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Link overlap influences opinion dynamics on multiplex networks of Ashkin-Teller spins
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Consider a multiplex network formed by two layers indicating social interactions: the first layer is a friendship
network and the second layer is a network of business relations. In this duplex network each pair of individuals
can be connected in different ways: they can be connected by a friendship but not connected by a business
relation, they can be connected by a business relation without being friends, or they can be simultaneously
friends and in a business relation. In the latter case we say that the links in different layers overlap. These three
types of connections are called multilinks and the multidegree indicates the sum of multilinks of a given type
that are incident to a given node. Previous opinion models on multilayer networks have mostly neglected the
effect of link overlap. Here we show that link overlap can have important effects in the formation of a majority
opinion. Indeed, the formation of a majority opinion can be significantly influenced by the statistical properties
of multilinks, and in particular by the multidegree distribution. To quantitatively address this problem, we study
a simple spin model, called the Ashkin-Teller model, including two-body and four-body interactions between
nodes in different layers. Here we fully investigate the rich phase diagram of this model which includes a large
variety of phase transitions. Indeed, the phase diagram or the model displays continuous, discontinuous, and
hybrid phase transitions, and successive jumps of the order parameters within the Baxter phase.
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I. INTRODUCTION

Over the past two decades, network theory [1–5] has pro-
vided the pivotal framework for characterizing the interplay
between graph structures and dynamics of complex systems.
Recently, multilayer networks [6–10] are attracting consider-
able scientific interest. These network of networks are able
to integrate information on various types of links characteriz-
ing complex systems where interactions have different nature
and connotation. Therefore, they provide a useful perspective
for analyzing complex social, transportation, or biological
systems [11–15], etc. Multilayer networks not only have
rich correlated structures [16–19] that encode more informa-
tion than a single layer, but also contain various dynamical
processes that are strongly affected by the multiplexity of
the network. These dynamical processes include percolation
[7,17,20–24], diffusion [25,26], epidemic spreading [27–29],
and game theory [30,31], etc.

Multiplex networks are a special class of multilayer net-
work consisting of a set of nodes connected by M different
types of links. Each network consisting of a given type of link
interaction forms one of the M layers of a multiplex network.

Most social networks are multiplex. In fact, social ties have
different connotations possibly indicating friends, colleagues,
acquaintances and family relations, etc. Moreover, in the
modern society, online social interactions can occur between
different online social networks such as Twitter, Facebook,

LinkedIn, etc. The vast majority of data on multiplex social
networks display a significant link overlap [11,12,16]. This
property indicates that a significant fraction of pair of nodes
can be connected at the same time by more than one type of
interaction. For example, it might occur that a colleague is
also a friend or that two individuals might be connected at the
same time on Facebook and Twitter.

The opinion dynamics on social multiplex networks have
been investigated recently using spin models such as the voter
models [32–36], election models [37], and Hamiltonian spin
systems [38]. The observed dynamics on social multiplex
networks cannot be reduced to the dynamics on a single
social aggregated network that treats all the interactions of
the multiplex network on an equal footing. In adaptive voter
models, an absorbing and shattered fragmentation transition
[33,34] occurs in which one layer can be fragmented into two
clusters, each one reaching consensus on a different opinion,
whereas the other layer remains connected in one cluster. In
election models, the competing campaigns of two parties can
give rise to election outcomes in which both parties have a
large electorate [37]. Additionally, the party investing more in
building a connected network of supporters is more likely to
win the election [37]. In studies of the opinion dynamics on
multiplex networks, where different opinions can be spread
across different layers, an important question is whether each
node maintains coherent behavior, that is, has a similar opin-
ion in all the layers. A spin opinion model displaying a
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coherence–incoherence transition was numerically investi-
gated recently [38]. Spins are coupled within each layer to
represent the interaction between one node and its neighbors
on a given topic and also across layers to represent the ten-
dency of each node to take a coherent opinion on all the
topics.

Another spin model, which illustrates opinion dynamics
in social networks due to the influence of interdependence
between different social communities, is the Ashkin-Teller
model [39]. It was studied on scale-free (SF) network in which
the degree distribution follows power law and an analytical
approach revealed that a rich phase diagram including the
critical end point was obtained [40]. It was considered on a
duplex network with identical topology; however, the most
realistic multiplex network [7] can be the case in which the
layers of the bilayer network are distinct and the amount of
overlap is tunable.

Here our goal is to investigate to what extent link overlap
affects the opinion dynamics defined on multiplex networks
and whether link overlap favors coherent opinions.

We consider a duplex network formed by two layers where
a two-state opinion dynamics takes place. For example, one
could consider a voting model for the city council and for the
national parliament. For each vote, nodes can be influenced
by a different set of nodes. In the previous example, the first
layer indicates the network influencing the city council vote,
the second layer indicates the network determining the na-
tional vote. The link overlap has a clear effect on this opinion
dynamics by coupling the two layers. In fact if two nodes
are connected in both layers it is natural to assume that the
simultaneous alignment of the opinions in both layers must
be favored by the dynamics. This considerations allow us to
model the opinion dynamics in presence of link overlap, with
a spin Hamiltonian model that is a variation of the Ashkin-
Teller (AT) model [39,40] that we call g-AT model.

The model contains two species of Ising spins, the s-spin
and σ -spin, with each species of spin located on a single layer
of the duplex network. The duplex network is a maximum en-
tropy duplex network with given multidegree distribution [16]
and as such it is very suitable to modulate the role of overlap-
ping multilinks. In particular, we assume that nonoverlapping
multilinks and overlapping multilinks have a SF multidegree
distribution characterized by a different power-law exponent.
Here we provide a complete analytical mean-field solution
to this model and we reveal the complex phase diagram of
the model. We show that favoring the simultaneous alignment
of the opinions of nodes connected in both layers provides a
simple mechanism to generate coherence of opinions.

This paper is organized as follows: We introduce the
Hamiltonian of the g-AT model and the duplex network topol-
ogy under study in Sec II. In Sec. III we derive the free-energy
density using the mean-field approximation and then self-
consistency equations for the order parameters by minimizing
the free-energy density. Next, from these self-consistency
equations, we obtain the susceptibilities. In Secs. IV and V,
we obtain rich phase diagrams in which different phases in
the parameter space are delimited by lines, indicating phase
transitions (PTs) of different order. Note that the phase dia-
grams are richer than those of the original AT model on SF
networks [40], because the links are classified into two types:

FIG. 1. (a) The g-AT model on a duplex network: two species
(si, σi) of Ising spins describe, respectively, the opinion of node i
in layers 1 and 2. Each pair of nodes of the duplex network can be
connected by a different type of multilink: multilinks (1,1) connect
pair of nodes in both layers 1 and 2; multilinks (1,0) and (0,1)
connect pair of nodes only in layer 1 and only in layer 2, respec-
tively. Therefore, multilinks (1,1) describe overlapping links while
multilinks (1,0) and (0,1) describe nonoverlapping links. The model
can be also interpreted as a model on a colored network in which
nodes are an associated pair of spin and the interactions between each
pair of nodes can be distinguished in mutlilinks (1, 1), (1, 0), and
(0,1) (b).

nonoverlapping and overlapping links. Finally, we summarize
the results in Sec. VI.

II. MODEL AND FORMALISM

We consider a duplex network formed by N nodes i ∈
{1, 2, . . . , N}. Every pair of nodes (i, j) of the duplex net-
work can be connected in multiplex ways. To indicate these
different type of connections we use multilinks introduced in
Ref. [16]. In particular, we say that a pair of nodes (i, j) is
connected by a multilink (1,0) if they are only connected in
layer 1, they are connected by a multilink (0,1) if they are only
connected in layer 2, and they are connected by a multilink
(1,1) if they are connected in both layers. Every pair of nodes
can be connected only by one type of multilink, alternatively
they can be unconnected in both layers (see Fig. 1). We call
multiadjacency matrices the matrices of elements A(1,0)

i j , A(0,1)
i j ,

and A(1,1)
i j , indicating whether or not the pair of nodes (i, j) is

connected by a multilink (1,0), a multilink (0,1), and a multi-
link (1,1), respectively. This general duplex network topology
includes link overlap captured by the multilinks (1,1). The
presence of such multilinks has been observed in a variety
of social networks [11,12]. Here and in the following we
indicate with multidegrees k(1,0)

i , k(0,1)
i , and k(1,1)

i the numbers
of multilinks incident to the node i, i.e.,

k(1,0)
i =

N∑
j=1

A(1,0)
i j , k(1,0)

i =
N∑

j=1

A(1,0)
i j ,

k(1,1)
i =

N∑
j=1

A(1,1)
i j . (1)

On such a duplex network, we consider the g-AT model
that describes opinion dynamics and takes into account the
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FIG. 2. The g-AT model is an Hamiltonian model combining two-body and four-body interactions. The four-body interactions characterizes
the interactions between the spins of species si and σi connected by a multilink (1,1). The two-body interactions characterize the coupling
between spins of a given species (either the spins si or the spins σi) connected by either a multilink (1,0) or (0,1).

role that link overlap has on this dynamics. We consider two
species of Ising spins si and σi associated with the dynamics
on layers 1 and 2, respectively. The two spins take values si ∈
{−1, 1} and σ ∈ {−1, 1}. These spin variables are interact-
ing via two-body interactions and four-body interactions (see
Fig. 2). In particular, for each multilink (1,0) connecting node
i to node j, we have a two-body Ising interaction between
the spins si and s j with coupling constant J2. Similarly, for
each multilink (0,1) connecting node i to node j, we have
a two-body Ising interaction between the spins σi and σ j

with coupling constant J2. For each multilink (1,1) instead we
consider a combination of two-body and four-body interac-
tions. The two-body interactions tend to align spins associated
to the same layer with coupling constant J2. The four-body
interactions couples instead the four spins si, s j , σi, and σ j ,
and is modulated by a coupling constant J4. In particular, the
Hamiltonian of the g-AT model without an external magnetic
field is expressed as the sum of three terms,

Ho = H (1,0) +H (0,1) +H (1,1), (2)

where

H (1,0) = −J2

∑
〈i, j〉

A(1,0)
i j sis j,

H (0,1) = −J2

∑
〈i, j〉

A(0,1)
i j σiσ j,

H (1,1) = −J4

∑
〈i, j〉

A(1,1)
i j sis jσiσ j

− J2

∑
〈i, j〉

A(1,0)
i j sis j − J2

∑
〈i, j〉

A(0,1)
i j σiσ j, (3)

with the pairs of connected nodes 〈i, j〉. Alternatively, the
Hamiltonian Ho of the g-AT model without an external mag-
netic field can be expressed more concisely as

−βHo = K2

∑
〈i, j〉

sT
i Ai js j, (4)

where si = (si, σi, siσi )T, and the matrix Ai j is given by

Ai j =

⎛
⎜⎝A(1,0)

i j + A(1,1)
i j 0 0

0 A(0,1)
i j + A(1,1)

i j 0
0 0 xA(1,1)

i j

⎞
⎟⎠, (5)

where x ≡ J4/J2. Moreover, β = 1/kBT , where kB is the
Boltzmann constant, T is the temperature, and K2 ≡ βJ2 with
coupling constant J2. For later discussion, we define similarly
K4 ≡ βJ4.

