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Associative memory model with arbitrary Hebbian length
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Conversion of temporal to spatial correlations in the cortex is one of the most intriguing functions in the brain.
The learning at synapses triggering the correlation conversion can take place in a wide integration window, whose
influence on the correlation conversion remains elusive. Here we propose a generalized associative memory
model of pattern sequences, in which pattern separations within an arbitrary Hebbian length are learned. The
model can be analytically solved, and predicts that a small Hebbian length can already significantly enhance the
correlation conversion, i.e., the stimulus-induced attractor can be highly correlated with a significant number of
patterns in the stored sequence, thereby facilitating state transitions in the neural representation space. Moreover,
an anti-Hebbian component is able to reshape the energy landscape of memories, akin to the memory regulation
function during sleep. Our work thus establishes the fundamental connection between associative memory,
Hebbian length, and correlation conversion in the brain.
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I. INTRODUCTION

Associative learning and memory is one fundamental brain
function across many species including rodents and primates
[1,2]. The standard Hopfield network, based on Hebbian
learning rules, establishes a seminal model to explore rich
properties of associative memory in both artificial and bi-
ological neural networks [3,4]. As a classic example, the
monkey’s temporal cortex was observed to be able to convert
the temporal correlation of stimuli into the spatial correlation
in neural activity [5,6], which can be modeled by considering
Hebbian interactions among neighboring random independent
patterns [7]. For an external stimulus being part of a tem-
porally ordered sequence, the elicited neural activity has a
correlation with neighboring patterns of the sequence which
decays until vanishing at a finite separation of the patterns.
This correlated attractor phase is in contrast to the Hopfield
model where all attractors corresponding to the stored patterns
are all uncorrelated fixed points in the network dynamics.

*These authors contributed equally to this paper.
†huanghp7@mail.sysu.edu.cn

A recent study argued that the combination of Hebbian
and anti-Hebbian learning can significantly increase the span
of the temporal association [8]. However, the synaptic in-
tegration is still limited to neighboring patterns, like other
previous works. Wide learning windows of various widths
are ubiquitous in biological synaptic plasticity and contribute
to sequence learning [9–11]. In particular, the shape of
learning windows (e.g., the temporal interval of a spike-time-
dependent plasticity at which the presynaptic and postsynaptic
activity induce plasticity) is subject to neuromodulation and
affects further sequence learning [11,12]. Whether this mi-
croscopic temporal correlation in synaptic learning affects
the global behavior of correlated attractors remains therefore
elusive. Hence, a full understanding of how the temporal
correlation among stimuli evokes the spatially correlated neu-
ral activity particularly in a generalized associative memory
model is important and yet still lacking.

Here we propose a theoretical model of associative mem-
ory with arbitrary Hebbian length, corresponding to wide
learning windows. This model can be analytically solved,
providing us exact mechanisms underlying the correlated
attractor phase. In particular, we find that even with only
Hebbian learning, the wide learning window can give rise to
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a large correlation span, which suggests a distinct synaptic
mechanism from that argued in the recent work [8]. Most
importantly, our model reveals that an anti-Hebbian learn-
ing for the nonconcurrent patterns could reshape the energy
landscape, removing irrelevant attractors, which may connect
to the hypothesis of unlearning effects in rapid-eye-movement
sleep (e.g., getting rid of unimportant memories) [13–16].

II. MODEL

In this study, we construct an associative memory model by
the Hebbian learning [17], which shapes the coupling strength
between two neurons. We assume that all N neurons are fully
connected without self-interactions, which constructs an asso-
ciative memory of P random patterns (ξ). These patterns form
a cyclic sequence, corresponding to a repeated presentation of
an ordered sequence of independent items in monkey experi-
ments [5,6]. Therefore, the coupling matrix of the associative
memory model can be specified as

Ji j = 1

N

P∑
μ=1

[
cξμ

i ξ
μ
j + γ

d∑
r=1

(
ξ

μ+r
i ξ

μ
j + ξ

μ
i ξ

μ+r
j

)]
, (1)

where c specifies the standard Hebbian strength (concurrent
Hebbian terms), γ specifies the coupling strength between r-
separated patterns (nonconcurrent Hebbian terms), and d is
thus the Hebbian length of our model. The case of d = 1 has
been studied by previous works [7,8,18], while d = 0 recovers
the standard Hopfield model [3,4,19]. Setting an arbitrary d
corresponds to potential wide learning windows observed in
neural circuits [9–11,20–22]. For simplicity, P(ξμ

i = ±1) =
1/2 for each pair (i, μ).

The coupling is symmetric, and thus an equilibrium state s
exists, captured by the Boltzmann distribution

P(s) = 1

Z
e−βH(s), (2)

where H(s) = − 1
2

∑
i �= j Ji jsis j being the Hamiltonian, β is an

inverse temperature, and Z is the pattern-dependent partition
function. Note that we can rearrange the coupling matrix as
J = 1

N ξTXξ, where the circulant matrix Xμν is introduced as
follows [23]:

Xμν = cδμν + γ

d∑
r=1

(δμ,(ν−r) mod P + δμ,(ν+r) mod P ). (3)

Then the Hamiltonian can be expressed as H(s) =
−N

2 mTXm, where m denotes the pattern-state overlap vector
whose component mμ = 1

N

∑
i ξ

μ
i si.

Like in the standard Hopfield model [3,4], the binary state
of each neuron is determined by its local field hi, which can
be written as hi = ∑

j Ji js j . By inserting the coupling matrix,
we get a new expression:

hi =
∑

μ

ξ
μ
i

(
cmμ + γ

d∑
r=1

(mμ−r + mμ+r )

)
. (4)

Due to the statistical independence of the patterns, the over-
lap has a mean-field expression in the limit P/N → 0 (finite

FIG. 1. The correlation span where the overlap peaking at the
stimulus pattern decays to zero does not depend on the number of
stored patterns. c = 1, and γ = 1. The pattern indexes 56, 66, and 76
are the stimulus pattern indexes corresponding to the cases of P =
111, 131, and 151, respectively.

loading limit; see Appendix E),

mμ =
〈
ξμ sgn

[∑
ν

ξ ν

(
cmν + γ

d∑
r=1

(mν−r + mν+r )

)]〉
,

(5)
where 〈·〉 denotes the disorder average over the pattern, and
the zero-temperature limit (β → ∞) is considered. In this
limit, the dynamics is noiseless, and for d = 1 the overlap
with the pattern used as a stimulus displays a largest value
and was found to decay symmetrically until vanishing at a
pattern-separation distance of five [7], which is independent of
the number of patterns P (Fig. 1). This shows that, although
the patterns are uncorrelated, the retrieved attractor starting
from the stimulus has macroscopically significant overlaps
with neighboring patterns within a finite distance. We call this
kind of attractor a correlated attractor.

In the same spirit, the correlation of activities in two attrac-
tors can be computed as

C(μ,μ′) = 〈sgn(hμ) sgn(hμ′
)〉, (6)

where hμ = ∑
ν ξ ν (cmμ

ν + γ
∑d

r=1(mμ
ν−r + mμ

ν+r )) (see Ap-
pendix E), and mμ

ν defines the overlap of the attractor
corresponding to the stimulus μ with the pattern number ν.
The behavior of C(μ,μ′) shows the emergence of correlated
attractors from a network storing uncorrelated patterns. This
attractor correlation decays with the separation of the patterns
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in the sequence from the stimulus pattern, where we can
determine the critical distance (correlation length denoted as
�c) beyond which the correlation value falls below 10−2. This
captures the basic coding strategy in the temporal cortex of
the monkey, which is able to convert the temporal correlation
among visual stimuli into a spatial correlation in the sustained
neural activities evoked by the stimuli [5–7]. It is thus in-
teresting to explore analytically how the Hebbian length (or
other model parameters) affects properties of the correlated
attractor.

