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A recent line of works studied wide deep neural networks (DNNs) by approximating them as Gaussian
processes (GPs). A DNN trained with gradient flow was shown to map to a GP governed by the neural tangent
kernel (NTK), whereas earlier works showed that a DNN with an i.i.d. prior over its weights maps to the so-called
neural network Gaussian process (NNGP). Here we consider a DNN training protocol, involving noise, weight
decay, and finite width, whose outcome corresponds to a certain non-Gaussian stochastic process. An analytical
framework is then introduced to analyze this non-Gaussian process, whose deviation from a GP is controlled
by the finite width. Our contribution is threefold: (i) In the infinite width limit, we establish a correspondence
between DNNs trained with noisy gradients and the NNGP, not the NTK. (ii) We provide a general analytical
form for the finite width correction (FWC) for DNNs with arbitrary activation functions and depth and use it to
predict the outputs of empirical finite networks with high accuracy. Analyzing the FWC behavior as a function
of n, the training set size, we find that it is negligible for both the very small n regime, and, surprisingly, for
the large n regime [where the GP error scales as O(1/n)]. (iii) We flesh out algebraically how these FWCs can
improve the performance of finite convolutional neural networks (CNNs) relative to their GP counterparts on
image classification tasks.
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I. INTRODUCTION

Deep neural networks (DNNs) have been rapidly advanc-
ing the state-of-the-art in machine learning, yet a complete
analytic theory remains elusive. Recently, several exact re-
sults were obtained in the highly over-parameterized regime
[N → ∞, where N denotes the width or number of chan-
nels for fully connected networks (FCNs) and convolutional
neural networks (CNNs), respectively] [1]. This facilitated
the derivation of an exact correspondence with Gaussian pro-
cesses (GPs) known as the neural tangent kernel (NTK) [2].
The latter holds when highly over-parameterized DNNs are
trained by gradient flow, namely, with vanishing learning rate
and involving no stochasticity.

The NTK result has provided the first example of a DNN
to GP correspondence valid after end-to-end DNN training.
This theoretical breakthrough allows one to think of DNNs
as inference problems with underlying GPs [3]. For instance,
it provides a quantitative description of the generalization
properties [4,5] and training dynamics [2,6] of DNNs.

Despite its novelty and importance, the NTK correspon-
dence suffers from a few shortcomings: (a) In the NTK
parametrization, the weights of the network change only
slightly from their initial random values, thus it is a form
of “lazy learning” [7], unlike finite DNNs which are typi-
cally in the feature learning regime [8]. (b) The deterministic
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training of NTK is qualitatively different from the stochas-
tic one used in practice. (c) NTK typically under-performs
convolutional neural networks (CNNs) trained with stochastic
gradient descent (SGD) [9] on real-world tasks such as image
classification tasks. (d) Deriving explicit finite width correc-
tions (FWCs) is challenging, as it requires solving a set of
coupled ODEs [10,11]. Thus, there is a need for an extended
theory for end-to-end trained deep networks which is valid for
finite width DNNs.

Our contribution is threefold. First, we establish a cor-
respondence between a DNN trained with noisy gradients
and a statistical field theory description of the distribution
of the DNN’s outputs (Sec. II). We show that this stochastic
process (SP) converges to the neural network Gaussian pro-
cess (NNGP) as N → ∞. In previous works on the NNGP
correspondence [12,13] the NNGP kernel is determined by
the distribution of the DNN weights at initialization, whereas
in our correspondence the weights are sampled across the
stochastic training dynamics, drifting far away from their
initial values and acquiring nontrivial statistics. We call
our correspondence the neural network stochastic process
(NNSP), and show that it holds when the training dynamics
in output space exhibit ergodicity, which we validate numeri-
cally in several different settings.

Second, we predict the outputs of trained finite-width
DNNs, significantly improving upon the corresponding GP
predictions (Sec. III). This is done by a perturbation theory
derivation of leading FWCs which are found to scale with
width as 1/N . The accuracy at which we can predict the
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FIG. 1. Leading FWC to the mean | f̄U (x∗)| [Eq. (11)] and GP discrepancy (RMSE) as a function of train set size n for varying training
noise σ 2. The target is quadratic g(x) = xTAx = O(1) with x ∈ Sd−1(