Here, we investigate the critical properties of this model on
a maximum entropy duplex network model with given mul-
tidegree distribution [16]. To distinguish between multilinks
(1,1) which imply link overlap and the other multilinks (1,0)
and (0,1) which do not, we assume for simplicity that each
node i of the multiplex network has the same multidegree
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(1,0) and multidegree (0,1), and we indicate the multidegree
of nonoverlapping multilinks and of overlapping multilinks as

k(1,0)
i = k(0,1)

i = kn,i,
(6)

k(1,1)
i = ko,i,

where the subscript n of kn,i indicates and the subscript o of
ko,i indicates nonoverlap and overlapping multilinks, respec-
tively. We assume that the degree distributions corresponding
to overlapping and nonoverlapping multilinks are power-law
functions with exponents λo and λn, respectively. The degree
distribution is shortly written as

Pd (ka) ∼ k−λa
a , (7)

where a ∈ {o, n}.
In the considered ensemble of duplex networks [16] a pair

of nodes (i, j) is connected by (1,0) multilinks with proba-
bility p(1,0)

i j , by (0,1) multilinks with probability p(0,1)
i j , and by

(1,1) multilinks with probability p(1,1)
i j , where we have

p(1,0)
i j = k(1,0)

i k(1,0)
j

〈k(1,0)〉N ,

p(0,1)
i j = k(0,1)

i k(0,1)
j

〈k(0,1)〉N , (8)

p(1,1)
i j = k(1,1)

i k(1,1)
j

〈k(1,1)〉N ,

with 〈k(1,0)〉, 〈k(0,1)〉, and 〈k(1,1)〉 being the average multide-
grees. Indeed, these marginal probabilities are obtained in the
maximum entropy ensemble with given multidegree distribu-
tion as long as the degree distribution display the structural
cutoff. Here, we consider the thermodynamic limit (N → ∞)
and power-law exponents greater than 3, so that the effect of
structural cutoff can be ignored.

The phase diagram of this model will be affected by the
topology of multiplex network and the strength of the inter-
layer interaction. This can be studied as a function of three
parameters, λn, λo, and x ≡ J4/J2. The ratio x quantifies the
degree strength of four-body interaction with respect to the
strength of two-body interactions for between nodes linked
by multilinks (1,1).

The original AT model [40] comprises two species of Ising
spins, si and σi, locating at each node i on a monolayer
network. The original AT model can be thus recovered as a
limit case of the g-AT model in absence of nonoverlapping
multilinks and when x = 1 (i.e., J4 = J2). Indeed, in this limit
we recover the Hamiltonian for the original AT model given
by

H = −J2

∑
〈i j〉

(sis j + σiσ j ) − J2

∑
〈i j〉

sis jσiσ j, (9)

which can be rewritten in the form of the four-state Potts
model as

H = −4J2

∑
〈i j〉

(δ(qi, q j ) − 1/4), (10)

where qi is a Potts spin with value 0,1,2 or 3 at node i and
δ(qi, q j ) = 1 for qi = q j , and zero otherwise [41]. Since the

nonoverlapping multilinks are absent, the phase diagram of
the original model is a function of a single power-law ex-
ponent λ of the degree distribution. Clearly this power-law
exponent correspond to the power-law exponent λo of over-
lapping links of the g-AT model.

III. MEAN-FIELD SOLUTION

To obtain the Landau free energy, we calculate the Hamil-
tonian in Eq. (4) by the mean-field approximation. We first
take the local order parameters mi = (ms

i , mσ
i , msσ

i )T, whose
components are defined as ms

i = 〈si〉, mσ
i = 〈σi〉, and msσ

i =
〈siσi〉. Here 〈· · · 〉 is the ensemble average of a given quan-
tity. Next, we expand each spin variable with respect to
the respective local order parameter as si = (ms

i + δms
i , mσ

i +
δmσ

i , msσ
i + δmsσ

i )T. We can neglect the higher-order terms in
δms

i , δmσ
i , and δmsσ

i because the magnitude of these terms is
very small compared to that of the local order parameter. The
mean-field HamiltonianHmf can be written as

−βHmf 	 − K2

∑
i, j

mT
i Ai jm j + K2

∑
i, j

mT
i Ai j (s j + σ j ).

(11)

Then, we obtain the mean-field Landau free energy F , which
is given by

βF = − ln Z

= − ln
∑
{si,σi}

e−βHmf 	 −
∑

i

ln Zi + K2

∑
i, j

mT
i Ai jm j,

(12)

where

Zi = 4[Ci(s)Ci(σ )Ci(sσ ) + Si(s)Si(σ )Si(sσ )], (13)

with

Ci(s) ≡ cosh

( ∑
j∈nn(i)

K2ms
j

)
, Si(s) ≡ sinh

( ∑
j∈nn(i)

K2ms
j

)
.

(14)

Here
∑

j∈nn(i) indicates that the summation runs over all the
nearest neighbors j of node i for each of the three types of
links.

Next, we use the annealed approximation to perform the
summation:∑

〈i, j〉 A(1,0)
i j Ai j → 1

2

∑
i, j p(1,0)

i j Ai j,

∑
〈i, j〉 A(0,1)

i j Ai j → 1
2

∑
i, j p(0,1)

i j Ai j, and

∑
〈i, j〉 A(1,1)

i j Ai j → 1
2

∑
i, j p(1,1)

i j Ai j,

(15)

where Ai j is a given function of i and j and p(1,0)
i j , p(0,1)

i j and

p(1,1)
i j are defined in Eq. (8).

We define a global order magnetization for s spin as

m(1,0)
s =

∑
i k(1,0)

i ms
i

N〈k(1,0)〉 and m(1,1)
s =

∑
i k(1,1)

i ms
i

N〈k(1,1)〉 , (16)
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where ms
i is the local order parameter for s spin. We introduce

global order parameters for σ and sσ spins similarly. Then,
we set that M ≡ m(1,1)

sσ .
Since the considered duplex network ensemble has the

same multidegree distribution of the nonoverlapping multi-
links we can set

m(1,0)
s = m(0,1)

σ ≡ mn, m(1,1)
s = m(1,1)

σ ≡ mo. (17)

The three order parameters are now denoted as mo, mn, and
M-magnetization, respectively. Applying the annealed ap-
proximation, we rewrite the free-energy density ( f ≡ βF /N)
in terms of the order parameters mn, mo, and M. The free-
energy density f is given by

f 	 K2m2
n〈kn〉 + K2m2

o〈ko〉 + 1

2
K4M2〈ko〉

− 2
∫ ∞

kn
min

∫ ∞

ko
min

dkndkoPd (kn)Pd (ko)

× ln [cosh (K2(mnkn + moko))]

−
∫ ∞

ko
min

dkoPd (ko) ln [cosh (K4Mko)] − B1, (18)

where K4 = βJ4 with coupling constant J4 and

B1 =
∫ ∞

kn
min

∫ ∞

ko
min

dkndkoPd (kn)Pd (ko) ln
(
1 + T 2

2 T4
)
, (19)

with

T2 ≡ tanh (K2(mnkn + moko)), T4 ≡ tanh (K4Mko). (20)

Minimizing the free-energy density f , ∂ f /∂ma = 0
and ∂ f /∂M = 0, we obtain the following self-consistency
relations:

ma〈ka〉 =
∫ ∞

kn
min

∫ ∞

ko
min

dkndkoPd (kn)Pd (ko)
T2(1 + T4)

1 + T 2
2 T4

ka, (21)

where a ∈ {o, n}, and

M〈ko〉 =
∫ ∞

kn
min

∫ ∞

ko
min

dkndkoPd (kn)Pd (ko)
T4 + T 2

2

1 + T 2
2 T4

ko. (22)

The self-consistency relations Eqs. (21) and (22) admit three
solutions, corresponding to the paramagnetic phase (ma =
0, M = 0), the Baxter phase (ma > 0, M > 0), and the 〈σ s〉
phase (ma = 0, M > 0).

To obtain the susceptibility, we also consider a Hamilto-
nian including an external magnetic field, given by

−βH = −βHo +
∑

i

HT
i si, (23)

where Hi = (ko,iHo + kn,iHn, ko,iHo + kn,iHn, ko,iH4)T. Ha is
the external magnetic field applied to s and σ spins in propor-
tion to the multidegree ka and H4 is another external magnetic
field applied to sσ spins in proportion to degree ko. Mini-
mizing the free-energy density, we obtain the self-consistency
equations for magnetizations with respect to external mag-
netic fields:

− ∂ f

∂Ha
= ma〈ka〉, − ∂ f

∂H4
= M〈ko〉. (24)

These self-consistency equations can be obtained by substi-
tuting K2maka and K4Mko with (K2ma + Ha)ka and (K4M +
H4)ko, respectively, in Eqs. (18), (19), (21), and (22) (see
Appendix A). The susceptibilities are calculated using the
following relations:

χa ≡ ∂ma

∂Ha

∣∣∣
Ha,H4→0

, χM ≡ ∂M

∂H4

∣∣∣
Ha,H4→0

. (25)

Using the above relations, the susceptibilities χ can be ob-
tained as follows:

χa = Aaa +AaāK2∂mā/∂Ha +AaMK4∂M/∂Ha

〈ka〉 − K2Aaa
, (26)

χM = AMM +AMoK2∂mo/∂H4 +AMnK2∂mn/∂H4

〈ko〉 − K4AMM
, (27)

where a ∈ {n, o} and ā ∈ {n, o} with a different from ā. Here
theA terms are obtained as follows:

Aaa = ∂maI

∂Ha
, Aaā = ∂maI

∂Hā
, AaM = ∂maI

∂H4
,

AMa = ∂MI

∂Ha
, and AMM = ∂MI

∂H4
. (28)

In Appendix B, we provide the extensive formulas for As
in the limit Ha → 0 and H4 → 0, where maI and MI are
presented in intergral form in Eqs. (A2) and (A3).

IV. PHASE DIAGRAM I: J4/J2-DEPENDENCE

A. Phases of the model

At equilibrium, the g-AT model admits three phases, para-
magnetic phase, Baxter phase, and 〈σ s〉 phase, depending on
λn, λo, x = J4/J2, and T .

(i) The paramagnetic phase is characterized by the order
parameters ma = 〈s〉 = 〈σ 〉 = 0, M = 〈σ s〉 = 0. This is the
characteristic phase found in the high-temperature region,
where the stochastic element of the dynamics is dominant.
This phase corresponds to an equilibrium configuration in
which there is no majority opinion in either layer (ma = 0),
and each node has a random and uncorrelated opinion in
the two different layers (M = 0). Therefore, this is the phase
entirely dominated by noise.

(ii) The Baxter phase is characterized by the order pa-
rameters ma = 〈s〉 = 〈σ 〉 > 0, and M = 〈σ s〉 > 0. This is the
phase in which we observe the formation of a majority opinion
which is the same in both layers (ma > 0). Therefore, each
node has coherent opinions in the two distinct layers (M > 0).

