produced
by Hadamard operations on single qubits and that Y ele-
ments are produced when the control bits differ by X and the
targets by Z .

Each line in Eqs. (16)–(21) corresponds to a single time
step, which is concluded by the W (SWAP) operation. For
illustration we discuss in detail the first time step. The Pauli-X
operator σ (1)

x , describing the difference between the first two
target qubits, i.e., at times t = 0 and t = 1, transforms upon
the application of a Hadamard operation into a σz operator
which stays in the same position σ (1)

z . Next, we apply a
nontrivial truth function F which is input dependent. Both

possible nontrivial truth functions C and C̃ yield the same
outcome, so F need not be further specified. We can use
Table II to show that, since σz is a perturbation on a target
qubit, the application of a truth function generates yet another
σz operator on the 2N th qubit (σ (2N )

z ), which is a control qubit.
Finally, all target and control qubits are swapped (W ). Consid-
ering Fig. 6(e), we observe that one period of the 12-node loop
takes 36 time steps.

We find that, contrary to the classical networks where
the perturbations spread over the whole network component,
the quantum system exhibits a localized perturbation which
moves through the system affecting only one qubit at a
time. We will refer to the configuration of Pauli operators
that propagates in this way as a solitary state. Equations
(16)–(21) show how the solitary state moves through
the system. The general, three-time-step form can be
expressed as σ (i)

x → σ (i−1)
z ⊗ σ (N+i)

z → σ (i)
z ⊗ σ (N+i−1)

x →
σ (i−1)

x , where each arrow represents a full time step.
This propagation of a highly localized perturbation in the

reversible quantum loop is reminiscent of the situation in clas-
sical dissipative K = 1 networks, where the only structures
supporting nontrivial dynamics are loops of COPY and INVERT

gates. In the reversible classical loops, a perturbation simply
propagates to the next node in the loop on every time step,
as the value of a given node is completely determined by the
value of its input node on the previous time step. The mech-
anism sustaining a solitary state in the reversible quantum
network, however, relies on quantum coherences between the
primary and auxiliary qubits.

Next, we investigate the chain, displayed in Figs. 6(a)–6(c).
Here a solitary state first propagates in the opposite direction
and with a different velocity than the one observed on the
loop. Instead of requiring three time steps, the new pattern
moves to the next qubit in just one time step. Equations
(22)–(27) display the detailed propagation pattern of a chain
with an initial perturbation applied at node 1. Each time step
is concluded by the application of a SWAP operation and
is indicated with an equation label. In total we display six
time steps:

σ (1)
x

H−→ σ (1)
z

F−→ σ (1)
z

W−→ σ (N+1)
z (22)

H−→ σ (N+1)
z

F−→ σ (N+1)
z

W−→ σ (1)
z (23)

H−→ σ (1)
x

F−→ σ (1)
x

W−→ σ (N+1)
x (24)

H−→ σ (N+1)
x

F−→ σ (2)
x ⊗ σ (N+1)

x

W−→ σ (1)
x ⊗ σ (N+2)

x (25)

H−→ σ (1)
z ⊗ σ (N+2)

x
F−→ σ (1)

z ⊗ σ (3)
x ⊗ σ (N+2)

x

W−→ σ (2)
x ⊗ σ (N+1)

z ⊗ σ (N+3)
x (26)

H−→ σ (2)
z ⊗ σ (N+1)

z ⊗ σ (N+3)
x

F−→ σ (2)
z ⊗ σ (4)

x ⊗ σ (N+3)
x

W−→ σ (3)
x ⊗ σ (N+2)

z ⊗ σ (N+4)
x . (27)
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FIG. 7. Time evolution of small perturbation for different initial conditions within the structure shown as inset on the top left. The left
column displays the quantum system with Hadamard operations applied to all qubits, whereas the right column shows the classical system. For
each row the initial perturbation was introduced into a different qubit. In the first row qubit 1 is initially perturbed, in the second row qubit 3,
and in the third row qubit 5 is initially perturbed. The Hamming distance is always measured after the application of the final SWAP operations.