√
d ) so the number of parameters to be learnt is d (d + 1)/2 (vertical

gray dashed line). The GP discrepancy is monotonically decreasing with n whereas | f̄U (x∗)| increases linearly for small n [dashed-dotted lines
in panel (a)] before it decays (best illustrated for larger d and σ 2). For sufficiently large n, both the GP discrepancy and | f̄U (x∗)| scale as 1/n
[diagonal dashed black lines in panels (b), (c)]. This verifies our prediction for the scaling of FWCs with n, Eq. (14) in the large n regime.
Notably, it implies that at large N FWCs are only important at intermediate values of n.

empirical DNNs’ outputs serves as a strong verification for
our aforementioned ergodicity assumption. In the regime
where the GP RMSE scales as 1/n, we find that the leading
FWC is a decaying function of n, and thus overall negligible.
In the small n regime we find that the FWC is small and grows
with n (Fig. 1).

Third, our formalism sheds light on the empirical obser-
vation that infinite channel CNNs (with no pooling layers)
do not benefit from weight sharing, which is present in finite
CNNs [14]. We show that the leading correction to the GP
limit already captures weight sharing effects. Alongside this,
we validate that the NNSP correspondence holds also when
training CNNs (Sec. IV B).

Overall, the NNSP correspondence provides a rich ana-
lytical and numerical framework for exploring the theory of
deep learning, unique in its ability to incorporate finite over-
parameterization, stochasticity, and depth.

Related work

The idea of leveraging the dynamics of the gradient descent
algorithm for approximating Bayesian inference has been
considered in various works [15–19]. However, to the best of
our knowledge, a correspondence with a concrete SP or a non-
parametric model was not established nor was a comparison
made of the DNN’s outputs with analytical predictions.

Finite width corrections were studied recently in the con-
text of the NTK correspondence by several authors. Hanin
and Nica [20] studied the NTK of finite DNNs, but where the
depth scales together with width, whereas we keep the depth
fixed. Dyer and Gur-Ari [10] obtained a finite N correction
to the linear integral equation governing the evolution of the
predictions on the training set. Our work differs in several
aspects: (a) We describe a different correspondence under
different a training protocol with qualitatively different behav-
ior. (b) We derive relatively simple formulas for the outputs
which become entirely explicit at large n. (c) We account
for all sources of finite N corrections whereas finite N NTK
randomness remained an empirical source of corrections not
accounted for by Dyer and Gur-Ari [10]. (d) Our formalism
differs considerably: its statistical mechanical nature enables

one to import various standard tools for treating randomness,
ergodicity breaking, and taking into account nonperturbative
effects. (e) We have no smoothness limitation on our activa-
tion functions and provide FWCs on a generic data point and
not just on the training set.

Another recent paper [21] studied Bayesian inference with
weakly non-Gaussian priors induced by finite-N DNNs. Un-
like here, there was no attempt to establish a correspondence
with trained DNNs. The formulation presented here has the
conceptual advantage of representing a distribution over func-
tion space for arbitrary training and test data, rather than over
specific draws of data sets. This is useful for studying the large
n behavior of learning curves, where analytical insights into
generalization can be gained [4]. Last, we further find novel
expressions for the fourth cumulant for ReLU activation for
four randomly chosen points.

A somewhat related line of work studied the mean-field
regime of shallow NNs [22–24]. We point out the main differ-
ences from our work: (a) The NN output is scaled differently
with width. (b) In the mean-field regime one is interested
in the dynamics (finite t) of the distribution over the NN
parameters in the form of a PDE of the Fokker-Planck type. In
contrast, in our framework we are interested in the distribution
over function space at equilibrium, i.e., for t → ∞. (c) The
mean-field analysis was originally tailored for two-layer fully
connected NNs and is challenging to generalize to deeper
architectures [25,26] or to CNNs. In contrast, our formalism
generalizes to deeper fully connected NNs and to CNNs as
well, as we show in Sec. IV B.