(iii) The 〈σ s〉 phase (Coherent phase) is characterized by
the order parameters ma = 〈s〉 = 〈σ 〉 = 0, and M = 〈σ s〉 >

0. This phase occurs for high temperature and when x = J4/J2

is sufficiently high, in which the four-body interactions are
stronger than the two-body interactions; therefore, each single
node of the multiplex network tends to have the same opinion
in both layers but these opinions are not yet aligned with the
opinion of their neighbors. As a consequence there is no yet
formation of a majority opinion in each layer (i.e., ma = 0).
Note that the term of 〈σ s〉 phase originates from the original
paper in physics [39]. To impose a meaning on the phase in the
perspective of opinion formation, we call it Coherent phase
hereafter.

064304-5



KIM, JO, LEE, BIANCONI, AND KAHNG PHYSICAL REVIEW E 104, 064304 (2021)

FIG. 3. Schematic phase diagram of the g-AT model for a given
set of λn = 3.53 and λo = 3.90. Solid and dotted curves represent
continuous and discontinuous PTs, respectively. This phase diagram
is mostly similar to the one of the original AT model [40].

B. Classification of critical points and regions of the
phase diagram

In the g-AT model the transitions between the phases Para,
Baxter, and Coherent occurs as a function of the temperature
T and very diverse and rich critical phenomena are observed.
Indeed, the PTs can be continuous, discontinuous, hybrid,
and in general we can observe more than one PT as the
temperature T is lowered, while the other parameters are kept
unchanged.

To be concrete we discuss here an exemplar phase diagram
of the g-AT model in the parameter space [x, T −1] (see Fig. 3).
This phase digram is obtained for the power-law exponents
λn = 3.53 and λo = 3.90. For this value of the power-law
exponents, the phase diagram is similar to that of the original
AT model [40] in the range λc < λo < 4, where λc ≈ 3.503
indicates the tricritical point (TP) of the original AT model
[40]. In particular, we recall that in the original AT-model for
λo > λc, the PT is of the first order; otherwise, it is of the
second order [40,42,43]. Here we will describe in detail this
phase diagram while the dependence of the phase diagram on
the power-law exponents λn and λo will be treated in the next
section.

In the phase diagram shown in Fig. 3, the three phases
of the dynamics are denoted by Para (ma = 0, M = 0), Bax-
ter phase (ma > 0, M > 0), and 〈σ s〉 phase (ma = 0, M > 0).
Dotted and solid lines represent discontinuous and continu-
ous PTs, respectively. The critical temperature Ts denotes the
temperature at which a second-order PT occurs from the Para
phase to the Baxter phase. Note that Ts is independent on
x = J4/J2 for x < xe.

The phase diagram has characteristic points denoted as
GZs and CEs. We indicate with GZ a point at which the jump
size (gap) of the order parameter becomes zero at each side
of the dotted curve. We indicate with CE a critical endpoint,
locating at the end of a continuous PT line, at which a line
of first-order PT and a line of discontinuity of the order pa-
rameter merge. We will show that a mixed-order (or hybrid)
transition occurs at these CE points. There are two GZs and
three CEs in Fig. 3. Their x positions are asymmetric.

In the phase diagram shown in Fig. 3 we distinguish six
regions based on the ratio x = J4/J2:

(i) In region (i), as the temperature is lowered the system
undergoes a continuous PT at Ts from the Para to the Baxter
phase. Therefore, as the noise is reduced the system goes
continuously from a phase with the absence of any order, to a
state with a clear majority opinion which is the same in both
layers. This transition is denoted as (i)-type PT.

(ii) In region (ii), a continuous PT occurs at Ts between
the Para and the Baxter phase. As T is lowered further, a
discontinuous jump of the order parameters ma and M occurs
subsequently at Tf , in which we observe a discontinuity in
ma and M between two nonzero values. This indicates that at
Tf , there is a discontinuous increment in the fraction of nodes
adopting the majority opinion. This transition is denoted as
(ii)-type PT.

(iii) In region (iii), a discontinuous PT occurs at Tf be-
tween the Para and the Baxter phase. This implies that a
majority opinion is formed abruptly in both layers. This tran-
sition is denoted as (iii)-type PT.

(iv) In region (iv), a continuous PT occurs between the
Para and the Coherent phase at Ts,M . As T is decreased further,
a discontinuous PT occurs at Tf from the Coherent phase to
the Baxter phase. This implies that as the noise is reduced, at
temperatures below the first continuous transition each single
node tend to adopt a coherent opinion in both layers, and then
when the temperature is further reduced a majority opinion is
reached abruptly in both layers. These transitions are denoted
as (iv)-type PT.

(v) In region (v), two continuous PTs occur successively:
between the Para and the Coherent phase at Ts,M and between
the Coherent and the Baxter phase at T ′

s , respectively. Then
as the temperature is decreased further, the order parameters
ma and M jumps at Tf from one finite value to another. These
transitions are denoted as (v)-type PT.

(vi) In region (vi), two continuous PTs occur between the
Para and the Coherent phase at Ts,M and between the Coherent
and the Baxter phase at T ′

s . These transitions are denoted as
(vi)-type PT.

C. Free-energy landscape for the x-dependence of phase
transitions

In this paragraph we will discuss the critical behavior of
the g-AT model as a function of the parameter x = J4/J2.

The phase diagram of the g-AT model can be treated
separately for x < xM and x > xM , where xM indicates the
characteristic ratio between J4 and J2. For x < xM , the J2 inter-
actions are dominant, and O(ma) � O(M ) near the transition
temperature. However, for x > xM , J4 interactions (interlayer
interaction) become dominant and O(ma) 
 O(M ) near the
transition temperature. Thus, the Coherent phase can emerge.
For the original AT model, xM = 1; however, for the g-AT
model, xM depends on λn and λo. xM locates between xe and
xe,M in Fig. 3. Explicit formula to derive xM will be presented
in Eq. (D5).

The free-energy landscape determines the location and
type of PTs with respect to x. Here we provide the discussion
of the main results obtained by investigating the properties
of the free-energy density illustrated by in Figs. 4 and 5 near
Ts. We refer the interested reader to the exact formula of the
free-energy density f given in Appendix D.
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FIG. 4. (a)–(d) Plot of the order parameters ma and M as a function of T/J2. (e)–(h) Plot of the free-energy density landscape as a function
of mn for λn = 3.53 and λo = 3.90 and various interlayer interaction ratios: x = 1.30 for (a) and (e); x = 1.40 for (b) and (f); x = 1.62 for
(c) and (g); and x = 1.80 for (d) and (h). The transition types are second order in region (i) for (a) and (e); successive continuous-discontinuous
in region (ii) for (b) and (f); mixed-order at CE1 for (c) and (g); and discontinuous transition in region (iii) for (d) and (h).

1. Case 0 < x < xM

In this paragraph we describe the critical behavior of
the g-AT model for x < xM including regions (i), (ii), and
(iii), and a point CE1. In region (i) a continuous PT occurs
between the Para and the Baxter phase. Therefore, as the
temperature is lowered, both ma and M increase continuously
for T < Ts.

Using Eqs. (D8) and (D11), we can obtain the critical
behavior of the order parameters for T < Ts,

ma ∼ (Ts − T )βm with βm = 1

λmin − 3
, (29)

M ∼ (Ts − T )βM with βM = λo − 2

λmin − 3
, (30)

where λmin = min(λo, λn). The specific heat scales as

C ∼ (Ts − T )−α with α = λmin − 5

λmin − 3
. (31)

The susceptibility diverges as (see Appendix E for the deriva-
tion)

χa ∼
⎧⎨
⎩

(Ts − T )−γ −
with γ − = 1 for T < Ts,

(T − Ts)−γ +
with γ + = 1 for T > Ts.

(32)

Second, we observe that as x is increased but still remains
less than xM , a jump arises in the order parameters ma and M in
region (ii), observed for xg < x < xe in Fig. 3. We observe that
the system undergoes a continuous second order transition
at Ts between the Para and the Baxter phase characterized
by the same critical exponents listed above. Moreover, as
the temperature T is lowered further the system undergoes a
sudden increase of the order parameter at Tf . Indeed, at Tf the
free-energy density f displays a global minimum at a finite
ma, leading to the abrupt change of the order parameters [see
Figs. 4(b) and 4(f)].

For x → xe, the temperature Ts becomes equal to Tf . There-
fore, two global minima of f (ma) occur at ma = 0 and ma >

0, simultaneously. At this point, the second-order and the first-
order transition lines merge. Therefore, the critical behavior

FIG. 5. (a)–(d) Plot of the order parameters ma and M as a function of T/J2. (e)–(h) Plot of the free-energy density landscape as a function
of mn for λn = 3.53 and λo = 3.90 and various interlayer interaction ratios: x = 2.10 for panels (a) and (e); x = 2.30 for panels (b) and (f);
x = 2.45 for panels (c) and (g); and x = 2.60 for panels (d) and (h). The transition types are first-order in regime (iii) for panels (a) and (e);
successive continuous-discontinuous in regime (iv) for panels (b) and (f); successive continuous-discontinuous in regime (v) for panels (c) and
(g); and continuous transition in regime (vi) for panels (d) and (h).
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appears, together with the jump of the order parameters ma

and M as illustrated in Figs. 4(c) and 4(g). This type of PT
is referred to as a mixed-order (or hybird) transition and this
point is named as critical endpoint. However, the susceptibil-
ity χm diverges at T +

s as it appears in a continuous PT.
In region (iii), for xe < x < xM , a single discontinuous

transition occurs at Tf between the Para and the Baxter phase.
The critical bahavior in this region is illustrated in Figs. 4(d)
and 4(h).

2. Case x � xM

Here, we consider the critical behavior of the g-AT model
for x � xM including the regions (iii), (iv), (v), and (vi) and
two critical endpoints (CE2, CE3).

At x = xM in region (iii), the free-energy densities f (ma)
and f (M ) develop a local minimum at m∗

a larger than 0 and
at a temperature Tf larger than Ts,M [Figs. 5(a) and 5(e)].
A discontinuous transition of ma and M occurs between the
Para and the Baxter phase at Tf . This phenomenology remains
unchanged for xM < x < xe,M .

At x = xe,M , the system is at the boundary between the
regions (iii) and (iv), and we find the critical endpoint denoted
as CE2 in Fig. 3. At CE2, when the temperature T approaches
Ts,M from below, i.e., when we explore the critical behavior
for T → T −

s,M , we observe a discontinuity in the value of M
from a nonzero value to zero, and thus the susceptibility does
not diverge. However, when T approaches Ts,M from above,
i.e., when we explore the critical behavior for T → T +

s,M even
if M jumps suddenly and shows a behavior reminiscent of a
first-order transition, the susceptibility χM diverges. This is
due to the fact that CE2 is the endpoint of a line of second-
order PTs between the Para and the Coherent phase. Thus,
the magnetization M exhibits the properties of a mixed-order
transition.

In region (iv), for xe,M < x < x′
e we observe a continuous

second order PT between the Para and the Coherent phase
occurs at Ts,M . This is due to the behavior of the free-energy
densities f (m) and f (M ) which display a global minimum at
m = 0 and M = 0 for T > Ts,M , while for T < Ts,M , a global
minimum of f (M ) appears at finite M > 0. The value of
this global minimum of f (M ) increases continuously as T is
lowered. As T is decreased further and reaches Tf , new global
minima of f (ma) and f (M ) appear at certain finite ma and M.
Thus, a first-order transition occurs and both order parameters
ma and M display a discontinuous jump. The critical behavior
of the model in region (iv) is shown in Figs. 5(b) and 5(f).