III. A STATISTICAL MECHANICS ANALYSIS

Now we calculate the free energy of the model for the
extensive-load case α = P/N ∼ O(1). To derive a typical be-
havior of the model, we need to perform a disorder average
of ln Z , which can be tackled by the replica method: −β f =
limn→0,N→∞ ln〈Zn〉

nN (e.g., see [24,25]). In essence, n copies
of the original system are introduced. The analysis of the n
replicas leads to the order parameters ma

μ = 1
N

∑μ
i ξ

μ
i sa

i and
the state overlap qab = 1

N

∑
i sa

i sb
i . For simplicity, we take the

replica symmetric assumption [18], where the order param-
eters ({ma

μ, qab}) and their conjugate counterparts ({m̂a
μ, q̂ab})

do not depend on the replica index (a or b). The final analytic
form of the free energy reads as

−β f = β2q̂

2
(q − 1) − β

2
mTKm

− α

2

∫ 1

0
du ln [1 − β(1 − q)	(u)]

+ αβq

2

∫ 1

0
du

	(u)

1 − β(1 − q)	(u)

+
〈∫

Dz ln
[
2 cosh

(
β
√

q̂z + βξT
F Km

)]〉
, (7)

where the angular bracket denotes the disorder average over
the condensed patterns ξF , 	(u) = c + 2γ

∑d
r=1 cos(2πru)

is the eigenvalue of the matrix X in the large P limit, K is
an S × S matrix given by F1 + C−11, where 1 is an iden-
tity matrix, and (F−1

1 )i j = w j−i being a Toeplitz matrix [23],
whose components (wk) depend on both C and 	. Hereafter,
S denotes the number of condensed patterns (i.e., mμ does not
vanish as N → ∞), and S can be larger than one due to the
emergence of the correlated-attractor phase.

The calculation details are given in Appendixes A–C. In
accord with the aforementioned noiseless dynamics, we are
interested in the zero-temperature phase diagram. The finite-
temperature analysis is straightforward (see Appendix B). In
the zero-temperature limit, we denote C ≡ β(1 − q) as a finite
order parameter, because q → 1 in this limit.

The thermodynamic limit makes a saddle-point analysis
of the free energy reasonable, which leads to the following
saddle-point equations:

mμ =
〈
ξμ erf

(∑S
ν=1 m̂νξ

ν

√
2q̂

)〉
, (8a)

m̂μ = [Km]μ, (8b)

C =
√

2

π q̂

〈
exp

[
−
(∑S

ν=1 m̂νξ
ν
)2

2q̂

]〉
, (8c)

q̂ = α

∫ 1

0
du

	(u)2

[1 − C	(u)]2
+ mT ∂K

∂C
m. (8d)

The technical details for deriving these saddle-point equa-
tions are given in Appendix D. For the standard Hopfield
model, X = 1, 	(u) = 1, and thus Eq. (8) reduces to the
mean-field equation derived in the seminal work [19]. In our
current setting, the Hebbian length affects both q̂ and K in
a highly nontrivial way. We thus expect the corresponding
influence on the global behavior of the correlation conversion.

IV. RESULTS

We first study the mean-field dynamics [Eqs. (5) and (6)]
of the overlap function at finite values of P, focusing on
impacts of different model parameters. As shown in Fig. 2,
increasing the Hebbian length lowers the peak value of the
overlap with the stimulus pattern, and meanwhile, the overlap
with neighboring patterns grows, thereby making the overlap
profile broader. Surprisingly, by increasing the Hebbian length
up to only d = 2, the correlation span is increased by quite
a large margin (from �c = 5 when d = 1 to �c = 15 when
d = 2). Compared to fine tuning the (negative) strength of
the concurrent Hebbian terms [8], increasing the Hebbian
length is simple and moreover biologically intuitive, as the
Hebbian length corresponds to the size of the learning inte-
gration window, widely observed in neural circuits [9–11,20–
22]. In particular, a large value of d allows for associations
of patterns (stimuli) distant with each other in the sequence
[Figs. 2(a) and 2(b)]. Furthermore, it requires only d = 15
for the correlation to expand to all patterns in the sequence,
for P = 151 in Fig. 2(a). In other words, a small value of d
can significantly amplify the correlation span [Fig. 2(c)]. The
corresponding influence of d is tuned by the Hebbian strength
γ , and a large value of γ has less impact on the tuning.

Therefore, our model with arbitrary Hebbian length pro-
vides a simple alternative way to control the correlation span
of the stimulus-induced attractor, which is related to the con-
version of the temporal correlations in the stored sequence
into the spatial correlations of the neural activities. The cor-
related attractor phase is able to accelerate the transition
between two highly correlated attractors (e.g., memories),
since both attractors share a large number of common active
neurons in their neural representations.

Next, we explore the effect of the nonconcurrent anti-
Hebbian terms. These terms are characterized by negative
values of γ , which competes with the concurrent Hebbian
terms (c > 0). In addition, the anti-Hebbian terms correspond
to the unlearning process introduced to verify the hypothesis
of memory consolidation or erasure in sleep [13–15]. Here
we find that the nonconcurrent anti-Hebbian terms remove
some specified attractors, which appears in the original energy
landscape of the model without anti-Hebbian effects. In con-
trast, the corresponding sign-reversed attractors are preferred,
indicated by the negative overlaps in Fig. 2(d). This interest-
ing observation could be explained by the energy landscape
in terms of overlap functions. We recast the Hamiltonian as
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FIG. 2. Transforming temporal to spatial correlations with arbitrary Hebbian length. (a) Overlap profile with varying Hebbian length d .
Other model parameters are P = 151, c = 1.0, and γ = 1.0. (b) Correlation between attractors vs their distance. The distance is defined as the
separation from the corresponding stimulating patterns in the cyclic sequence. Other settings are the same as in (a). (c) Correlation length vs
Hebbian length d . Other parameters are P = 151 and c = 1.0. The correlation length �c = min{�|C(� = |μ − μ′|) < 10−2} − 1. Fluctuations
are the standard errors calculated from 30 trials. (d) Negative γ leads to the oscillatory behavior of the overlap profile. Other parameters are
P = 51, and c = 1.0.

H(m) = −Nc
2

∑
μ(mμ)2 − Nγ

∑
μ

∑d
r=1 mμmμ+r , where the

first Hebbian term is always negative (c > 0), while the sec-
ond term (γ < 0) requires that some specific overlap with a
particular pattern index must take a negative value for a lower
energy. A mathematical origin is that the gauge invariance
in the coupling Eq. (1) is broken when d > 1, which is also
reflected in the spectral density of the model [26]. In other
words, the unlearning terms are able to reshape the energy
landscape, by consolidating some memories while erasing
other memories, akin to the function of both types of sleep: the
rapid-eye-movement (REM) sleep is hypothesized to remove
unnecessary memories while the slow-wave sleep contributes
to the consolidation of important memories [15,27]. However,
we remark that this connection must be further explored, e.g.,
in a recurrent circuit model with biological plasticity.