II. THE NNSP CORRESPONDENCE

In this section we show that finite-width DNNs, trained in
a specific manner, correspond to Bayesian inference using a
nonparametric model which tends to the NNGP as N → ∞.
We first give a short review of Langevin dynamics in weight
space as described by Neal et al. [27], Welling and Teh [18],
which we use to generate samples from the posterior over
weights. We then shift our perspective and consider the cor-
responding distribution over functions induced by the DNN,
which characterizes the nonparametric model.
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A. Recap of Langevin-type dynamics

Consider a DNN trained with full-batch gradient descent
while injecting white Gaussian noise and including a weight
decay term, so that the discrete time dynamics of the weights
read

�wt := wt+1 − wt = −[γwt + ∇wL(zw )]η +
√

2T ηξt , (1)

where wt is the vector of all network weights at time step t ,
γ is the strength of the weight decay, L(zw ) is the loss as a
function of the output zw, T is the temperature (the magnitude
of noise), η is the learning rate and ξt ∼ N (0, I ). As η → 0
these discrete-time dynamics converge to the continuous-
time Langevin equation given by ẇ(t ) = −∇w[ γ

2 ||w(t )||2 +
L(zw )] + √

2T ξ (t ) with 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′), so that as
t → ∞ the weights will be sampled from the equilibrium
Gibbs distribution in weight space, given by [28]

P(w) ∝ exp

{
− 1

T

[
γ

2
||w||2 + L(zw )

]}

= exp

{
−
[

1

2σ 2
w

||w||2 + 1

2σ 2
L(zw )

]}
. (2)

The above equality holds since the equilibrium Gibbs
distribution of the Langevin dynamics is also the posterior
distribution of a Bayesian neural network (BNN) with an i.i.d.
Gaussian prior on the weights w ∼ N (0, σ 2

wI ). Thus, we can
map the hyperparameters of the training to those of the BNN:
σ 2

w = T/γ and σ 2 = T/2. Notice that a sensible scaling for
the weight variance at layer � is σ 2

w,� ∼ O(1/N�−1), thus the
weight decay needs to scale as γ� ∼ O(N�−1). We choose to
scale γ and not T since we would like to keep σ 2 fixed.

B. A transition from weight space to function space

We aim to move from a distribution over weight space as
in Eq. (2), to one over function space. Namely, we consider
the distribution of zw(x) implied by the above P(w) where
for concreteness we consider a DNN with a single scalar out-
put zw(x) ∈ R on a regression task with data {(xα, yα )}n

α=1 ⊂
Rd × R. Denoting by P[ f ] the induced measure on function
space we formally write

P[ f ] =
∫

dwδ[ f − zw]P(w)

∝ e− 1
2σ2 L[ f ]

∫
dwe

− 1
2σ2

w
||w||2

δ[ f − zw], (3)

where
∫

dw denotes an integral over all weights and we de-
note by δ[ f − zw] a δ function in function-space. As common
in path-integrals or field-theory formalism [29], such a δ func-
tion is understood as a limit procedure where one chooses a
suitable basis for function space, trims it to a finite subset,
treats δ[ f − zw] as a product of regular δ functions, and finally
takes the size of the subset to infinity.

Notice that the posterior over functions Eq. (3) is naturally
decomposed into a likelihood term e− 1

2σ2 L[ f ] and a prior over

functions P0[ f ] ∝ ∫ dwe
− 1

2σ2
w

||w||2
δ[ f − zw]. All the informa-

tion about the network’s inductive bias is encoded in the prior
P0( f ), since the likelihood is independent of the network

architecture and the prior over the weights. Thus, we can relate
any correlation function in function space and weight space
with statistics given by the prior, for instance the two-point
correlation function is∫

D f
∫

dwP0(w)δ[ f − zw]︸ ︷︷ ︸
P0[ f ]

f (x) f (x′)

=
∫

dwP0(w)zw(x)zw(x′), (4)

where D f is the integration measure over function space. As
noted by Cho and Saul [30], in the limit of N → ∞ the right-
hand side (RHS) of Eq. (4) equals the kernel of the NNGP
associated with this DNN, K (x, x′). Moreover, for large but
finite N , P0[ f ] will tend to a Gaussian with a 1/N leading
correction

P0[ f ] ∝ e− 1
2

∫
dμ(x)dμ(x′ ) f (x)K−1(x,x′ ) f (x′ ) + O(1/N ), (5)

where μ(x) is the the probability measure from which the in-
puts x of the train and test sets are sampled: dμ(x) = P(x)dx,
and the O(1/N ) scaling of the finite-N correction will be
explained in Sec. III. If we now plug the prior Eq. (5) in
the expression for the posterior Eq. (3), take the loss to be
the total square error [31] L[ f ] =∑n

α=1[yα − f (xα )]2, and
take N → ∞ we have that the posterior P[ f ] is that of a GP.
Assuming ergodicity, one finds that training-time averaged
output of the DNN is given by the posterior mean of a GP,
with measurement noise [32] equal to σ 2 = T/2 and a kernel
given by the NNGP of that DNN.