At the boundary between the regions (iv) and (v), for x =
x′

e, we observe the CE3, where the magnetization ma changes
discontinuously from 0 to a finite value at T ′

s
−; however, the

susceptibility χm diverges at T ′
s

+. Thus, a mixed-order PT
occurs at the CE3.

In region (v), for x′
e < x < x′

g as the temperature is grad-
ually lowered we observe first a send-order PT between the
Para and the Coherent phase at Ts,M , then we observe another
second-order PT between the Coherent and the Baxter phase
at T ′

s . In addition to these two PTs we observe a jump of
the order parameter ma and M from nonzero values. This
discontinuity can be obtained by studying the free-energy
densities f (ma) and f (M ). Indeed, when T > Ts,M , the global

minima of f (ma) and f (M ) remain at ma = 0 and M = 0.
For T ′

s < T < Ts,M , the global minimum of f (M ) occurs at a
finite M, which increases continuously as T is lowered grad-
ually. Correspondingly, in this same range of temperatures,
the global minimum of f (ma) remains at still ma = 0. As T
gets below T ′

s , a global minimum of f (ma) emerges at a finite
ma > 0 in a gradual way. Thus, ma is finite, and a second-order
PT occurs at T ′

s . For this same range of temperature the global
minimum of f (M ) is achieved at an increasingly larger value
of M. When T reaches Tf , new global minima of f (ma) and
f (M ) emerge at finite ma and M, which this minima being
separated from the respective value of the free-energy minima
obtained for T +

f . Thus, a discontinuity occurs for the order
parameter at Tf . These behaviors are schematically shown in
Figs. 5(c) and 5(g).

In region (vi) corresponding to high values of x or x → ∞
two second-order PTs are observed. The first PT occurs be-
tween the Para and the Coherent phase at Ts,M and the second
PT between the Coherent and the Baxter phase occurs at T ′

s .
These behaviors close to these two PTs are schematically
shown in Figs. 5(d) and 5(h).

Using Eqs. (D19) and (D22), we can obtain the following
critical behaviors for ma and M:

ma ∼ (T ′
s − T )βm with βm = 1

λmin − 3
, (33)

M ∼ (Ts,M − T )βM with βM = 1

λo − 3
, (34)

where λmin = min(λo, λn). Using these results, we obtain the
specific heats, which scale as

Cm ∼ (T ′
s − T )−αm with αm = λmin − 5

λmin − 3
, (35)

CM ∼ (Ts,M − T )−αM with αM = λo − 5

λo − 3
. (36)

The susceptibilities behave as follows:

χm ∼
{

(T − T ′
s )−γ +

m with γ +
m = 1,

(T ′
s − T )−γ −

m with γ −
m = 1,

(37)

and

χM ∼
{

(T − Ts,M )−γ +
M with γ +

M = 1,

(Ts,M − T )−γ −
M with γ −

M = 1.
(38)

Detailed derivations of χM and χm near Ts,M and T ′
s , respec-

tively, are given in Appendix E.

D. Anomalous scaling relations

The critical exponents of the continuous transition are
listed in Table I for all ranges of x.

The scaling relation for ma satisfies the conventional rela-
tion:

αm + 2βm + γm = 2. (39)

By contrast, the scaling relation for M shows an unusual
behavior for x < xM . The scaling relation for M does not hold
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TABLE I. Critical exponents for 3 < (λn, λo) < 4: Here, α is
the exponent of the specific heat, βm (βM ) is the exponent of the
magnetization ma (M) at zero external magnetic field, and γm (γM )
is the exponent of the susceptibility for ma (M)-magnetization near
the transition temperature.

Range of x αm αM βm βM γm± γM±

x = 0 λmim−5
λmin−3 – 1

λmin−3 – 1 –

0 < x < xM
λmin−5
λmin−3

λmin−5
λmin−3

1
λmin−3

λo−2
λo−3 1 0

x = xM (λn > λo) λo−5
λo−3

λo−5
λo−3

1
λo−3

1
λo−3 1 1

x = xM (λn < λo) λn−5
λn−3

λo−5
λo−3

1
λn−3

1
λo−3 1 1

x > xM
λmin−5
λmin−3

λo−5
λo−3

1
λmin−3

1
λo−3 1 1

for x < xM as

αM + 2βM + γM =

⎧⎪⎨
⎪⎩

3 for λn > λo,

3 + 2
λo − λn

λn − 3
for λn < λo.

(40)

Note that for the original AT model, the scaling relation
for M is written as α + 2βM + γM = 3. This relation can
be confirmed by setting λn = λo in the second equation of
Eqs. (40).

V. PHASE DIAGRAM II: λa-DEPENDENCE

A. General remarks

The g-AT model may be regarded as a combination of the
original AT model on the network of overlapping links and
two independent Ising models on the respective network of
nonoverlapping links. To fully appreciate the general phase
diagram of the g-AT model, let us recall three important results
revealing the interplay between network structure and spin
models, the Ising, Potts, and AT models.

The Ising model on a single SF network with power-law
exponent λ exhibits a second-order PT at a finite temperature
Tc ∝ 〈k2〉/〈k〉 for λ > 3 within the annealed approximation
[44]. Thus, as λ increases, Tc decreases. Since the magne-
tization corresponds to the formation of a majority opinion,
this implies that the larger the branching ratio 〈k2〉/〈k〉 of the
network is, the easier it is for the network to display a majority
opinion. In a single SF network, as the power-law exponent
of degree distributions λ → 3+ the branching ratio of the
network increases as 〈k2〉/〈k〉 	 (λ − 2)/(λ − 3). Therefore,
this implies that tuning the power-law exponent λ, the network
undergoes a topological change that affects the dynamics of
spin model, in particular can modify the value of its critical
temperature.

Consequently, we expect that the general phase diagram
of the g-AT model will display a significant dependence on
the pair of power-law exponents (λn, λo). In particular, the
relative value of λn with respect to λo allows to tune the
relative influence of nonoverlapping multilinks with respect to
overlapping multilinks. We have already seen that x = J4/J2

modifies the phase diagram as it modulates the strength of
the four-body interactions (mediated by overlapping multi-
links) and the strength of two-body interactions (mediated by

nonoverlapping multilinks). We expect that the phase diagram
depends on not only x but also the power-law exponents
(λn, λo) significantly.

Let us recall that the original AT model can be recast in
the Potts model with four states when we set x = J4/J2 = 1
which display a tricritical PT when the power-law exponent
λo = λc ≈ 3.503. This implies that for λo > λc, the four state
Potts model displays a first-order PT; otherwise, it displays a
second-order PT [42]. From this observation we conclude that
the phase diagram of the g-AT model is expected to be more
rich around the values λn 	 λc and λo 	 λc.

B. Additional regions of the general phase diagram

In Sec. IV we have described the x-dependence of the
phase diagram of the g-AT model for a choice of power-law
exponents (λn, λo) = (3.53, 3.90). This phase diagram dis-
plays the PTs of types (i)–(vi), whose implications for opinion
dynamics has been discussed in Sec. IV.

When we consider all possible values of the power-law
exponents (λn, λo) we observe five more characteristic regions
and lines, denoted as (vii)–(xi) in Fig. 6(b):

(1) In region (vii) of Figs. 6 and Fig. 7(a), two discon-
tinuous behaviors occur successively as the temperature is
lowered. This region can be divided into four subregions.
These subregions are similiar to (ii)–(v) regions in Fig. 7(b)
but a discontinuous jump line additionally exists in a lower
temperature region. The discontinuous jump line originates
from the correlations between mn of one layer and mn or mo

of the other layer, whereas the other discontinuous jump lines
in the interval [xg2, xe] and [x′

e, x′
g1] in a higher temperature

region originates from the correlation between the same mos
but on different layers.

In region (vii)1 (xg2 < x < xe), a continuous PT between
the Para and the Baxter phase occurs at Ts and two dis-
continuous jumps of the order parameters ma and M occur
successively as the temperature is lowered. As the noise (tem-
perature) is reduced, the opinion dynamics exhibits first a
continuous PT in which a majority opinion is formed in both
layers, and spreads abruptly twice over a finite fraction of
nodes in the multiplex network.

In region (vii)2 (xe < x < xe,M), as the temperature is low-
ered, a discontinuous PT between the Para and the Baxter
phase occurs first, and subsequently a discontinuous jump of
the order parameters ma and M occurs in the same Baxter
phase. Therefore, as the noise is reduced, the opinion dynam-
ics has first a discontinuous PT in which a majority opinion is
formed in both layers, and then we observe an additional jump
in the magnetization as the majority opinion gets adopted by
a larger fraction of nodes of the multiplex network.

In region (vii)3 (xe,M < x < x′
e), a continuous PT occurs

between the Para and the Coherent phase at Ts,M . As the
temperature is decreased further, a discontinuous PT occurs
at Tf from the Coherent phase to the Baxter phase and a
discontinuous jump of the order parameters ma and M occurs
at T ′

f successively. This implies that as the noise is reduced,
at temperatures lower than Ts,M , each single node prefers to
adopt a coherent opinion in both layers. As the temperature is
further reduced, we observe a discontinuous PT in which ma-
jority opinion is formed in both layers, and then the majority
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FIG. 6. Schematic phase diagrams of the g-AT model in the parameter space [λn, λo] for (a) x ≈ 0, (b) x = xM , and (c) x � xM . The
notations of the phases (i)−(vii) are the same as the ones presented in Figs. 3 and 10.

opinion spreads abruptly over a finite fraction of nodes in the
multiplex network.

In region (vii)4 (x′
e < x < x′

g2), two continuous PTs occur
successively: between the Para and the Coherent phase at Ts,M

and between the Coherent and the Baxter phase at T ′
s . Then

as the temperature is decreased further two discontinuous
jumps of the order parameter occur at Tf and T ′

f , respectively.
Overall, as the noise is reduced, the opinion dynamics exhibits
two types of continuous PTs successively in which the coher-
ent and the majority opinion are formed, respectively. When
the noise is decreased further, the majority opinion spreads
abruptly twice over a finite fraction of nodes in the multiplex
network.

(2) In regions or points (viii) and (x) of Fig. 6 and
Figs. 7(c) and 7(d), respectively, a continuous PT between
the Para and the Baxter phase and a discontinuous jump of
the order parameters ma and M occur successively as the
temperature is lowered. The critical behavior at xM differs
from that in region (ii) as we observe at a tricritical point.
The transition point at xM in (viii) and (x) acts as a branching
point of the critical line to the two critical lines of the Coherent
phase. Overall, as the noise is reduced the opinion dynamics
exhibits first a continuous PT in which a majority opinion is
formed in both layers, and subsequently the majority opinion
spreads abruptly over a large fraction of nodes in the multiplex
network.