Interestingly, the overlap profile of c = −1 and d = 1
in statistical average is the same with that of c = 1 and
d = 2 (Fig. 3), which implies that the effect of Hebbian
length d = 2 on the correlated attractor is equivalent to the
effect of anticoncurrent-Hebbian terms, provided that the
energy [H(m) = −N (c+2γ d )

2

∑
μ(mμ)2 + Nγ

2

∑
μ

∑d
r=1(mμ −

mμ+r )2] achieves a minimum in the correlated attractor
phase. We thus argue that increasing the Hebbian length is

an alternative way to expand the correlation span of each
stimulus-induced attractor, for which an anti-Hebbian term
[8] could be not necessary. It would be thus interesting to see
if this prediction, despite being derived from the simplified

FIG. 3. Comparison of overlap profile of negative c and large
d . The curves are the averages over 30 independent trials, and 107

Monte Carlo samples are used for running the mean-field dynamics.
The shadowed region indicates the standard deviation.
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FIG. 4. Phase diagram of the associative memory model in the (α, γ ) plane given c = 1. (a) The phase boundary shown by the lines
delimits the retrieval (R) phase from the region where the correlated-attractor (CA) and spin-glass (SG) phases compete with each other (above
the boundary). The boundary is the condition on which the retrieval phase loses its metastability from below. All shown transitions are of
the discontinuous type. When α = 0, the transition point is given by γc = 0.5 for d = 1, while γc = 0.25 for d = 2. The inset shows the
boundary line above which the spin-glass phase is dominant. Note that for d = 1 there exists a very narrow regime (indicated by the shadow)
within which the correlated-attractor phase is dominant (domCA). (b) Overlap profiles obtained from the statistical mechanics theory. All
overlap profiles are defined as in Fig. 2, and obtained by solving the saddle-point equation of the model when α = 0 and d = 2 (or d = 1).
All theoretical results are obtained by assuming that S = 11, except that for negative values of γ , we use S = 15. Note that the results are not
sensitive to the value of S (e.g., S = 11 or S = 13).

model, could be observed in biological circuits (e.g., in the
hippocampus or temporal cortex).

Finally, we look at the phase diagram. We consider only
d = 1 and d = 2. Other values of d could be analogously
studied with our theory. As shown in Fig. 4(a), we identify
three phases. One is the retrieval phase where only one overlap
component is of the order one, i.e., mμ = mδμν , where ν indi-
cates the stimulating pattern. Given the value of α, increasing
the value of γ would finally make the retrieval phase lose
its metastability, after which the correlated-attractor phase
becomes metastable. The line separating these two phases is
thus the first-order transition. The correlated-attractor phase is
characterized by the stimulus-induced attractors being highly
correlated with a finite number of patterns in the stored se-
quence. In other words, the value of the corresponding overlap
decays with the distance between the patterns in the sequence
and the one used as the stimulus. The numerical solutions
of the saddle-point equations obtained by the replica theory
[Eq. (8)] reproduce the key features of the mean-field dynam-
ics of the overlap [Fig. 2, and Fig. 4(b)], which corresponds to
α = 0 (finite loading) in our theory. Our theory thus predicts
that the value of d can be used to expand the correlation span
of the correlated attractor.

The Hebbian length could also reshape significantly the
phase diagram. When α = 0, the threshold for the dominant
retrieval phase is γc = 0.5 for d = 1, but γc = 0.25 for d = 2.
In the presence of a finite α, the retrieval phase loses its
metastability at a smaller value of γ for d = 2 than for d = 1
[Fig. 4(a)]. After that, the spin-glass phase characterized by
mμ = 0 (∀μ) appears and competes with the correlated attrac-
tor phase, until the point where the spin-glass phase becomes

dominant (global minimum of the free energy), as shown in
the inset of Fig. 4(a). Remarkably, for d = 1, we identify a
narrow regime for γ > 0.5 [the shadowed areas in Fig. 4(a)],
where the correlated-attractor phase becomes dominant. This
regime shrinks gradually as γ increases. For d > 1, this dom-
inant phase is absent. The spin-glass phase always competes
with the correlated-attractor phase until the spin-glass phase
becomes dominant. One potential cause comes from the sum
of cosine functions in the eigenvalue of the circulant ma-
trix X, which makes q̂ fluctuate between small and large
values.

If noisy neural dynamics is allowed (e.g., at a nonzero
temperature), the spin-glass phase would be replaced by a
paramagnetic phase at a continuous transition (see a detailed
exploration in a companion paper [26]). This transition line is
also strongly affected by the Hebbian length.

In particular, our theoretical analysis also reproduces the
unlearning effects observed in the mean-field dynamics. Fur-
thermore, a critical strength of γc = −0.25 for the oscillatory
phase is predicted for d = 2, and γc = −0.5 for d = 1. When
γ < γc, the unlearning effect of nonconcurrent anti-Hebbian
terms takes place, preferring some particular patterns rather
than their sign-reversed counterparts. In other words, the (spin
reversal) symmetry in the Hamiltonian is broken, and the
negative γ selects particular patterns, which suggests that
the energy landscape is reshaped, and further the information
storage is reoptimized, e.g., the storage capacity can be sub-
stantially improved by a local iterative unlearning procedure
[28–31]. This intriguing phenomenon thus establishes the
connection between the Hebbian length, anti-Hebbian effect,
and memory function of unlearning.
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V. CONCLUSIONS AND OUTLOOK

In this study, we propose the associative memory model
of arbitrary Hebbian length, which considers both the wide
learning integration window and temporal-to-spatial correla-
tion conversion observed in the brain. Our theory predicts
that a small value of Hebbian length (e.g., d = 2) can signif-
icantly expand the correlation span of the stimulus-induced
attractors. Therefore, it seems unnecessary to fine tune the
concurrent Hebbian strength c. Instead, by increasing d by
only a small margin (e.g., from d = 1 to d = 2) can achieve
the same goal of enhanced spatial correlations in neural attrac-
tors. Moreover, a negative value of γ can trigger an oscillatory
behavior of the overlap profile, removing some irrelevant
pattern attractors in the energy landscape, thereby playing
the role of regulating the stored memories. Last, the Heb-
bian length could change strongly the phase diagram of the
model. Increasing slightly the value of d would significantly
suppress the retrieval phase, and moreover strongly affect
the metastable regime of the correlation conversion. Taken
together, our theory of the generalized associative memory
model provides insights about the interplay between three im-
portant concepts—arbitrary Hebbian length, unlearning, and
correlation conversion in neural networks.

Inspired by the recent work [8], if the pattern entry takes 0
or 1 (like being silent or emitting a spike), the coupling matrix
can be decomposed into excitation and inhibition, Ji j = JE

i j −
J I

i j , where

JE
i j = 1

N

P∑
μ=1

[
cξμ

i ξ
μ
j + γ

d∑
r=1

(
ξ

μ+r
i ξ

μ
j + ξ

μ
i ξ

μ+r
j

)]
, (9a)

J I
i j = c

NP

∑
μ

ξ
μ
i

∑
μ

ξ
μ
j + γ

PN

d∑
r=1

∑
μ

ξ
μ
i

∑
μ

ξ
μ+r
j

+ γ

PN

d∑
r=1

∑
μ

ξ
μ
j

∑
μ

ξ
μ+r
i , (9b)

from which we see clearly that both excitation and inhibi-
tion are modulated by the Hebbian length. It would then be
interesting to explore how the memory attractor states are reg-
ulated by both excitation and inhibition, thereby establishing
the relationship between long Hebbian interaction length and
the timescale of episodic events during memory recall, which
calls for future experimental studies of biological correlates of
our theoretical predictions.