We refer to the above expressions for P0[ f ] and P[ f ]
describing the distribution of outputs of a DNN trained ac-
cording to our protocol—the NNSP correspondence. Unlike
the NTK correspondence, the kernel which appears here is
different and no additional initialization dependent terms ap-
pear (as should be the case since we assumed ergodicity).
Furthermore, given knowledge of P0[ f ] at finite N , one can
predict the DNN’s outputs at finite N . Henceforth, we refer to
P0[ f ] as the prior distribution, as it is the prior distribution of
a DNN with random weights drawn from P0(w).

C. Evidence supporting ergodicity

Our derivation relies on the ergodicity of the dynamics.
Ergodicity is in general hard to prove rigorously in nonconvex
settings, and thus we must revert to heuristic arguments. First,
note that we are mainly interested in estimating the posterior
mean of the outputs, thus we do not require full ergodicity but
rather the much weaker condition of ergodicity in the mean
(see Appendix F). The most robust evidence of ergodicity in
the mean in function space is the high level of accuracy of our
analytical expressions, Eq. (11), in predicting the numerical
results.

Another indicator of ergodicity is a short autocorrelation
time (ACT) of the dynamics. Short ACT does not logically
imply ergodicity. However, the empirical ACT gives a lower
bound on the true correlation time of the dynamics. In our
framework, it is sufficient that the dynamics of the outputs
zw be ergodic, even if the dynamics of the weights converge
much slower to an equilibrium distribution. Indeed, we have
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FIG. 2. Fully connected two-layer network trained on a regression task. (a) Network outputs on a test point fDNN(x∗, t ) vs normalized time:
the time-averaged DNN output f̄DNN(x∗) (dashed line) is much closer to the GP prediction f̄GP(x∗) (dotted line) than to the ground truth y∗
(dashed-dotted line). (b) ACFs of the time series of the first- and second-layer weights, and of the outputs: the output converges to equilibrium
faster than the weights. (c) Relative MSE between the network outputs and the labels y (triangles), GP predictions f̄GP(x∗) Eq. (6) (dots), and
FWC predictions Eq. (10) (x’s), shown vs width for quadratic (blue) and ReLU (red) activations. For sufficiently large widths (N � 500) the
slope of the GP-DNN MSE approaches −2.0 and the FWC-DNN MSE is further improved by more than an order of magnitude.

found that the ACTs of the outputs are considerably smaller
than those of the weights [see Fig. 2(b)].

Last, from the point of view of constraint satisfaction prob-
lems, optimizing the train loss can be seen as an attempt to find
a solution to n constraints using far more variables (roughly
MN2 where M is the number of layers). One typically expects
ergodic behavior when the ratio of the number of variables to
the number of constraints becomes much larger than one [33],
which is the case in our over-parameterized setting. In this
regime, it has been shown that the loss landscape is charac-
terized by connected manifolds of low loss points rather than
isolated local minima [34], which further supports ergodicity.

D. Comparison between SGD and our training protocol

In this subsection we compare the training dynamics that
arise as a result of more standard Stochastic Gradient Descent
(SGD) algorithms and that of our training protocol involving
full-batch gradient descent (GD), weight decay, and additive
white Gaussian noise.

As there is no single standard training protocol for DNN
training, for the sake of concreteness we will compare our
protocol with SGD with zero momentum and finite weight
decay. The primary difference between such SGD and our
training protocol is the finite learning rate and source and
character of the noise involved: in the former, the noise is a
result of the random choice of mini-batch for each gradient
step whereas in the latter the noise is externally injected at ev-
ery step. SGD noise is state-dependent, namely, it depends on
the current value of the DNN parameter vector. Additionally,
mini-batch noise is anisotrpic with respect to the coordinates
of the DNN weight space, and also correlated across training
time, if we assume that each training example is sampled once
per epoch (in line with best practice [35]). In contrast, the
noise in our protocol is state-independent, isotropic and uncor-
related across training time. These properties ensure that the
dynamics in Eq. (1) lead to a well-behaved and analytically
tractable equilibrium distribution over weight space.