FIG. 7. Schematic phase diagrams of the g-AT model in the parameter space [x, T −1] for various values λn and λo. (λn, λo) = (a) (3.53,
3.51), (b) (3.53, 3.90), (c) (3.53, 3.49), (d) (3.35, 3.90), (e) (3.53, 3.30), and (f) (3.30, 3.90).
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(3) In regions (ix) and (xi) of Fig. 6 and in Figs. 7(e)
and 7(f) at xM , respectively, a continuous PT between the
Para and the Baxter phase is observed as the temperature is
lowered. The critical behavior at xM differs from that in (i) as
we observe at a tricritical point. The transition point at xM in
(ix) and (xi) acts as a branching point of the critical line to
the two critical lines of the Coherent phase. As the noise is
reduced, the opinion dynamics has continuous PT in which a
majority opinion is formed in both layers.

To explore the dependence of this rich phase diagram
on the exponents λn and λo around x = xM , we plot the
phase diagram in the space [x, T −1] for various values of
the degree pairs (λn, λo) (see Fig. 7). We find that if a first-
order PT occurs at x = xM , the overall phase diagram is
close to the phase diagram discussed in Sec. IV [see Fig. 3
and Fig. 7(b)]. If xM demarks the boundary between type-
(ii) and type-(v) PTs, then the phase diagram is similar to
Figs. 7(c) and 7(d), respectively. When λn < λo ≈ 3.90 [see
Figs. 7(b), 7(d) and 7(f)], as λn is decreased, a discontinuous
transition curve shrinks and moves left and upward as shown
in Figs. 7(b)→7(f). Moreover, when λn is slightly larger
than λo ≈ λ+

c [see Fig. 7(a)], double discontinuous transition
curves appear in the phase diagram, where two discontinuous
PTs occur successively as T is decreased.

C. Free-energy landscape for the λ-dependence of phase
transitions at x ≈ xM

Here, we will investigate the free-energy landscape of the
g-AT model for the (vii)–(xi) types of PTs. Around x ≈ xM ,
phase and PT type are determined by the free-energy density
presented in Appendix D.

In region (vii)1, PT type is determined by the free-energy
density given as Eq. (D8) because x < xM . Note that the
higher-order term Eq. (D10) of Eq. (D8) is negative. As x →
xM , the terms with Bo of Eq. (D10) and with Dm of Eq. (D8)
become comparable in their magnitudes to the terms with C3

and Do in Eq. (D24), respectively. Thus, these terms with Dm

and Bo play a similar role to the terms with Co and C3. For
T > Ts, the terms with Dm and Bo are not large in magnitude,
so that the global minimum of f (ma) remains at ma = 0 and
M = 0, and thus a continuous PT occurs at Ts. However, when
T is lowered further, the term with Dm increases and becomes
comparable to the leading order terms. Then a discontinuous
jump of the order parameters occurs at Tf . As T is lowered
further, another negative term with Bo term increases, another
jump of the order parameters occurs at T ′

f . Hence in the region
(vii)1, as T is lowered from T +

s , a second-order PT occurs
first, and then two discontinuous jumps occur successively in
the Baxter phase.

In region (vii)2, the term with Co, induced by the correla-
tion between mos on different layers, becomes negative when
λo > λc, thus produces a discontinuous PT at Tf higher than
Ts. Another negative term with C3, induced by the correlations
between mn of one layer and mn or mo of the other layer, be-
comes larger as T is decreased, and thus a discontinuous jump
of the order parameters ma and M in the Baxter phase occurs at
T ′

f < Ts. f (ma) and f (M ) develop a global minimum at a tem-
perature Tf , leading to a discontinuous PT between the Para
and the Baxter phase. As T is further lowered from Tf , the

FIG. 8. For the (vii)-type of PT, schematic plots of (a) the order
parameters ma and M as a function of T and (b) the free-energy
density landscape as a function of mo for various T s. The exponents
of degree distributions are taken as (λn, λo) = (3.53, 3.51).

global minimum position of ma and M increases continuously
until a certain temperature T ′

f . When T reaches T ′
f , another

global minimum of f (ma) and f (M ) emerge at another finite
ma and M, which lead to the jumps in the order parameters
ma and M in the Baxter phase. The order parameters and free
energy landscape in this region are depicted in Figs. 8(a) and
8(b), respectively.

In region (vii)3, PT type is determined by the free-energy
density Eq. (D19), because x > xM . Note that the higher-order
term Eq. (D21) of Eq. (D19) is negative. As x → xM , the
terms with B′

o of Eq. (D21) and with DM of Eq. (D19) become
comparable in their magnitudes to the terms with C3 and Do

in Eq. (D24), respectively. Thus, these terms with DM and B′
o

play a similar role to the terms with Co and C3. For T > Ts,M ,
the terms with DM and B′

o are small in magnitude, so that a
global minimum of f (ma) and f (M ) remain at ma = 0 and
M = 0, respectively. As T is lowered from T +

s,M , a second-
order PT for M occurs from the Para to the Coherent phase at
Ts,M and a global minimum of f (M ) increases continuously.
When T is decreased further to Tf , the term with DM increases
in its magnitude, a new global minimum of f (ma) and f (M )
appears far from values at T +

f , respectively, a discontinuous
PT between the Coherent and the Baxter phase appears at
Tf . When T is lowered further, the term with B′

o becomes
large, a discontinuous jump of the order parameters occurs
at T ′

f in the Baxter phase. Hence, in the region (vii)3, as T
is lowered from T +

s,M , a continuous PT from the Para to the
Coherent phase occurs first at Ts,M , and then a discontinuous
PT between the Coherent and the Baxter phase occurs at Tf

and then a discontinuous jump occurs at T ′
f successively.

In region (vii)4, PT type is investigated through Eq. (D19),
because x > xM . When T > Ts,M , the terms with DM and B′

o
are too small, and the global minimum of f (ma) and f (M ) re-
main at ma = 0 and M = 0, respectively. For T ′

s < T < Ts,M ,
a second-order PT for M from the Para to the Coherent phase
occurs at Ts,M , and the global minimum of f (M ) grows con-
tinuously as T is lowered from T +

s,M . Meanwhile, the global
minimum of f (ma) remains at still ma = 0. As T is lowered
across T ′

s , a second-order PT for ma from the Coherent to the
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FIG. 9. For the (viii)- and (ix)-type of PTs, schematic plots of
(a) and (b) the order parameters ma and M as a function of T ,
respectively. (c) and (d) schematic plots of the free-energy density
landscape as a function of mo for the temperatures around Tf . The
exponents of degree distributions for (a) and (c) are taken as (λn, λo)
= (3.53, 3.30) and for (b) and (d) are taken as (3.53, 3.49).

Baxter phase occurs at T ′
s . When T is lowered and reaches Tf

and T ′
f (< Tf ), the global minimum of f (ma) and f (M ) jump

discontinuously from the previous positions at T +
f and T ′+

f ,
respectively. Hence, in the region (vii)4, as T is decreased
from T +

s,M , a continuous PT from the Para to the Coherent
phase occurs at Ts,M and a continuous PT from the Coherent
to the Baxter phase occurs at T ′

s , and then two discontinuous
jump of the order parameters in the Baxter phase occur at Tf

and T ′
f , successively.

In region (viii), f (ma) and f (M ) still display a global min-
imum at m = 0 and M = 0 for T > Ts and a continuous PT
between the Para and the Baxter phase at T = Ts. The values
of the critical exponents for this PT are listed in Table I for the
case x ≈ xM and λn > λo. However, as T is further lowered
below a certain temperature Tf , a global minimum emerges
at a nonzero value of the magnetization ma > 0 and M > 0,
and a discontinuous transition occurs. Thus, as T is decreased
from T +

s , a continuous transition occurs first at Ts, followed
by a discontinuous transition at Tf . The order parameters and
free-energy density landscape are depicted in Figs. 9(a) and
9(c), respectively.

In region (ix), f (ma) and f (M ) have a global minimum
at ma = 0 and M = 0, respectively, for T � Ts while for
T = T −

s a global minimum emerges continuously at a nonzero
value of the magnetization. Therefore, at T = Ts we observe
a continuous PT between the Para and the Baxter phase. The
values of the critical exponents for this PT are listed in Table I
for the case x ≈ xM and λn > λo. The order parameters and
free-energy density landscape are illustrated in Fig. 9(b) and
9(d), respectively. This continuous transitions is similar to
the (i)-type PTs; however, the critical behavior for M of this
continuous transition differs from that of the (i)-type PT, and
thus we denote this type of a continuous transition as the
(ix)-type PT to distinguish this from the (i)-type PTs.

In region (x), f (ma) and f (M ) have a global minimum
at ma = 0 and M = 0, respectively. f (ma) remains at ma =
M = 0 for T > Ts. When T is lower than Ts, a continuous
transition occurs. The values of the critical exponents for this
PT are listed in Table I for the case x ≈ xM and λn < λo. As T

FIG. 10. (a), (b) Plots of the order parameters ma and M at x =
xM as a function of T/J2. (c), (d) Plots of the free-energy density
landscape as a function of mn for various T . The exponents of degree
distributions taken for panels (a) and (c) are (λn, λo) = (3.30, 3.55)
and for panels (b) and (d) are (3.43, 3.55).

is further lowered, the order parameter gradually increases.
When T reaches Tf , the order parameter jumps by a finite
amount and a new global minimum of f (ma) occurs at a
finite ma. Thus, as T is decreased from T +

s , a continuous PT
occurs at Ts first, and then a discontinuous jump of the order
parameter occurs at Tf as shown in Figs. 10(a) and 10(b).

In region (xi), f (ma) and f (M ) have a global minimum at
ma = 0 and M = 0, respectively. They remain at ma = M = 0
for T > Ts. At Ts, ma and M exhibit continuous PTs. The val-
ues of the critical exponents for this PT are listed in Table I for
the case x ≈ xM and λn < λo. When T is decreased from Ts,
a global minimum occurs at finite ma and M. These behaviors
are schematically shown in Figs. 10(b) and 10(d). Note that
the βM and χM of the (xi)-type PTs are different from those of
the (i)-type PTs [Eq. (30) and γM = 0].

D. λ-dependence of the Coherent phase

When x → 0, a second-order PT occurs from the Baxter to
the Para phase, whereas when x � xM , a first-order PT occurs
from the Baxter to the Coherent phase (i.e., 〈σ s〉), followed
by another PT occurs from the Coherent to the Para phase.
The Coherent phase appears for x � xe,M (λa). In Fig. 11, we
display the λa-dependence of xe,M in unit of xM . If xe,M = x+

M ,
then the Coherent phase appears in the range of x > xM as
shown in Figs. 7(a), 7(b) 7(d), and 7(e), which is denoted as
(ix), (viii), (xi), and (x) (light yellow) in Fig. 11, respectively.
In the regions (iii) and (vii), when a discontinuous PT occurs
at xM , then xe,M > xM , and the Coherent phase appears in
range of x > xe,M as shown in Figs. 7(c) and 7(f), respectively.
The contour lines between different regions with different
circle numbers represent different ratios xe,M/xM .