The encoding of pattern sequences in correlated attractors
is reminiscent of encoding a continuous sequence of patterns
in continuous attractor neural networks, which are useful for
processing continuous information [32,33]. Our study may
also help to understand how to link the synaptic plasticity
with long temporal correlation to task-related activity (e.g.,
retrospective and prospective activity, related to a previously
shown stimulus and a stimulus the monkey anticipate to
appear, respectively) observed in pair association task experi-
ments in monkeys [34,35].
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APPENDIX A: COMPUTATION OF THE
DISORDER-AVERAGED FREE ENERGY

In our model, we specify the coupling matrix of neurons as

Ji j = 1

N

P∑
μ=1

[
cξμ

i ξ
μ
j + γ

d∑
r=1

(
ξ

μ
i ξ

μ+r
j + ξ

μ+r
i ξ

μ
j

)]
, (A1)

where ξ
μ
i follows independently a binary distribution, i.e.,

p(ξμ
i = ±1) = 1

2δ(ξμ
i + 1) + 1

2δ(ξμ
i − 1). We are interested

in the limit of large P and N , thereby defining the ratio α = P
N .

α is also called the memory load of the associative memory
model. Therefore, ξ is a P × N pattern matrix. The matrix J
can be recast into the form

J = 1

N
ξTXξ, (A2)

where X is a P × P circulant matrix, a special form of Toeplitz
matrix with elements

Xμη = cδμη + γ

d∑
r=1

(δμ,(η+r) mod P + δμ,(η−r) mod P )

= (c − γ )δμη + γ

d∑
r=−d

δμ,(η+r) mod P. (A3)

The mth eigenvalue of X is given by [23]

λm =
P−1∑
k=0

X1(k+1)e
−2π imk/P

=
P−1∑
k=0

X1(k+1) cos

(
2π

mk

P

)

=
P−1∑
k=0

[
cδ0k + γ

d∑
r=1

(δ0,(k+r) mod P + δ0,(k−r) mod P )

]

× cos

(
2π

mk

P

)

= c + γ

d∑
r=1

[
cos

(
−2π

mr

P

)
+ cos

(
2π

mr

P

)]

= c + 2γ

d∑
r=1

cos
(

2π
mr

P

)
,

(A4)
for m = 0, 1, . . . , P − 1.

The Hamiltonian of the model is defined by

H(s) = −1

2

∑
i �= j

Ji jsis j . (A5)
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The partition function is thus given by

Z = Tr exp

(
β

2N
sTξTXξs

)
, (A6)

where Tr indicates the summation over all discrete states
s ≡ {si = ±1}N

i=1. To compute a disorder averaged free energy
(〈−T ln Z〉) is in general computationally hard. However, the
well-known replica trick developed in spin-glass theory [36]
can be used to get around this difficulty, but assumptions on
the replica matrix are required (detailed below). The replica
method uses the mathematical identity

〈ln Z〉 = lim
n→0

ln 〈Zn〉
n

, (A7)

where 〈 · 〉 denotes the expectation over the distribution of
ξ. To proceed, we have to compute an integer power of the

partition function:

Zn = Tr exp

[
β

2N

n∑
a=1

(sa)TξTXξsa

]
, (A8)

where Tr indicates the summation over all replicated states
{sa}n

a=1.
We consider the situation where there are S condensed

(or foreground) patterns and P − S noncondensed (or back-
ground) patterns, which is intuitive in our current setting.
The choice of S can be justified a posterior, e.g., through
solving the mean-field dynamics or saddle-point equations.
Accordingly, we reorganize the matrix X in a form of block
matrix,

X =
[

XFF XFB

XBF XBB

]
, (A9)

where XFF ∈ RS×S , XT
BF = XFB ∈ RS×(P−S), and XBB ∈

R(P−S)×(P−S).

It then follows that

Zn = Tr exp

(
β

2N

∑
a,i, j,μ∈B,ν∈B

sa
i ξ

μ
i Xμνξ

ν
j sa

j + β

N

∑
a,i, j,μ∈B,ν∈F

sa
i ξ

μ
i Xμνξ

ν
j sa

j + β

2N

∑
a,i, j,μ∈F,ν∈F

sa
i ξ

μ
i Xμνξ

ν
j sa

j

)
. (A10)

We then diagonalize the submatrix XBB as Xμν
BB = ∑

σ λσησ
μησ

ν , where λσ and ησ
μ are denoted as the corresponding eigenvalues

and eigenvectors, respectively. We thus obtain

Zn = Tr exp

[
β

2N

∑
a,σ

λσ

(∑
i,μ∈B

sa
i ξ

μ
i ησ

μ

)2

+ β

N

∑
a,i, j,μ∈B,ν∈F

sa
i ξ

μ
i Xμνξ

ν
j sa

j + β

2N

∑
a,i, j,μ∈F,ν∈F

sa
i ξ

μ
i Xμνξ

ν
j sa

j

]

= Tr
∏
a,σ

∫
Dxa

σ exp

[∑
i,μ∈B

ξ
μ
i√
N

(∑
a,σ

sa
i η

σ
μ

√
βλσ xa

σ + β√
N

∑
a, j,ν∈F

sa
i Xμνξ

ν
j sa

j

)
+ β

2N

∑
a,i, j,μ∈F,ν∈F

sa
i ξ

μ
i Xμνξ

ν
j sa

j

]
, (A11)

where we have used the Hubbard-Stratonovich transformation, i.e., exp( 1
2 b2) = ∫

Dx exp(±bx), where Dx = 1√
2π

exp(− x2

2 )dx.
We then define

�B = exp

[∑
i,μ∈B

ξ
μ
i√
N

(∑
a,σ

sa
i η

σ
μ

√
βλσ xa

σ + β√
N

∑
a, j,ν∈F

sa
i Xμνξ

ν
j sa

j

)]
(A12)

and

�F = exp

[
β

2N

∑
a,i, j,μ∈F,ν∈F

sa
i ξ

μ
i Xμνξ

ν
j sa

j

]
. (A13)

Taking the disorder average over {ξμ
i }, we write the result as

〈Zn〉 =
〈

Tr
∏
a,σ

∫
Dxa

σ�B�F

〉
. (A14)

We first carry out the average over the distribution of background patterns, which yields

〈�B〉 = exp

{
1

2N

∑
i,μ∈B

[∑
a

sa
i

(∑
σ

ησ
μ

√
βλσ xa

σ + β√
N

∑
j,ν∈F

Xμνξ
ν
j sa

j

)]2}
. (A15)
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Introducing the state overlap as one order parameter, qab = 1
N

∑N
i sa

i sb
i for a �= b, and ma

μ = 1
N

∑
i ξ

μ
i sa

i as another order
parameter, we have

〈�B〉 =
∫ ∏

a �=b

dqab dq̂ab

2π/N

∏
a,μ∈F

dma
μ dm̂a

μ

2π/N
exp

[
−1

2
N
∑
a �=b

q̂abqab + 1

2

∑
a �=b

q̂ab

∑
i

sa
i sb

i − N
∑

a,μ∈F

ma
μm̂a

μ +
∑

a,μ∈F

m̂a
μ

∑
i

ξ
μ
i sa

i

]

× exp

[
1

2

∑
μ∈B

∑
a

(∑
σ

ησ
μ

√
βλσ xa

σ + β
√

N
∑
ν∈F

Xμνma
ν

)2]

× exp

[
1

2

∑
μ∈B

∑
a �=b

qab

(∑
σ

ησ
μ

√
βλσ xa

σ + β
√

N
∑
ν∈F

Xμνma
ν

)(∑
σ

ησ
μ

√
βλσ xb

σ + β
√

N
∑
ν∈F

Xμνmb
ν

)]
,

(A16)
where an irrelevant factor 2−n(n−1) is omitted.