A different solitary state emerges because the first qubit does
not have an input. It takes the system five time steps to reach
the solitary state, which propagates opposite to the direction
of the solitary state produced on the loop. A full propagation
step of this state is given in Eq. (27). We see that the Pauli-X
operator propagates one bit with every time step. In general
this solitary state can be written as σ (i)

x ⊗ σ (N+i−1)
z ⊗ σ (N+i+1)

x
for i > 1 and with every time step i is increased by one.

When this solitary state reaches the end of the chain, it
takes the system a few time steps to reach the same solitary
state as was seen on the loop, described by Eqs. (18)–(21).
The perturbation then reflects again off of the end of the
chain, forming a periodic cycle. In total, one period takes ap-
proximately 4N time steps (neglecting the transition process
between two solitary states).

We note that the Hamming distance for both the chain in
Fig. 6(c) and the loop in Fig. 6(f) never exceeds unity in the
quantum case, whereas in the classical case the Hamming
distance oscillates between zero and five for the N = 12 case.
In general, the maximum Hamming distance is a complicated
function of N . For N = 2n−1, however, we have observed that
it is simply the nth Fibonacci number.

Next, we briefly discuss the perturbation pattern of a
slightly more complex network component. We consider the
five-node chain attached to a one-node loop, displayed in
Fig. 7. Two findings should be pointed out in particular. First,
if the network component deviates from a plain loop or chain,
the perturbation pattern becomes increasingly complex and
can strongly differ from the ones shown for loops and chains.
We come back to that point in Sec. IV. Second, the nature of
the perturbation changes qualitatively as σy elements appear
in ρi, j,.... If a controlled σx gate is applied to the combination
of σx (control) and σz (target) perturbation, the result is σy

matrices on both the control and target qubit (Table II). In the

following we display the equations describing the time steps
of the propagation of a perturbation on this network, showing
how a Pauli-Y matrix can arise. We consider the case where
the perturbation is introduced on the third target qubit (Fig. 7,
middle row):

σ (3)
x

H−→ σ (3)
z

F−→ σ (3)
z ⊗ σ (N+2)

z
W−→ σ (2)

z ⊗ σ (N+3)
z (28)

H−→ σ (2)
x ⊗ σ (N+3)

z
F,W−−→ σ (3)

z ⊗ σ (N+2)
x (29)

H−→ σ (3)
x

F−→ σ (N+2)
x

W−→ σ (2)
x (30)

H−→ σ (2)
z

F−→ σ (2)
z ⊗ σ (N+1)

z
W−→ σ (1)

z ⊗ σ (N+2)
z (31)

H−→ σ (1)
x ⊗ σ (N+2)

z
F,W−−→ σ (2)

z ⊗ σ (N+1)
x (32)

H−→ σ (2)
x ⊗ σ (N+1)

x
F−→ σ (1)

x ⊗ σ (N+1)
x

W−→ σ (1)
x ⊗ σ (N+1)

x (33)

H−→ σ (1)
z ⊗ σ (N+1)

x
F−→ σ (1)

y ⊗ σ (2)
x ⊗ σ (N+1)

y

W−→ σ (1)
y ⊗ σ (N+1)

y ⊗ σ (N+2)
x . (34)

Recall that all figures of perturbation patterns show only
the target qubits. Control qubits are not shown, but they are
needed to determine the network evolution. For all cases
shown, our initial perturbation is a single σx, with no further
perturbation on either target or control bits. Adding “invisible”
perturbations on the control bits can change the behavior
significantly. For example, considering a simple loop and
initializing it with σ (2)

x ⊗ σ (2N )
z ⊗ σ (N+2)

x perturbation instead
of simply σ (1)

x would result in the solitary state described in
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Eqs. (26) and (27), even though the initial perturbation would
look the same in our plots.