We find that the transition point xe,M is delayed as both
λn and λo are increased. This is caused by the following
reasons: if λn and λo are large, then the branching ratios of
nonovelapping and overlapping links, respectively, become
small. Thus, a larger value of x = J4/J2 is needed, i.e., the
strength of four-body interaction needs to be reinforced to
form a Coherence phase.
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FIG. 11. Schematic contour lines of xe,M in the parameter space
[λn, λo]. The rightmost (light yellow) region contains the domains
(viii), (ix), (x), and (xi) as shown in Fig. 6(b). In this region, a
continuous PT appears at Ts at xM , and thus xe,M = xM , the Coherent
phase appears at xM . The regions denoted as 1© − 4© correspond to
the regions (iii) and (vii) denoted in Fig. 6(b). In this region, a dis-
continuous PT appears at xM , and thus xe,M > xM . The contour lines
represent in term of the ratio xe,M/xM . In 1©, 1 < xe,M/xM < 1.05; in
2©, 1.05 < xe,M/xM < 1.10; in 3©, 1.10 < xe,M/xM < 1.15; and in 4©,

1.15 < xe,M/xM .

VI. CONCLUSION

To investigate the effect of link overlap on the opinion
dynamics defined on a multiplex network, we studied the
so-called g-AT model, a spin model in thermal equilibrium
systems. The g-AT model describes the dynamics of two
species of Ising spins, namely, the s and σ spins, each of which
is located on a single layer of the duplex network under con-
sideration. Here, the spin model is defined on duplex networks
with an SF multidegree distribution, which facilitates tuning
of the effect of overlapping links with respect to nonoverlap-
ping links. In particular, we distinguish between multilinks
(1,1) that characterize overlapping links and multilinks (1,0)
and (0,1) that do not. We assume that the multidegrees k(1,1) =
ko and k(1,0) = k(0,1) = kn follow power-law distributions as-
sociated with the tunable power-law exponents λn and λo. This
system is illustrated in Fig. 1.

Pairs of s-spins (pairs of σ -spins) connected by over-
lapping and nonoverlapping links interact through a 2-body
interaction of strength J2. Four spins comprising two s-spins
and two σ -spins connected by overlapping links interact
through a four-body interaction with strength J4 (see Fig. 2).
The ratio x ≡ J4/J2 is a control parameter that can alter the
critical properties of the model, and the system is assumed to
be in thermal contact with a heat reservoir at temperature T .
Here, T represents the diversity of each individual opinion in
a social community. Thus, there exist four control parameters,
namely, λn, λo, x, and T . By applying the Landau–Ginzburg
theory, we obtained rich phase diagrams in the four-parameter
space. The g-AT model is a generalization of the original AT
model [40], in which all the links are regarded as overlapping
links; therefore, a single exponent λo is considered in this
context.

We note that the different species of spins represent in-
dividuals from two different communities formed based on
friendship and business relations, respectively. Each pair of in-
dividuals may be connected solely via friendship links, solely
via business relations, or via both relationships. The formation
of a majority opinion across both layer is indicated by the
magnetizations 〈σ 〉 > 0, 〈s〉 > 0, and 〈σ s〉 > 0 in the spin
model, which can be accomplished through nonoverlapping
or overlapping links. The diversity of individual opinions is
reflected by thermal fluctuations.

We investigated PTs arising from the competition between
the consensus formation of each community and that of the
entire society, and obtained rich phase diagrams including
diverse types of PTs. These findings are expected to be benefi-
cial in understanding the underlying mechanisms of local and
global formation of a majority opinion in a society.

Similar to the voter models on multiplex networks [35],
the g-AT model shows that a majority opinion emerges
abruptly thanks to the interactions across two layers induced
by overlapping links. In particular, in the g-AT model, we can
control the strength of four-body interactions among replica
nodes connected by overlapping multilinks with respect of the
strength of two-body interactions x = J4/J2. This allows us to
assess the role of tuning the strength of the many-body AT-
interactions by modulating x and study how the phase digram
change with respect to the original AT model [40]. More-
over, we can tune the power-law exponent of the overlapping
multidegree distributions of nonoverlapping and overlapping
multilinks (λn, λo), and investigate the role of this topolog-
ical modifications on PTs, in the same spirit of the analysis
conducted for percolation problems in Refs. [21,24]. In the
future our work can be expanded in many directions, inves-
tigating further the role that higher-order interactions [45,46]
have in opinion dynamics defined on multiplex networks and
exploring realistic spin models of opinion dynamics defined
on duplex networks.
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APPENDIX A: SELF-CONSISTENCY EQUATION WITH AN EXTERNAL MAGNETIC FIELD

With the external magnetic field,


a ≡ K2ma + Ha and 
M ≡ K4M + H4, (A1)

the self-consistency equations Eqs. (24) for ma and M of the g-AT model are replaced as follows:

ma〈ka〉 = maI ≡
∫ ∞

kn
min

∫ ∞

ko
min

dkndkoPd (kn)Pd (ko)
tanh (
oko + 
nkn)[1 + tanh (
4ko)]

1 + tanh2 (
oko + 
nkn) tanh (
4ko)
ka (A2)

and

M〈ko〉 = MI ≡
∫ ∞

kn
min

∫ ∞

ko
min

dkndkoPd (kn)Pd (ko)
tanh (
4ko) + tanh2 (
oko + 
nkn)

1 + tanh2 (
oko + 
nkn) tanh (
4ko)
ko. (A3)

APPENDIX B: DEFINITIONS OF THE A TERMS IN EXACT SUSCEPTIBILITY FORMULA

TheA terms are defined as follows:

Aaa =
∫ ∞

kn
min

∫ ∞

ko
min

dkndkoPd (kn)Pd (ko)

(
1 − T 2

2 T4
)
(1 + T4)(

1 + T 2
2 T4

)2
cosh2 (K2(moko + mnkn))

k2
a , (B1)

Aaā = Aāa =
∫ ∞

kn
min

∫ ∞

ko
min

dkndkoPd (kn)Pd (ko)

(
1 − T 2

2 T4
)
(1 + T4)(

1 + T 2
2 T4

)2
cosh2 (K2(moko + mnkn))

knko, (B2)

AaM =
∫ ∞

kn
min

∫ ∞

ko
min

dkndkoPd (kn)Pd (ko)

(
1 − T 2

2

)
T4(

1 + T 2
2 T4

)2
cosh2(K4Mko)

kako, (B3)

AMa =
∫ ∞

kn
min

∫ ∞

ko
min

dkndkoPd (kn)Pd (ko)
2T2

(
1 − T 2

4

)
(
1 + T 2

2 T4
)2

cosh2 (K2(moko + mnkn))
koka, (B4)

AMM =
∫ ∞

kn
min

∫ ∞

ko
min

dkndkoPd (kn)Pd (ko)
1 − T 4

2(
1 + T 2

2 T4
)2

cosh2(K4Mko)
k2

o . (B5)

APPENDIX C: DEFINITIONS OF COEFFICIENTS IN THE FREE-ENERGY DENSITY

The coefficients Co, Cn, Dm, DM , D0, and Co(r0, λo) used in the Landau free energy formulas in Appendix D are defined as
follows:

Co(λo) = CM (λo) = −No

∫ ∞

0

[
ln(cosh y) − 1

2
y2

]
y−λo dy,

Cn(λn) = −Nn

∫ ∞

0

[
ln(cosh y) − 1

2
y2

]
y−λn dy,

Dm(λo) = −No

∫ ∞

0
y ln(1 + tanh2 y)y−λo dy,

DM (λo) = −No

∫ ∞

0
y2 ln (1 + tanh y)y−λo dy,

D0(r0, λo) = −No

∫ ∞

0
ln[1 + tanh2 y tanh(r0y)]y−λo dy,

Co(r0, λo) = Co(λo) + D0(r0, λo) + 1

2
CM (λo), (C1)

where No and Nn are normalization factors written as 1/(λo − 1) and 1/(λn − 1), respectively.

APPENDIX D: LANDAU FREE ENERGY FORMULA

To investigate the critical behavior near the critical temperature, we expand the free-energy density as a function of the order
parameters ma and then analyze the leading terms when ma and M converge to 0. To proceed, it is necessary to derive the relation
between ma and M, which turns out to depend on the ratio x. For values of x smaller and bigger than the characteristic ratio xM ,
we observe different behaviors. Here we discuss in details the cases 0 < x < xM , x > xM , and x = xM , separately.
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1. Case 0 < x < xM

For x ∈ (0, xM ) we can expand Eqs. (21) and (22) in terms of ma and M within the lowest-order terms as follows:

mn〈kn〉
(

1 − K2

〈
k2

n

〉
〈kn〉

)
	 K2mo〈kn〉〈ko〉 − (λn − 1)Cn(λn)(K2mn)λn−2 + h.o., (D1)

mo〈ko〉
(

1 − K2

〈
k2

o

〉
〈ko〉

)
	 K2mn〈kn〉〈ko〉 − (λo − 1)Co(λo)(K2mo)λo−2 + (λo − 2)Dm(λo)(K4M )(K2mo)λo−3 + h.o., (D2)

M〈ko〉
(

1 − xK2

〈
k2

o

〉
〈ko〉

)
	 Dm(λo)(K2mo)λo−2 − (λo − 1)CM (λo)(K4M )λo−2 + h.o., (D3)

where the coefficients of the entropy terms Ca(λa) and CM (λo) are presented in Appendix C and the coefficient of the interlayer
interaction term Dm(λo) of the right-hand side of Eq. (D2) is also presented in Appendix C. This term needs to be considered,
because it is negative and contributes to the first-order transition.

To obtain Ts, we first consider the lowest-order terms of Eqs. (D1) and (D2) and obtain the following:(
1 −

〈
k2

o

〉
〈ko〉

1

T

)(
1 −

〈
k2

n

〉
〈kn〉

1

T

)
− 1

T 2
〈kn〉〈ko〉 = 0. (D4)

This equation has two solutions of T , denoted as T� and Th.
It is guaranteed that the left-hand side of Eq. (D3) is positive as T → T −

h as long as x < xM with

xM ≡ Th〈ko〉/
〈
k2

o

〉
. (D5)

Then M is written within a leading order as

M 	 Dm(λo)

〈ko〉[1 − xTh/(xMT )]
(K2mo)λo−2 + h.o. (D6)

This implies that O(M ) 
 O(ma) near T −
h for λo > 3. Using this relation Eq. (D6), we obtain the self-consistency relations for

ma with leading terms as follows:

ma〈kn〉〈ko〉
(

1 − T�

T

)(
1 − Th

T

)
	 −(λa − 1)EāCa(λa)(K2ma)λa−2 − (λā − 1)FaāCā(λā)(K2mā)λā−2, (D7)

where Eā = 〈kā〉(1 − 〈k2
ā〉/〈kā〉

T
) and Faā = 1

T
〈kn〉〈ko〉.