Under the replica symmetric ansatz with qab = q and q̂ab = q̂ for a �= b, ma
μ = mμ and m̂a

μ = m̂μ, we arrive at

〈�B〉 =
∫

dq dq̂

(2π/N )n(n−1)

dm dm̂

(2π/N )nS
exp

[
−1

2
Nn(n − 1)q̂q + 1

2
q̂
∑
a �=b

∑
i

sa
i sb

i − Nn
∑
μ∈F

mμm̂μ +
∑

a,μ∈F

m̂μ

∑
i

ξ
μ
i sa

i

]

× exp

[
1

2

∑
μ∈B

∑
a

(∑
σ

ησ
μ

√
βλσ xa

σ + β
√

N
∑
ν∈F

Xμνmν

)2]

× exp

[
q

2

∑
μ∈B

∑
a �=b

(∑
σ

ησ
μ

√
βλσ xa

σ + β
√

N
∑
ν∈F

Xμνmν

)(∑
σ

ησ
μ

√
βλσ xb

σ + β
√

N
∑
ν∈F

Xμνmν

)]

=
∫

dq dq̂

(2π/N )n(n−1)

dm dm̂

(2π/N )nS
exp

[
−1

2
Nn(n − 1)q̂q + 1

2
q̂
∑
a �=b

∑
i

sa
i sb

i − Nn
∑
μ∈F

mμm̂μ +
∑

a,μ∈F

m̂μ

∑
i

ξ
μ
i sa

i

]

× exp

[
1 − q

2

∑
μ∈B

∑
a

(∑
σ

ησ
μ

√
βλσ xa

σ + β
√

N
∑
ν∈F

Xμνmν

)2]
exp

[
q

2

∑
μ∈B

(∑
a,σ

ησ
μ

√
βλσ xa

σ + βn
√

N
∑
ν∈F

Xμνmν

)2]
.

(A17)
We apply the Hubbard-Stratonovich transformation once again, and obtain

〈�B〉 =
∫

dq dq̂

(2π/N )n(n−1)

dm dm̂

(2π/N )nS

∏
μ,a

Dya
μ

∏
μ

Dzμ exp

[
−1

2
Nn(n − 1)q̂q + 1

2
q̂
∑
a �=b

∑
i

sa
i sb

i

− Nn
∑
μ∈F

mμm̂μ +
∑

a,μ∈F

m̂μ

∑
i

ξ
μ
i sa

i

]
exp

[√
1 − q

∑
μ∈B

∑
a

(∑
σ

ησ
μ

√
βλσ xa

σ + β
√

N
∑
ν∈F

Xμνmν

)
ya
μ

]

× exp

[
√

q
∑
μ∈B

(∑
a,σ

ησ
μ

√
βλσ xa

σ + βn
√

N
∑
ν∈F

Xμνmν

)
zμ

]
. (A18)

By collecting all terms containing xa
σ , we have

〈�B〉 =
∫

dq dq̂

(2π/N )n(n−1)

dm dm̂

(2π/N )nS

∏
μ,a

Dya
μ

∏
μ

Dzμ exp

[
−1

2
Nn(n − 1)q̂q + 1

2
q̂
∑
a �=b

∑
i

sa
i sb

i

− Nn
∑
μ∈F

mμm̂μ +
∑

a,μ∈F

m̂μ

∑
i

ξ
μ
i sa

i

]
exp

[∑
a,σ

xa
σ

√
βλσ

∑
μ∈B

ησ
μ

(√
1 − qya

μ + √
qzμ

)]

× exp

[
β
√

N
∑

a,μ∈B

∑
ν∈F

Xμνmν

(√
1 − qya

μ + √
qzμ

)]
. (A19)

According to the definition of the overlap, �F now can be written as

�F = exp

[
βnN

2

∑
μ∈F,ν∈F

mμXμνmν

]
. (A20)
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Collecting all the results derived above, we have

〈Zn〉 = Tr
∫ ∏

a,σ

Dxa
σ

dq dq̂

(2π/N )n(n−1)

dm dm̂

(2π/N )nS

∏
μ,a

Dya
μ

∏
μ

Dzμ exp

[
−1

2
Nn(n − 1)q̂q + 1

2
q̂
∑
a �=b

∑
i

sa
i sb

i − Nn
∑
μ∈F

mμm̂μ

]

×
〈

exp

[∑
a,μ∈F

m̂μ

∑
i

ξ
μ
i sa

i

]〉
exp

[∑
a,σ

xa
σ

√
βλσ

∑
μ∈B

ησ
μ

(√
1 − qya

μ + √
qzμ

)]

× exp

[
β
√

N
∑

a,μ∈B

∑
ν∈F

Xμνmν

(√
1 − qya

μ + √
qzμ

)]
exp

[
βnN

2

∑
μ∈F,ν∈F

mμXμνmν

]
. (A21)

We define the term summing over {sa
i } as

〈�S〉 =
〈

Tr exp

[
1

2
q̂
∑
a �=b

∑
i

sa
i sb

i +
∑

a,μ∈F

m̂μ

∑
i

ξ
μ
i sa

i

]〉

= exp
[
−nN

2
q̂
]

Tr

〈∏
i

exp

[
1

2
q̂

(∑
a

sa
i

)2

+
∑

a,μ∈F

m̂μξ
μ
i sa

i

]〉

= exp
[
−nN

2
q̂
]{〈

Tr exp

[
1

2
q̂

(∑
a

sa

)2

+
∑

a,μ∈F

m̂μξμsa

]〉}N

. (A22)

Applying the Hubbard-Stratonovich transformation, we obtain

〈�S〉 = exp
[
−nN

2
q̂
]{〈∫

Dz
∏

a

Tr exp

[√
q̂saz +

∑
μ∈F

m̂μξμsa

]〉}N

= exp
[
−nN

2
q̂
]{〈∫

Dz
∏

a

2 cosh

[√
q̂z +

∑
μ∈F

m̂μξμ

]〉}N

= exp
[
−nN

2
q̂
]

exp

{
N ln

[〈∫
Dz 2n coshn

(√
q̂z +

∑
μ∈F

m̂μξμ

)〉]}
. (A23)

In the limit n → 0,

〈�S〉 = exp
[
−nN

2
q̂
]

exp

{
nN

〈∫
Dz ln

[
2 cosh

(√
q̂z +

∑
μ∈F

m̂μξμ

)]〉}
. (A24)

Taken together, we have

〈Zn〉 =
∫ ∏

a,σ

Dxa
σ

dq dq̂

(2π/N )n(n−1)

dm dm̂

(2π/N )nS

∏
μ,a

Dya
μ

∏
μ

Dzμ

× exp

[
−1

2
Nn(n − 1)q̂q − nN

2
q̂ − Nn

∑
μ∈F

mμm̂μ + βnN

2

∑
μ∈F,ν∈F

mμXμνmν

]

× exp

[∑
a,σ

xa
σ

√
βλσ

∑
μ∈B

ησ
μ

(√
1 − qya

μ + √
qzμ

)]

× exp

[
β
√

N
∑

a,μ∈B

∑
ν∈F

Xμνmν

(√
1 − qya

μ + √
qzμ

)]

× exp

{
nN

〈∫
Dz ln

[
2 cosh

(√
q̂z +

∑
μ∈F

m̂μξμ

)]〉}
. (A25)
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To proceed, we first denote the vectors ya = [ya
μ; μ ∈ B]T, z = [zμ; μ ∈ B]T, m = [mμ; μ ∈ F ]T, m̂ = [m̂μ; μ ∈ F ]T, and