First we argue that for sufficiently small noise, large mini-
batch size, and low learning rate, this qualitative difference
would have only a small quantitative effect. Indeed, for small

noise we expect the initial trajectories under the two training
protocols (SGD versus ours) to be very similar and domi-
nated by the strong average gradient, until approaching the
bottom of some basin of attraction. As aforementioned, in the
over-parameterized regime, the landscape is “well-behaved”:
rather than isolated local minima we expect to find connected
manifolds of low loss points [34]. Under these conditions, the
difference between SGD and our protocol would be what is
considered “wide minima” due to the anisotropic nature of
the SGD noise. However, for small enough noise, all minima
would be wide under both settings.

This prompts the question of whether going to small
noise/small learning rate misses out on some generic perfor-
mance boost. Here there is empirical evidence that moderate
learning rates provide a consistent performance boost over
vanishing learning rates even at vanishing noise [36–38]. Such
finite learning rate effects are absent from our current analysis.
While quantitatively important, here we take the viewpoint
they are secondary in importance and focus, as various other
authors do [2,39], on the Bayesian and GP picture of deep
learning which emerges at low learning rate. Notwithstanding,
as opposed to generic state-dependent noise, finite learning
rates are more theoretically tractable. In particular, one can
imagine incorporating these into our formalism by consid-
ering the finite learning-rate modifications to loss function
studied in Ref. [40].

III. INFERENCE ON THE RESULTING NNSP

Having mapped the noise- and time-averaged outputs of
a DNN to inference on the above NNSP, we turn to analyze
the predictions of this NNSP in the case where N is large
but finite, such that the NNSP is only weakly non-Gaussian
[i.e., its deviation from a GP is O(1/N )]. Recall the standard
GP regression results for the posterior mean f̄GP(x∗) and vari-
ance 
GP(x∗) on an unseen test point x∗, given a training set
{(xα, yα )}n

α=1 ⊂ Rd × R [3]

f̄GP(x∗) =
∑
α,β

yαK̃−1
αβ K∗

β , 
GP(x∗) = K∗∗ −
∑
α,β

K∗
α K̃−1

αβ K∗
β ,

(6)
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where K̃αβ := K (xα, xβ ) + σ 2δαβ ; K∗
α := K (x∗, xα ); K∗∗ :=

K (x∗, x∗). The main result of this section is a derivation of
leading FWCs to the above results.

A. Edgeworth expansion and perturbation theory

Our first task is to find how P[ f ] changes compared to
the Gaussian (N → ∞) scenario. As the data-dependent part
e−L[ f ]/2σ 2

is independent of the DNN, this amounts to ob-
taining finite width corrections to the prior P0[ f ]. One way
to characterize this is to perform an Edgeworth expansion of
P0[ f ] [41,42]; we give a recap of this topic in Appendix A.
In essence, an Edgeworth expansion is a formal series that
characterises some probability distribution in terms of its cu-
mulants, and is most commonly used when the distribution at
hand can be written as a Gaussian plus some small correction
terms. This is especially conducive in our context since for
all DNNs with the last layer being fully connected, all odd
cumulants vanish and the 2rth cumulant scales as 1/Nr−1.
Consequently, at large N we can characterize P0[ f ] up to
O(1/N2) by its second and fourth cumulants, K (x1, x2) and
U (x1, x2, x3, x4), respectively. Thus, the leading-order correc-
tion to P0[ f ] reads

P0[ f ] ∝ e−SGP[ f ]

(
1 − 1

N
SU [ f ]

)
+ O(1/N2), (7)

where the GP action SGP and the first FWC action SU are given
by

SGP[ f ] = 1

2

∫
dμ1:2 fx1 K−1

x1,x2
fx2 ,

SU [ f ] = − 1

4!

∫
dμ1:4Ux1,x2,x3,x4 Hx1,x2,x3,x4 [ f ]. (8)

Here, H is the fourth functional Hermite polynomial (see
Appendix A), U is the fourth-order functional cumulant of the
NN output [we take U ∼ O(1) to emphasize the scaling with
N in Eqs. (7) and (10)], which depends on the choice of the
activation function φ,

Ux1,x2,x3,x4 = ς4
a (〈φ1φ2φ3φ4〉 − 〈φ1φ2〉〈φ3φ4〉)[3], (9)

where φα := φ[z�−1
i (xα )] and the preactivations are z�

i (x) =
b�

i +∑N�

j=1 W �
i jφ[z�−1

j (x)]. The bracket notation [3] indicates
summing over the three distinct pairings of the inte-
gers {1, . . . , 4}. Here we distinguished between the scaled
and nonscaled weight variances: σ 2

a = ς2
a /N , where a are

the weights of the last layer. Our shorthand notation for
the integration measure over inputs means, e.g., dμ1:4 :=
dμ(x1) · · · dμ(x4). We show in Appendix B 3 that our results
are invariant under a change of measure, thus we can keep it
arbitrary at this point.