As T → T −
h , ma → 0 and thus M → 0 in Eq. (D6). This implies that the PT from Baxter to Para phase is continuous. We

confirm that a second-order transition occurs at Th. This temperature is denoted as a critical temperature Ts ≡ Th.
Using Eq. (D6), we expand the free-energy density of Eq. (18) with respect to ma up to the three lowest order terms:
(i) For λn > λo,

f (mo) 	 AoK2m2
o

(
1 − Ts

T

)
+ Co(λo)(K2mo)λo−1 + Cn(λn)(Bomo)λn−1 − 1

2

K4[Dm(λo)]2

〈ko〉[1 − xTs/(xMT )]
(K2mo)2(λo−2) + h.o., (D8)

where Ao and Bo are functions of λa and K2, for which the explicit formula is as follows:

Ao(λo) = K2〈kn〉2K2〈ko〉2

〈kn〉 − K2
〈
k2

n

〉 , Bo(λo) = K2〈kn〉K2〈ko〉
〈kn〉 − K2

〈
k2

n

〉 . (D9)

There is an additional negative higher-order term as follows:

Dm(λo)

〈ko〉[1 − xTh/(xMT )]
(K2mo)λo

[
λo − 1

λo − 3

(
ko

min

)3−λo + 2
Bo

K2
〈(kn)〉〈(ko)2〉 +

(
Bo

K2

)2

〈(kn)2〉〈(ko)〉
]
. (D10)

Note that as x → x−
M , the magnitude of Eq. (D10) becomes comparable to that of the term with C3.

(ii) For λn < λo,

f (mn) 	 AnK2m2
n

(
1 − Ts

T

)
+ Cn(λn)(K2mn)λn−1 + Co(λo)(Bnmn)λo−1 − 1

2

K4[Dm(λo)]2

〈ko〉[1 − xTs/(xMT )]
(Bnmn)2(λo−2) + h.o., (D11)

where An and Bn are functions of λa and K2, for which the explicit formula is as follows:

An(λn) = K2〈kn〉2K2〈ko〉2

〈ko〉 − K2
〈
k2

o

〉 Bn(λn) = K2〈kn〉K2〈ko〉
〈ko〉 − K2

〈
k2

o

〉 . (D12)

Note that Ca(λa) and Dm(λo) are always positive.

064304-15



KIM, JO, LEE, BIANCONI, AND KAHNG PHYSICAL REVIEW E 104, 064304 (2021)

The phase diagram in the space of [x, T −1] depends on λn and λo as shown in Fig. 4. These phase diagrams reveal the nature
of the observed PTs and can be obtained by examining the profiles of the free-energy density for different x and T values for
given λn and λo. To be concrete, here we consider the case of λn = 3.53 and λo = 3.90, for which we obtain the phase diagram
similar to that of the original AT model with the exponent of degree distribution λ > λc.

2. Case x > xM

The self-consistency relations Eqs. (21) and (22) are expanded in terms of ma and M as follows:

mn〈kn〉
(

1 − K2

〈
k2

n

〉
〈kn〉

)
	 K2mo〈kn〉〈ko〉 − (λn − 1)Cn(λn)(K2mn)λn−2 + (K4M )(K2mn)

〈
k2

n

〉〈ko〉 + (K4M )(K2mo)〈kn〉
〈
k2

o

〉 + h.o.

(D13)

mo〈ko〉
(

1 − K2

〈
k2

o

〉
〈ko〉

)
	 K2mn〈kn〉〈ko〉 − (λo − 1)Co(λo)(K2mo)λo−2

+ DM (λo)(K4M )λo−3(K2mo)

−
[∫ 1

0
dkoPd (ko) tanh(K4Mko)k2

o

]
(K2mo) + (K4M )(K2mn)〈kn〉

〈
k2

o

〉 + h.o. (D14)

M〈ko〉
(

1 − xK2

〈
k2

o

〉
〈ko〉

)
	 −(λo − 1)CM (λd )(K4M )λo−2 + (λo − 3)DM (λo)(K4M )λo−4(K2mo)2 + h.o., (D15)

where DM (λo) > 0 increases monotonically with λo. This coefficient is explicitly derived in Appendix C. These expansions are
valid for 3 < (λn, λo) < 4 due to the power of the third term of the right-hand side of Eq. (D14).

When x > xM , x〈k2
o〉/〈ko〉 > Th and the left-hand side of Eq (D15) becomes negative for T > Th. However, the first term of

the right-hand side of Eq. (D15) is also negative; however, the second term is positive. So, the first term is comparable to the
left-hand side, leading to M ∼ (Ts,M/T − 1)1/(λo−3), where Ts,M ≡ x〈k2

o〉/〈ko〉. Thus, M exhibits a continuous transition at Ts,M ,
corresponding to the continuous transition curve starting from CE2 in Fig. 3 . Note that this formula is the same as the one of the
Ising model on a single SF network [2]. For further discussions, M∗ is defined as

M∗ ≡ 1

K4

[ 〈ko〉(Ts,M/T − 1)

(λo − 1)K4CM (λo)

]1/(λo−3)
.

Next, to determine a critical temperature (denoted as Ts,m) for ma, we first rewrite Eq. (D15) as

M 	 M∗ + DM (λo)

〈ko〉(Ts,M/T − 1)
(K4M∗)λo−4(K2mo)2 + h.o. (D16)

We consider the linear terms of ma in Eqs. (D13) and (D14), and substitute M with M∗. Using a similar technique used in
Eq. (D4), we obtain the following:

〈kn〉〈ko〉
(

1 −
〈
k2

n

〉
/〈kn〉 + gn(M∗)

T

)(
1 −

〈
k2

o

〉
/〈ko〉 + go(M∗)

T

)
−

( 〈kn〉〈ko〉
T

+ K4M∗〈kn〉
〈
k2

o

〉
T

)2

= 0, (D17)

where

gn(M∗)〈kn〉 = K4M∗〈ko〉
〈
k2

n

〉
, and go(M∗)〈ko〉 = DM (λo)(K4M∗)λo−3 −

∫ 1

0
dkoPd (ko) tanh(K4M∗ko)k2

o .

Equation (D17) has two solutions for T , denoted as T ′
� and T ′

h (T ′
� < T ′

h ). Using the relation Eq. (D16), we can obtain a self-
consistency relation for ma within the leading order as follows:

ma〈ko〉〈kn〉
(

1 − T ′
�

T

)(
1 − T ′

h

T

)
	 −(λa − 1)E ′

āCa(λa) (K2ma)λa−2 − (λā − 1)F ′
aāCā(λā) (K2mā)λā−2, (D18)

where E ′
ā = 〈kā〉(1 − 〈k2

ā 〉/〈kā〉+gā (M∗ )
T ) and F ′

aā = 1
T 〈ko〉〈kn〉 + 1

T K4M∗〈k2
o〉〈kn〉. We find that near T ′

h , ma converges to zero con-
tinuously, whereas M remains in O(1). Hence, we regard T ′

h as the critical temperature T ′
s of ma. Note that M has the critical

temperature Ts,M separately, given as x〈k2
o〉/〈ko〉, which is higher than T ′

s .

064304-16



LINK OVERLAP INFLUENCES OPINION DYNAMICS ON … PHYSICAL REVIEW E 104, 064304 (2021)

Using Eq. (D16), we expand the free-energy density of Eq. (18) with respect to ma up to the three lowest order terms:
(i) For λn > λo,

f (mo) 	 f0(M∗) + A′
oK2m2

o

(
1 − T ′

s

T

)
+ Co(λo)(K2mo)λo−1 + Cn(λn)(B′

omo)λn−1

− K2[(λn − 1)Cn(λn)]2

〈kn〉
[
1 − (〈

k2
n

〉
/〈kn〉 + gn(M∗)

)
/T

] (B′
omo)2(λn−2) − 1

2
(λo − 3)

K4[DM (λo)(K4M∗)λo−4]
2

〈ko〉(Ts,M/T − 1)
(K2mo)4 + h.o., (D19)

where A′
o and B′

o are functions of λa, K2 and K4M∗, They are explicitly derived as follows:

A′
o(λo) =

(
1 + K4M∗

〈
k2

o

〉
/〈ko〉

)2
K2〈kn〉2K2〈ko〉2

〈kn〉
[
1 − K2

(〈
k2

n

〉
/〈kn〉 + gn(M∗)

)] , B′
o(λo) =

(
1 + K4M∗

〈
k2

o

〉
/〈ko〉

)
K2〈kn〉K2〈ko〉

〈kn〉
[
1 − K2

(〈
k2

n

〉
/〈kn〉 + gn(M∗)

)] . (D20)

There is an additional negative higher-order term as follows:

DM (λo)

〈ko〉(Ts,M/T − 1)
(K4M∗)λo−4(K2mo)4

[
λo − 1

λo − 3

(
ko

min

)3−λo + 2
B′

o

K2
〈(kn)〉〈(ko)2〉 +

(
B′

o

K2

)2

〈(kn)2〉〈(ko)〉
]
. (D21)

Note that as x → x+
M , Eq. (D10) becomes close in its magnitude to the term with C3 and thus, play a similar role to the term with

C3 near x+
M .

(ii) For λn < λo,

f (mn) 	 f0(M∗) + A′
nK2m2

n

(
1 − T ′

s

T

)
+ Cn(λn)(K2mn)λn−1 + Co(λo)(B′

nmn)λo−1

− K2[(λo − 1)Co(λn)]2

〈ko〉
[
1 − (〈

k2
o

〉
/〈ko〉 + go(M∗)

)
/T

] (B′
nmn)2(λo−2) − 1

2
(λo − 3)

K4[DM (λo)(K4M∗)λo−4]
2

〈ko〉(Ts,M/T − 1)
(B′

nmn)4 + h.o., (D22)

where A′
n and B′

n are functions of λa, K2 and K4M∗. They are explicitly derived as follows:

A′
n(λo) =

(
1 + K4M∗

〈
k2

o

〉
/〈ko〉

)2
K2〈kn〉2K2〈ko〉2

〈ko〉
[
1 − K2

(〈
k2

o

〉
/〈ko〉 + go(M∗)

)] , B′
n(λo) =

(
1 + K4M∗

〈
k2

o

〉
/〈ko〉

)
K2〈kn〉K2〈ko〉

〈ko〉
[
1 − K2

(〈
k2

o

〉
/〈ko〉 + go(M∗)

)] . (D23)

Here, first two Ca terms are positive, like the case x < xM .
The first two Ca terms in Eqs. (D19) and (D22) are positive, as for the case x < xM , whereas the next two terms containing Ca

and DM are negative. The 2(λa − 2)-order terms with Ca are finite, whereas the DM term diverges as T → Ts,M . Thus, the DM

term contributes to the formation of a global minimum of f (ma) as T is decreased Tf and x → x+
M .