ξF = [ξμ; μ ∈ F ]T. Integrating out {xa
σ }, we get

∫ ∏
a,σ

Dxa
σ exp

[∑
a,σ

xa
σ

√
βλσ

∑
μ∈B

ησ
μ

(√
1 − qya

μ + √
qzμ

)]

= exp

[
1

2
β

∑
a,σ,μ∈B,ν∈B

λσησ
μησ

ν

(√
1 − qya

μ + √
qzμ

)(√
1 − qya

ν + √
qzν

)]

= exp

[
1

2
β

∑
a,μ∈B,ν∈B

Xμν (
√

1 − qya
μ + √

qzμ)(
√

1 − qya
ν + √

qzν )

]

= exp

[
1

2
β(1 − q)

∑
a,μ∈B,ν∈B

ya
μXμνya

ν + β
√

(1 − q)q
∑

a,μ∈B,ν∈B

zμXμνya
ν + 1

2
nβq

∑
μ∈B,ν∈B

zμXμνzν

]

= exp

[
1

2
β(1 − q)

∑
a

(ya)TXBBya + β
√

(1 − q)q
∑

a

zTXBBya + 1

2
nβqzTXBBz

]
. (A26)

Collecting all terms containing {ya
μ}, we get

∫ ∏
μ,a

dya
μ√

2π

∏
a

exp

[
−1

2

∑
μ∈B,ν∈B

ya
μ[δμν − β(1 − q)Xμν]ya

ν

]

× exp

[
β
√

1 − q
∑
ν∈B

(∑
μ∈F

√
NXνμmμ + √

q
∑
μ∈B

zμXμν

)
ya
ν

]

=
∫ ∏

μ,a

dya
μ√

2π

∏
a

exp

[
−1

2
(ya)T[1 − β(1 − q)XBB]ya

]

× exp[β
√

1 − q(
√

NmTXFB + √
qzTXBB)ya]

= 1√
[det [1 − β(1 − q)XBB]]n

exp

[
1

2
nβ2(1 − q)(

√
NmTXFB + √

qzTXBB)

× [1 − β(1 − q)XBB]−1(
√

NXBF m + √
qXBBz)

]

= 1√
[det (1 − β(1 − q)XBB)]n

exp

[
1

2
nNβ2(1 − q)mTXFB[1 − β(1 − q)XBB]−1XBF m

]

× exp

[
1

2
nβ2(1 − q)qzTXBB[1 − β(1 − q)XBB]−1XBBz

]

× exp[nβ2(1 − q)
√

NqmTXFB[1 − β(1 − q)XBB]−1XBBz]. (A27)

We then collect all terms containing {zμ}, integrate out {zμ} in the limit n → 0, and finally obtain

∫ ∏
μ

dzμ√
2π

exp

{
−1

2
zT[1 − nβqXBB − nβ2(1 − q)qXBB[1 − β(1 − q)XBB]−1XBB]z

}

× exp
{
βn
√

qN
[
mTXFB + β(1 − q)mTXFB[1 − β(1 − q)XBB]−1XBB

]
z
}

= exp

{
−1

2
ln det

[
1 − nβqXBB − nβ2(1 − q)qXBB[1 − β(1 − q)XBB]−1XBB

]}
, (A28)

where to arrive at the last equality, we consider the limit of n → 0 [i.e., neglecting terms involving O(n2)].
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To sum up, we can write 〈Zn〉 as

〈Zn〉 =
∫

dq dq̂

(2π/N )n(n−1)

∏
μ

dmμ dm̂μ

(2π/N )nS
× exp

{
nN

〈∫
Dz ln[2 cosh(

√
q̂z + m̂TξF )]

〉}

× exp

[
−1

2
Nn(n − 1)q̂q − nN

2
q̂ − NnmTm̂ + βnN

2
mTXFF m

]

× exp
[
−n

2
ln det [1 − β(1 − q)XBB]

]
× exp

[
nNβ2(1 − q)

2
mTXFB[1 − β(1 − q)XBB]−1XBF m

]

× exp
[

− 1

2
ln det [1 − nβqXBB − nβ2(1 − q)qXBB[1 − β(1 − q)XBB]−1XBB]

]
. (A29)

By applying Laplace’s method, we get the averaged free energy as

−β f ≡ 1

N
〈ln Z〉 =

〈∫
Dz ln[2 cosh(

√
q̂z + m̂TξF )]

〉
+ 1

2
q̂q − 1

2
q̂ − mTm̂ + β

2
mTXFF m

− 1

2N
ln det [1 − β(1 − q)XBB] + β2(1 − q)

2
mTXFB[1 − β(1 − q)XBB]−1XBF m

− lim
n→0

1

2nN
ln det [1 − nβqXBB − nβ2(1 − q)qXBB[1 − β(1 − q)XBB]−1XBB]. (A30)

This expression can be further simplified as

− 1

2N
ln det [1 − β(1 − q)XBB] = − 1

2N

∑
σ

ln [1 − β(1 − q)λσ ] (A31)

and

− lim
n→0

1

2nN
ln det [1 − nβqXBB − nβ2(1 − q)qXBB[1 − β(1 − q)XBB]−1XBB]

= − lim
n→0

1

2nN

∑
σ

ln

[
1 − nβqλσ − nβ2(1 − q)qλ2

σ

1 − β(1 − q)λσ

]

= 1

2N

∑
σ

βqλσ

1 − β(1 − q)λσ

. (A32)

Finally, the averaged free energy is given by

1

N
〈ln Z〉 =

〈∫
Dz ln[2 cosh(

√
q̂z + m̂TξF )]

〉
+ 1

2
q̂q − 1

2
q̂ − mTm̂ + β

2
mTXFF m − 1

2N

∑
σ

ln [1 − β(1 − q)λσ ]

+ β2(1 − q)

2
mTXFB[1 − β(1 − q)XBB]−1XBF m + 1

2N

∑
σ

βqλσ

1 − β(1 − q)λσ

. (A33)

We rescale q̂ by β2q̂, and m̂ by βm̂, and moreover define K = XFF + β(1 − q)XFB[1 − β(1 − q)XBB]−1XBF . The stationary
condition of the free energy with respect to m implies that m̂ = Km. Therefore, the free energy can be reorganized as

−β f = β2q̂

2
(q − 1) − β

2
mTKm − α

2

∫ 1

0
du ln [1 − β(1 − q)	(u)] + αβq

2

∫ 1

0
du

	(u)

1 − β(1 − q)	(u)

+
〈∫

Dz ln
[
2 cosh

(
β
√

q̂z + βξT
F Km

)]〉
, (A34)

where 	(u) = c + 2γ
∑d

r=1 cos(2πru). In the limit P → ∞, it can be proved that XBB is asymptotically equivalent to X [23].
Therefore, the summation over σ can be replaced by an integral using the eigenvalue of the circulant matrix X.
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APPENDIX B: DERIVATION OF SADDLE-POINT
EQUATIONS

The order parameter should take values optimizing the free
energy function, leading to the saddle-point equation (SDE).
The saddle-point equation of q is given by

q − 1 + 1

β
√

q̂

〈∫
Dz z tanh(β

√
q̂z + βm̂TξF )

〉
= 0, (B1)

q − 1 +
〈∫

Dz [1 − tanh2(β
√

q̂z + βm̂TξF )]

〉
= 0, (B2)

q =
〈∫

Dz tanh2(β
√

q̂z + βm̂TξF )

〉
. (B3)

The saddle-point equation of m is given by

m =
〈
ξF

∫
Dz tanh(β

√
q̂z + βm̂TξF )

〉
. (B4)