Using perturbation theory, in Appendix B we compute
the leading FWC to the posterior mean f̄ (x∗) and variance
〈(δ f (x∗))2〉 on a test point x∗,

f̄ (x∗) = f̄GP(x∗) + N−1 f̄U (x∗) + O(N−2),〈
(δ f (x∗))2

〉 = 
GP(x∗) + N−1
U (x∗) + O(N−2), (10)

where

f̄U (x∗) = 1
6Ũ ∗

α1α2α3

(
ỹα1 ỹα2 ỹα3 − 3K̃−1

α1α2
ỹα3

)
,


U (x∗) = 1
2Ũ ∗∗

α1α2

(
ỹα1 ỹα2 − K̃−1

α1α2

)
, (11)

where all repeating indices are summed over the training
set (i.e., range over {1, . . . , n}), denoting: ỹα := K̃−1

αβ yβ , and
defining

Ũ ∗
α1α2α3

:= U ∗
α1α2α3

− Uα1α2α3α4 K̃−1
α4β

K∗
β ,

Ũ ∗∗
α1α2

:= U ∗∗
α1α2

− (U ∗
α1α2α3

+ Ũ ∗
α1α2α3

)
K̃−1

α3β
K∗

β , (12)

where asterisks denote evaluation at a test point x∗, e.g.,
U ∗

α1α2α3
= U (x∗, xα1 , xα2 , xα3 ) and U ∗∗

α1α2
= U (x∗, x∗, xα1 , xα2 ).

Equations (11) and (12) are one of our key analytical results,
which are qualitatively different from the corresponding GP
expressions in Eq. (6). The correction to the predictive mean
f̄U (x∗) has a linear term in y, which can be viewed as a
correction to the GP kernel, but also a cubic term in y, unlike
f̄GP(x∗) which is purely linear. The correction to the predictive
variance 
U (x∗) has quadratic terms in y, unlike 
GP(x∗)
which is y-independent. Ũ ∗

α1α2α3
has a clear interpretation in

terms of GP regression: If we consider the indices α1, α2, α3

as fixed, then U ∗
α1α2α3

can be thought of as the ground truth
value of a target function (analogous to y∗), and the second
term on the RHS Uα1α2α3α4 K̃−1

α4β
K∗

β is then the GP prediction
of U ∗

α1α2α3
with the kernel K , where α4 runs on the training

set [compare to f̄GP(x∗) in Eq. (6)]. Thus, Ũ ∗
α1α2α3

is the dis-
crepancy in predicting Uα1α2α3α4 using a GP with kernel K . In
Sec. III B we study the behavior of f̄U (x∗) as a function of n.

The posterior variance 
(x) = 〈(δ f (x))2〉 has a clear in-
terpretation in our correspondence: it is a measure of how
much we can decrease the test loss by ensembling (see
also Refs. [8,43,44]). Our procedure for generating empiri-
cal network outputs involves time-averaging over the training
dynamics after reaching equilibrium and also over different
realizations of noise and initial conditions (see Appendix F).
This allows for a reliable comparison with our FWC theory
for the mean. In principle, one could use the network outputs
at the end of training without this averaging, in which case
there will be fluctuations that will scale with 
(xα ). Following
this, one finds that the expected MSE test loss after training
saturates is n−1

∗
∑n∗

α=1{〈[ f̄ (xα ) − y(xα )]2〉 + 
(xα )}, where n∗
is the size of the test set.

B. Finite-width corrections for small and large data sets

The expressions in Eqs. (6) and (11) for the GP prediction
and the leading FWC are explicit but only up to a potentially
large matrix inversion, K̃−1, which is computationally costly
and can accumulate numerical error. These matrices also have
a random component related to the arbitrary choice of the
particular n training points, which ruins whatever symmetries
were present in the covariance function K (x, x′). An insightful
tool, used in the context of GPs, which solves both these issues
is the equivalent kernel (EK) [3,45]; see also Appendix J for
a short review. In essence, the discrete sums over the training
set appearing in Eq. (6) are replaced by integrals over all input
space, which together with a spectral decomposition of the
kernel function K (x, x′) =∑i λiψi(x)ψi(x′) yields the well
known result

f̄ EK
GP (x∗) =

∫
dμ(x′)