3. Case x ≈ xM

a. Case λn � λo

In this case, O(ma) ∼ O(M ) near Ts and the free-energy density of Eq. (18) is expanded with respect to mo as follows:

f (mo) 	 AoK2m2
o

(
1 − Ts

T

)
+ 1

2
K4M2〈ko〉

(
1 − Ts

T

)
+ Co(λo, ro)(K2mo)λo−1 + Cn(λn)(Bomo)λn−1 + C3(λn, λo, r0)(K2mo)3 + h.o.,

(D24)

where Ao and Bo are functions of λa and K2 that are explicitly derived in the x < xM case. Co(λo, r0) with r0 ≡ K4M/K2mo is
O(1). Explicit formulas of the coefficients are given in Appendix C. There is another negative term with C3, which is defined as
follows:

C3(r0, λo, λn) = r0

[
λo − 1

λo − 3

(
ko

min

)3−λo + 2
Bo

K2
〈(kn)〉〈(ko)2〉 +

(
Bo

K2

)2

〈(kn)2〉〈(ko)〉
]
. (D25)

Note that this term does not appear in the original AT model defined on SF network.
We note that the Co term is a leading order term at Ts, and Co decreases monotonically with λo. Thus the sign of Co can

change depending on the magnitude of λo. This feature does not appear for both 0 < x < xM and x > xM cases. However, it
occurs when x = xM . Numerically Co = 0 at λo ≈ 3.503, equivalent to λc introduced earlier in Secs. II and III: Co becomes
positive for λo < λc, whereas it is negative for λo > λc. However, Cn and C3 are always positive and negative, respectively.

b. Case λn = λo

When λn = λo, the Co and Cn terms in Eq. (D24) are of the same order. Thus, the two terms are combined and denoted as
C′

o(λo, r0)(K2mo)λo−1. The sign of C′
o depends on λo, equivalently λn. Numerically C′

o can be zero at a certain λo, denoted as λe,
estimated to be ≈3.605. C′

o becomes positive for λo < λe and negative otherwise.
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Similar to the previous case λn > λo, a discontinuous transition always occurs for C′
o < 0. However, depending on relative

magnitude between two terms C′
o and C3, either a discontinuous or continuous transition occurs for C′

o > 0. Note that successive
discontinuous transitions do not occur for λn = λo.

c. Case λn < λo

When λn < λo, O(ma) 
 O(M ), the free-energy density of Eq. (18) is expanded with respect to mn as follows:

f (mn) 	 f0(M∗) + A′
nK2m2

n

(
1 − Ts

T

)
+ Cn(λn)(K2mn)λn−1 + Co(λo)(B′

nmn)λo−1

− K2[(λo − 1)Co(λn)]2

〈ko〉
[
1 − (〈

k2
o

〉
/〈ko〉 + go(M∗)

)
/T

] (B′
nmn)2(λo−2) − 1

2
(λo − 3)

K4[DM (λo)(K4M∗)λo−4]
2

〈ko〉(Ts,M/T − 1)
(B′

nmn)4 + h.o.

This formula is exactly the same as Eq. (D22), derived in x > xM case for continuous transitions.

APPENDIX E: THE SUSCEPTIBILITY NEAR THE CRITICAL TEMPERATURE

1. ma-magnetization

a. for x � xM

Now, we consider the susceptibility at the critical temperature Ts for weak interlayer interaction x < xM case. We can omit
the higher-order terms in ma and M when ma and M are very small, we expand the self-consistency relations for ma (A2) with
respect to ma and M as follows:

ma〈ka〉 	 
a〈k2
a〉 + 
ā〈ko〉〈kn〉 − (λa − 1)Ca(λa)(
a)λa−2. (E1)

To obtain critical exponent γ for each ma-magnetization, respectively, we consider the lowest-order terms of the self-consistency
relations Eqs. (E1) and then we obtain the following:

ma〈kn〉〈ko〉
(

1 − T�

T

)(
1 − Ts

T

)
	 Eā

(
Ha

〈
k2

a

〉 + Hā〈ko〉〈kn〉 − (λa − 1)Ca(λa)(
a)λa−2)
+ Faā

(
Hā

〈
k2

ā

〉 + Ha〈ka〉〈kā〉 − (λā − 1)Cā(λā)(
ā)λā−2
) + h.o., (E2)

where Eā = 〈kā〉(1 − 〈k2
ā 〉/〈kā〉

T ) and Faā = 1
T 〈ko〉〈kn〉.

To derive the susceptilbility from magnetization, we take partial derivative with respect to Ha and then take the Ha and H4 → 0
limit. We have two equations for the susceptibility as follows:

χa〈ka〉〈kā〉
(

1 − T�

T

)(
1 − Ts

T

)
	 Eā

(〈
k2

a

〉 − (λa − 1)(λa − 2)Ca(λa)(K2ma)λa−3K2χa
)

+ F

(
〈ka〉〈kā〉 − (λā − 1)(λā − 2)Cā(λā)(K2mā)λā−3K2

∂mā

∂Ha
2

)
+ h.o.. (E3)

When λo < λn, the susceptibility near the critical temperature T −
s is written as follows:

χo〈kn〉〈ko〉
(

1 − T�

T

)(
1 − Ts

T

)
≈ En

〈
k2

o

〉 + F 〈ko〉〈kn〉 + (λo − 2)〈ko〉〈kn〉
(

1 − T�

T

)(
1 − Ts

T

)
χo + h.o.,

χn〈kn〉〈ko〉
(

1 − T�

T

)(
1 − Ts

T

)
≈ Eo

〈
k2

n

〉 + F 〈ko〉〈kn〉 + (λo − 2)〈ko〉〈kn〉
(

1 − T�

T

)(
1 − Ts

T

)
Eo

En

∂mo

∂Hn
+ h.o. (E4)

To obtain the susceptibility near T −
s , we use the following relation:

En(−(λo − 1)K2Co(λo)(K2mo)λo−3) ≈ 〈ko〉〈kn〉
(

1 − T�

T

)(
1 − Ts

T

)
for T → T −

s . (E5)

To get χn, we need to compute the ∂mo/∂Hn term. The partial derivative of mo in terms of Hn is given as follows:

∂mo

∂Hn
〈ko〉〈kn〉

(
1 − T�

T

)(
1 − Ts

T

)
	 En

(
〈ko〉〈kn〉 + (λo − 1)(λo − 2)Co(λo)(K2mo)λo−3K2

∂mo

∂Hn

)
+ F

〈
k2

n

〉 + h.o.

	 En〈ko〉〈kn〉 + F
〈
k2

n

〉 + (λo − 2)〈ko〉〈kn〉
(

1 − T�

T

)(
1 − Ts

T

)
∂mo

∂Hn
+ h.o. (E6)
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From Eq. (E6), we obtain that ∂mo/∂Hn ≈ (Ts − T )−1 for T → T −
s . Using this, the susceptibility of ma is obtained as

χo ≈
⎧⎨
⎩

(T − Ts)−1 for T +
s ,

(Ts − T )−1 for T −
s ,

and χn ≈
⎧⎨
⎩

(T − Ts)−1 for T +
s ,

(Ts − T )−1 for T −
s .

(E7)

Here, we take the limit mo → 0 for near T +
s to Eq. (E3). For the λn < λo case, the susceptibility of ma is obtained by similar

computation process same as for the λo < λn case. Thus, the critical exponent of γm± of magnetization is always 1 for all cases.
Then, the scaling relation, a + 2βm + γm− = 2, is satisfied for each ma-magnetization, respectively.

Now, we compute the susceptibility at CE point as boundary point of continuous PT regime. Since the location of mag-
netization jumps to a certain finite at the CE, the magnitude of the magnetization is much greater than 0, the perturbative
expansions with respect to m, M is not valid any longer at CE point. Thus, we should keep the integral formula written in
self-consistent relation Eqs. (A2) and (A3) as follows. To obtain the susceptibility for ma magnetization, we take a partial
derivative of self-consistent relation for ma Eq. (A2) with respect ot H2 and take H2, H4 → 0 limit, then the susceptibility is
written as follows:

χo = Aoo +AonK2∂mn/∂Ho +AoMK4∂M/∂Ho

〈ko〉 − K2Aoo
. (E8)

To evaluate Eq. (E8), we also should compute the

∂mn

∂Ho

∣∣∣∣
Ha,H4→0

and
∂M

∂Ho

∣∣∣∣
Ha,H4→0

(E9)

terms. Thus, we first take a derivative of self-consistent relation for mn and M Eqs. (A2) and (A3) with respect to Ho and then
take the limit Ha and H4 → 0, we obtain as follows:

∂mn

∂Ho
= Ano +AnoK2χo +AnMK4∂M/∂Ho

〈kn〉 − K2Ann
,

∂M

∂Ho
= AMo +AMoK2χo +AMnK2∂mn/∂Ho

〈ko〉 − K4AMM
. (E10)

At the CE point, χo is computed similarly to Eq. (E3) at T +
s , where ma = M = 0. For T −

s , χm can be obtained numerically from
Eqs. (E8) and (E10). We can confirm that the susceptibility has a certain finite value at T −

s by numerical computations.

b. Case x > xM

Otherwise, for x > xM , we expand the self-consistency relations for ma with respect to ma and M as follows:

ma〈kn〉〈ko〉
(

1 − T ′
�

T

)(
1 − T ′

s

T

)
	 E ′

ā

[
Ha

〈
k2

a

〉 + Hā〈ko〉〈kn〉 − (λa − 1)Ca(λa)(
a)λa−2
]

+ F ′
aā

[
Hā

〈
k2

ā

〉 + Ha〈ka〉〈kā〉 − (λā − 1)Cā(λā)(
ā)λā−2] + h.o., (E11)

where E ′
ā = 〈kā〉(1 − 〈k2

ā 〉/〈kā〉+gā (M∗ )
T ) and F ′

aā = 1
T 〈ko〉〈kn〉 + 1

T
K4M∗〈k2

o〉〈kn〉.
It can be checked easily that Eq. (E11) is similar case to Eq. (E2) except the critical temperature T ′

s and coefficients E ′
ā and

F ′. Thus, we performed similar calculations as for the x < xM case considering minor differences between the cases x < xM and
x > xM . By performing similar calculations as for the x < xM case, we obtain the susceptibility of ma as follows:

χo ≈
⎧⎨
⎩

(T − T ′
s )−1 for T > T ′

s ,

(T ′
s − T )−1 for T ′

s > T ,

and χn ≈
⎧⎨
⎩

(T − T ′
s )−1 for T > T ′

s ,

(T ′
s − T )−1 for T ′

s > T .

(E12)

2. M-magnetization

Likewise, the self-consistency relation for M Eq. (A3) can be expanded as

M〈ko〉 	 
4
〈
k2

o

〉 − (λo − 1)CM (λo)
λo−2
4 − Dm(λo)
λo−2 + h.o. (E13)

To obtain the susceptibility of M, we take partial derivative of the above self-consistency relation with respect to H4 and then
taking H2 and H4 → 0:

χM〈ko〉 	 (K4χM + 1)
〈
k2

o

〉 − (λo − 2)CM (λo)(K4χM )(K4M )λo−3 − (λo − 2)Dm(λo)(K2mo)λo−3K2
∂mo

∂H4
+ h.o. (E14)

For x < xM , because M is O(mλo−2
o ), ∂mo/∂H4 is very small compared with the O(1) term. Taking this limit, we obtain the

susceptibility of M. We also take the limit mo = 0 for T +
s :

χM ≈
(

T − x

〈
k2

o

〉
〈ko〉

)−1

. (E15)
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Otherwise, x � xM and T → T −
s,M , M can be approximated to M∗, where M∗ becomes Ising spin in single SF networks, and ma

is negligible to M. Taking this limit, we can obtain the susceptibility of M as follow. We also take the limit M = 0 for T +
s,M :

χM ≈
⎧⎨
⎩

(T − Ts,M )−1 for T > Ts,M ,

(Ts,M − T )−1 for Ts,M > T .

(E16)
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