The saddle-point equation of m̂ is given by

m̂ = XFF m + β(1 − q)XFB[1 − β(1 − q)XBB]−1XBF m

:= Km, (B5)

where K = XFF + β(1 − q)XFB[1 − β(1 − q)XBB]−1XBF ,
as derived at the end of the previous section. Finally, the
saddle-point equation of q̂ is given by

q̂ = 1

N

∑
σ

qλ2
σ

[1 − β(1 − q)λσ ]2

+ mTXFB[1 − β(1 − q)XBB]−2XBF m

= αq
∫ 1

0

	2(u) du

[1 − β(1 − q)	(u)]2 − β−1mT ∂K
∂q

m. (B6)

Finally, the saddle-point equations are summarized as
follows:

m̂ = Km, (B7a)

q =
〈∫

Dz tanh2(β
√

q̂z + βm̂TξF )

〉
, (B7b)

q̂ = αq
∫ 1

0
du

	2(u)

[1 − β(1 − q)	(u)]2 − β−1mT ∂K
∂q

m,

(B7c)

m =
〈
ξF

∫
Dz tanh(β

√
q̂z + βm̂TξF )

〉
. (B7d)

We analyze the critical temperature between the paramag-
netic phase and spin-glass phase. In the spin-glass phase, q �=
0 but m = 0. Expanding q = 〈∫ Dz tanh2(β

√
q̂z + βm̂TξF )〉,

and q̂ = αq
∫ 1

0 du 	2(u)
[1−β(1−q)	(u)]2 + mT ∂K

∂C m [C ≡ β(1 − q)]
in powers of q and q̂, we have

q  β2q̂  β2αq
∫ 1

0
du

	2(u)

[1 − β	(u)]2 + O(q2). (B8)

Tg can be obtained by solving

1 = α

∫ 1

0
du

	2(u)

[Tg − 	(u)]2 . (B9)

For the standard Hopfield model, Eq. (B9) can be analytically
solved with the result Tg = 1 + √

α.

APPENDIX C: A COMPUTATION
TRANSFORMATION TO SOLVE SDE

To solve the SDE numerically is challenging, due to the
computation of K, which involves the block structure of X. To
get rid of dependence on N and P (we are interested in only
the large N and P limit), we propose the following numerical
technique. We first define C = β(1 − q).

Note that if C = 0, K = XFF , ∂K
∂C = XFBXBF . Let

XX� =
[

H · · ·
· · · · · ·

]
, (C1)

where H is an S × S symmetric matrix. Then we have

H = XFF X�
FF + XFBXBF = XFF X�

FF + ∂K
∂C

∣∣∣∣
C=0

. (C2)

The matrix H can be computed as

H =

⎡
⎢⎢⎣

h0 h1 · · · hS−1

h1 h0 · · · hS−2
...

...
...

hS−1 hS−2 · · · h0

⎤
⎥⎥⎦, (C3)

where

hl = 1

P

P−1∑
m=0

[
c + 2γ

d∑
r=1

cos

(
2πrm

P

)]2

exp

(
2π iml

P

)

=
∫ 1

0
dx

[
c + 2γ

d∑
r=1

cos (2πrx)

]2

cos (2π lx).

(C4)
Finally, we arrive at

∂K
∂C

∣∣∣∣
C=0

= H − XFF X�
FF = H − ( K|C=0)2, (C5)

where we used the fact that when C = 0, K = XFF .
If C �= 0, we have K = XFF − XFB

1
XBB−C−1I

XBF . To cal-
culate K numerically in the large P limit, we notice that

(X − C−1I)−1 =
[

F−1
1 · · ·

· · · · · ·
]
, (C6)

where F−1
1 ∈ RS×S and is a submatrix of (X − C−1I)−1. Since

X − C−11 is a circulant matrix, its inverse matrix can be cal-
culated by (X − C−11)−1 = Circ(w0,w1, . . . ,wP−1), where

wk =
∫ 1

0
dx

cos(2πkx)

c − C−1 + 2γ
∑d

r=1 cos(2πrx)
, (C7)

for k = 0, 1, . . . , P − 1 in the limit P → ∞. Thus F−1
1 can be

written as

F−1
1 =

⎡
⎢⎢⎣

w0 w1 · · · wS−1

w1 w0 · · · wS−2
...

...
...

wS−1 wS−2 · · · w0

⎤
⎥⎥⎦. (C8)

064306-12



ASSOCIATIVE MEMORY MODEL WITH ARBITRARY … PHYSICAL REVIEW E 104, 064306 (2021)

By using the matrix formula for the inverse of a block
matrix, we can prove that K can be expressed as

K = F1 + C−11. (C9)

Thus, to calculate K numerically, we first calculate wk for
k = 0, 1, . . . , S − 1 to get F−1

1 , and then calculate its inverse
matrix F1, and finally add the matrix C−11 to F1.

The term ∂K
∂C = − 1

β
∂K
∂q can be calculated as

∂K
∂C

= ∂F1

∂C
− 1

C2
1 = −F1

∂F−1
1

∂C
F1 − 1

C2
1, (C10)

where the entry of ∂F−1
1

∂C is computed as

∂wk

∂C
= −

∫ 1

0
dx

C−2 cos(2πkx)[
c − C−1 + 2γ

∑d
r=1 cos(2πrx)

]2 , (C11)

for k = 0, 1, . . . , S − 1.

APPENDIX D: ZERO-TEMPERATURE LIMIT

In the limit T → 0 (β → ∞), it is easy to derive that∫
Dz tanh[β(

√
q̂z + x)]

=
√

2

π

∫ 1√
q̂

x

0
dz exp

(
−1

2
z2

)
+ O(T )

≡ erf

(
1√
2q̂

x

)
+ O(T ), (D1)

and∫
dz√
2π

e−z2/2[1 − tanh2 β(az + b)]

 1√
2π

e−z2/2
∣∣
tanh2 β(az+b)=0 ×

∫
dz[1 − tanh2 β(az + b)]

= 1√
2π

e−b2/2a2 1

aβ

∫
dz

∂

∂z
tanh β(az + b)

=
√

2

π

1

aβ
e−b2/2a2

. (D2)

We thus obtain

m =
〈
ξF erf

(
1√
2q̂

ξT
F Km

)〉
. (D3)

In the limit T → 0, we also have

β(1 − q) = β

∫
Dz
〈
1 − tanh2

(
β
√

q̂z + βξT
F Km

)〉

=
√

2

π q̂

〈
exp

[
−
(
ξT

F Km
)2

2q̂

]〉

≡ C.

(D4)

The conjugated order parameter q̂ is given by

q̂ = α

∫ 1

0
du

	2(u)

[1 − C	(u)]2 + mT ∂K
∂C

m, (D5)

where we have used the fact that in the zero-temperature limit
q → 1.

The free energy at the zero-temperature limit is given by

− f = α

2

∫ 1

0
du

	(u)

1 − C	(u)
− Cq̂

2
− 1

2
mTKm

+
〈

2a√
2π

e− b2

2a2 + b erf

(
b√
2a

)〉
, (D6)

where a = √
q̂ and b = ξT

F Km.

1. The spin-glass solution

In the spin-glass solution of the SDE, mμ = 0 for all μ =
1, 2, . . . , S. Hence, we have

C =
√

2

π q̂
(D7)

and

q̂ = α

∫ 1

0
du

	2(u)

[1 − C	(u)]2
. (D8)

We consider the simplest case of γ = 0 and c = 1. It immedi-
ately follows that

q̂ = α

(1 − C)2
. (D9)

Therefore, C = (1 +√
πα
2 )−1, recovering previous results in

the Hopfield model.