Considering the fact that in the classical system only σx

matrices are allowed as perturbations, there is only a single
mechanism allowing perturbations to spread. If a σx operator
is applied to a control qubit, the controlled σx gate will create
an additional σx operator on the target qubit as shown in
Table II. This leads to the conclusion that for classical struc-
tures there is only one direction in which perturbations can
spread. This direction is denoted in the network component
scheme in the inset of Fig. 7 by black arrows. Only nodes
that receive their input directly or indirectly from the initially
perturbed node can exhibit perturbations.

The introduction of the Hadamard operation into our sys-
tem allows for the perturbations to spread in both directions,
allowing for a higher Hamming distance to arise in the
quantum system. An example is shown in Fig. 7. Each row
shows the perturbation pattern for a different initial pertur-
bation. As we can see, the classical network only allows the
perturbations to spread alongside the arrows indicating the
wiring direction (Fig. 7, top left). The perturbation in the
quantum case is confined to the same portion of the network.

While the presence of a branch point in the network
gives rise to complicated perturbation patterns in the quantum
networks, the implementation of the logic in our 2N qubit
systems consists only of linear operations. This means, for
example, that a collision between solitary states traveling
in opposite directions cannot produce complicated patterns;
the two solitary states simply pass through each other. The
complexity generated by a branch point is a combinatorial
effect associated with the timings of solitary states reflecting
off of branch endpoints or traversing a loop to return to the
branch point.

IV. MAGNITUDE OF CLASSICAL AND QUANTUM
HAMMING DISTANCE

In this section, we consider the total Hamming distance
and its dependence on network size. Again, only K = 1
(in-degree 1) networks are considered. We construct ensem-
bles of networks where the input to each node is randomly
selected from the full set of nodes. These ensembles thus con-
tain networks consisting of several independent components,
and the statistics of perturbation growth are heavily influenced
by the statistics of sizes of individual components.

Figure 8 displays the Hamming distance averaged over
1000 random realizations for each network size. It can be seen
that the magnitude of the quantum Hamming distance exceeds
the classical one but exhibits a similar monotonic increase. As
pointed out in previous research [17], the total Hamming dis-
tance is dependent on the network components of the system.
Because initial perturbation [Eq. (10)] is applied to a single
qubit, the Hamming distance evolution is determined by the
dynamics within that component alone.

Although the quantum Hamming distances of sim-
ple chains and loops do not exceed the classical ones,
the average quantum Hamming distance is larger because
most components contain branch points. It is very rare for a
large component to be a simple loop or chain. As we have
seen, components with branch points give rise to complicated

FIG. 8. Averaged Hamming distance versus network size. For
each network size an average over 1000 realizations over a period
of 200 time steps is calculated. The initial perturbation locations are
chosen randomly. For the quantum systems one Hadamard operation
is applied on each target qubit before applying the logic function
[compare Fig. 1(d)].

perturbation patterns with significantly higher Hamming dis-
tances than those reached in the classical networks.

V. CONCLUSION

We have presented an approach to constructing quantum
circuits that are natural generalizations of reversible ran-
dom Boolean networks. Our formalism has allowed us to
supplement the classical Boolean logic operations with quan-
tum operations. The complexity of the quantum networks
depends strongly on their connectivity. While generic systems
show quasiperiodic dynamics, a certain nontrivial class of net-
works of single-input gates shows strictly periodic dynamics.
For the special class showing periodic dynamics, we have
extended the notion of the Hamming distance between trajec-
tories as a measure to investigate quantitatively the difference
patterns generated by small perturbations applied to a network
state. For networks where each node has a single input (K =
1), these patterns can differ dramatically from their classical
counterparts.

We have found that the propagation of perturbations is
essentially different in quantum networks. In contrast to clas-
sical networks where the perturbations always spread, in the
quantum case we find localized solitary perturbations moving
through the network step by step. In particular, for simple
chains and loops, the perturbation propagates as a localized
solitary disturbance at constant velocity.

An open challenge is to develop measures to analyze and
interpret the perturbation dynamics generated in quantum net-
works with multi-input logic gates.
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