2. The retrieval solution

The ferromagnetic phase has a single nonvanishing over-
lap, i.e., mμ = mδμ,1 ∼ O(1). They are called retrieval states,
captured by the following equations:

m =
〈
ξ 1 erf

[
1√
2q̂

m
[
ξT

F K
]

1

]〉
, (D10a)

C =
√

2

π q̂

〈
exp

[
−
[
m
[
ξT

F K
]

1

]2

2q̂

]〉
, (D10b)

q̂ = α

∫ 1

0
du

	2(u)

[1 − C	(u)]2 +
[
∂K
∂C

]
11

m2. (D10c)

In the simplest case of γ = 0 and c = 1, we have K = 1.
The above equations thus reduce to

m = erf

(
m√
2q̂

)
, (D11a)

C =
√

2

π q̂
e− m2

2q̂ , (D11b)

q̂ = α

(1 − C)2
. (D11c)

This result gives the memory capacity of αc  0.138, be-
yond which m = 0, which is exactly the memory capacity of
the standard Hopfield network [19]. In the general case we
consider in this paper, it is necessary to solve the general
equation numerically.
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APPENDIX E: MEAN-FIELD DYNAMICS OF THE MODEL

In this section, we give a detailed derivation of the mean-field iterative equation for the overlap, and the formula for computing
the correlation between two stimulus-induced attractors. These attractors are the neural activity fixed points when a specified
pattern is initialized to a zero-temperature dynamics of the model.

The overlap describes the similarity between the state of the network at the time step t and the stored pattern μ, defined by

mt
μ = 1

N

N∑
i=1

ξ
μ
i st

i . (E1)

The update rule of the network is given by

st+1
i = sgn

(∑
j

Ji js
t
j

)
. (E2)

Hence,

1

N

∑
i

ξ
μ
i st+1

i = 1

N

∑
i

ξ
μ
i sgn

(∑
j

Ji js
t
j

)
. (E3)

Inserting the explicit expression of J into Eq. (E3), we arrive at

1

N

∑
i

ξ
μ
i st+1

i = 1

N

∑
i

ξ
μ
i sgn

[
1

N

∑
j

∑
μ

(
cξμ

i ξ
μ
j + γ

d∑
r=1

(
ξ

μ+r
i ξ

μ
j + ξ

μ
i ξ

μ+r
j

))
st

j

]
. (E4)

Using the definition of the overlap and the cyclic feature of the pattern sequence, we have

mt+1
μ = 1

N

∑
i

ξ
μ
i sgn

[
P∑

μ=1

mt
μ

(
cξμ

i + γ

d∑
r=1

(
ξ

μ+r
i + ξ

μ−r
i

))]
. (E5)

Thus the change �mμ caused by the update is given by

�mμ = 1

N

∑
i

ξ
μ
i sgn

[
P∑

μ=1

mt
μ

(
cξμ

i + γ

d∑
r=1

(
ξ

μ+r
i + ξ

μ−r
i

))]− mt
μ. (E6)

When the network size is large enough (but P/N → 0), we apply the mean-field approximation, i.e., the behavior of Eq. (E6)
converges to the typical behavior of the same quantities averaged over the quenched disorder of stored patterns. More precisely,
we have

�mμ =
〈
ξμ sgn

[
P∑

μ=1

mt
μ

(
cξμ + γ

d∑
r=1

(ξμ+r + ξμ−r )

)]〉
ξ

− mt
μ, (E7)

where 〈·〉 denotes the average over {ξ 1, ξ 2, . . . , ξP}. �mμ must vanish when a stationary solution is arrived. Therefore,

mμ =
〈
ξμ sgn

[
P∑

μ=1

mμ

(
cξμ + γ

d∑
r=1

(ξμ+r + ξμ−r )

)]〉
ξ

, (E8)

where we have assigned the pattern index to the superscript. By making a pattern-index shift and using the property of the cyclic
sequence, we recast Eq. (E8) into the following form:

mμ =
〈
ξμ sgn

[
P∑

μ=1

ξμ

(
cmμ + γ

d∑
r=1

(mμ+r + mμ−r )

)]〉
ξ

. (E9)

The vector-form version of Eq. (E9) is given by

m = 〈ξ × sgn(ξ · m̃)〉ξ, (E10)

where m̃ = cm + γ
∑d

r=1(m→r + m←r ). m→r denotes a transformed m by shifting forward the original m by r patterns, while
m←r denotes shifting backward the original m by r patterns.
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Algorithm 1. Procedure to calculate the overlap from Eq. (E10)

Input: The number of the patterns P; The number of the Monte Carlo samples T ; Network parameters c, d, γ ; Convergence precision ε;
Iteration rate η.

Output: The overlap vector m ≡ {m1, m2, . . . , mP}.
1: Sample T P-length stored patterns {ξ1

, ξ2
, · · · ξT }.

2: Initialize the overlap vector as m ← [0, . . . , 0, 1, 0, . . . , 0], where the value of 1 means the overlap with the stimulating pattern.
3: Initialize an intermediate vector m′ ← [0, . . . , 0, 0, 0, . . . , 0].
4: while‖m − m′‖2

2 > ε

5: m′ ← m
6: m̃ ← cm + γ

∑d
r=1(m→r + m←r )

7: Initialize rhs ← [0, . . . , 0]
8: for i = 1 → T
9: rhs ← rhs + 1

T ξi · sgn(ξi · m̃)
10: end for
11: m ← η × m′ + (1 − η) × rhs.
12: end while
13: return m

In an analogous way, the correlation between stimulus-induced attractors is given by

C(α, β ) =
〈

sgn

{
P∑

μ=1

ξμ

[
cmα

μ + γ

d∑
i=1

(
mα

μ+i + mα
μ−i

)]}
sgn

{
P∑

μ=1

ξμ

[
cmβ

μ + γ

d∑
i=1

(
mβ

μ+i + mβ
μ−i

)]}〉
ξ

, (E11)

where mα
μ means the μth overlap when the system lies in the attractor induced by the pattern α, i.e., the solution of Eq. (E9)

initialized with mμ = δμα . Because of the structure of the attractors, the correlation depends only on the separation of the
corresponding stimulating patterns in the stored cyclic sequence. Therefore, we rewrite Eq. (E11) as

C(r) =
〈

sgn

[
P∑

μ=1

ξμ

(
cmμ + γ

d∑
i=1

(mμ+i + mμ−i )

)]
sgn

[
P∑

ν=1

ξν

(
cm→r

ν + γ

d∑
i=1

(
m→r

ν+i + m→r
ν−i

))]〉
ξ

. (E12)

A pseudocode to solve Eq. (E9) is shown in the Algorithm 1. In the algorithm, T denotes the the number of Monte Carlo
samples. In practice, we set T = 5 × 105 in a single trial, and the result is averaged over 30 trials. The correlation between
attractors can be estimated from the solution of the overlap (see Algorithm 2).

Algorithm 2. Procedure to calculate the attractor correlation from Eq. (E11)

Input: The number of the patterns P; The number of the Monte Carlo samples T ; Network parameters c, d, γ ; calculated from Algorithm 1;
Random patterns {ξ1

, . . . , ξT }.
Output: The correlation as a function of different separations C = [C1, C2, . . . , CP/2].
1: Initialize C = [0, . . . , 0]
2: m̃ ← cm + γ

∑d
r=1(m→r + m←r )

3: for i = 1 → P/2
4: for j = 1 → T
5: s1 ← sgn(m̃ · ξ j )
6: s2 ← sgn(m̃→i · ξ j )
7: Ci ← Ci + 1

T s1 · s2

8: end for
9: end for
10: return C
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