∑
i

λiψi(x∗)ψi(x′)
λi + σ 2/n

g(x′). (13)
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The EK approximates the GP predictions at large n, after aver-
aging on all draws of (roughly) n training points representing
the target function. Even if one is interested in a particular
dataset, fluctuations due to the choice of data-set are often
negligible at large n [4]. Here we develop an extension of
Eq. (13) for the NNSPs we find at large but finite N . In partic-
ular, we find the leading nonlinear correction to the EK result,
i.e., the “EK analog” of Eq. (11). To this end, we consider
the average predictions of an NNSP trained on an ensemble
of data sets of size n′, corresponding to n′ independent draws
from a distribution μ(x) over all possible inputs x. Following
the steps in Appendix K we find

f̄ EK
U (x∗) = 1

6
δ̃x∗x1Ux1,x2,x3,x4

{
n3

σ 6
δ̃x2x′

2
g(x′

2)δ̃x3x′
3
g(x′

3)δ̃x4x′
4
g(x′

4)

−3n2

σ 4
δ̃x2,x3 δ̃x4,x′

4
g(x′

4)

}
, (14)

where an integral
∫

dμ(x) is implicit for every pair of re-
peated x coordinates. We introduced the discrepancy operator
δ̃xx′ which acts on some function ϕ as

∫
dμ(x′)δ̃xx′ϕ(x′) :=

δ̃xx′ϕ(x′) = ϕ(x) − f̄ EK
GP (x). Essentially, Eq. (14) is derived

from Eq. (11) by replacing each K̃−1 by (n/σ 2)δ̃ and noticing
that in this regime Ũ ∗

x2,x3,x4
in Eq. (12) becomes δ̃x∗x1Ux1,x2,x3,x4 .

Interestingly, f̄ EK
U (x∗) is written explicitly in terms of mean-

ingful quantities: δ̃xx′g(x′) and δ̃x∗x1Ux1,x2,x3,x4 .
Equations (13) and (14) are valid for any weakly non-

Gaussian process, including ones related to CNNs (where N
corresponds to the number of channels). It can also be system-
atically extended to smaller values of n by taking into account
higher terms in 1/n, as in Cohen et al. [4]. At N → ∞,
we obtain the standard EK result, Eq. (13). It is basically a
high-pass linear filter which filters out features of g that have
support on eigenfunctions ψi associated with eigenvalues λi

that are small relative to σ 2/n. We stress that the ψi, λi’s are
independent of any particular size n dataset but rather are a
property of the average dataset. In particular, no computa-
tionally costly data dependent matrix inversion is needed to
evaluate Eq. (13).

Turning to our FWC result, Eq. (14), it depends on g(x)
only via the discrepancy operator δ̃xx′ . Thus, these FWCs
would be proportional to the error of the DNN, at N → ∞.
In particular, perfect performance at N → ∞, implies no
FWC. Second, the DNN’s average predictions act as a linear
transformation on the target function combined with a cubic
nonlinearity. Third, for g(x) having support only on some
finite set of eigenfunctions ψi of K , δ̃xx′g(x′) would scale as
σ 2/n at very large n. Thus, the above cubic term would lose
its explicit dependence on n. The scaling with n of this second
term is less obvious, but numerical results suggest that δ̃x2x3

also scales as σ 2/n, so that the whole expression in the {· · · }
has no scaling with n. In addition, some decreasing behavior
with n is expected due to the δ̃x∗x1Ux1,x2,x3,x4 factor which can
be viewed as the discrepancy in predicting Ux,x2,x3,x4 , at fixed
x2, x3, x4, based on n random samples (xα’s) of Uxα,x2,x3,x4 . In
Fig. 1 we illustrate this behavior at large n and also find that
for small n the FWC is small but increasing with n, implying
that at large N FWCs are only important at intermediate values
of n.

IV. NUMERICAL EXPERIMENTS

In this section we numerically test our analytical results.
We first demonstrate that in the limit N → ∞ the outputs of a
FCN trained in the regime of the NNSP correspondence con-
verge to a GP with a known kernel, and that the MSE between
them scales as ∼1/N2 which is the scaling of the leading FWC
squared. Second, we show that introducing the leading FWC
term N−1 f̄U (x∗), Eq. (11), further reduces this MSE by more
than an order of magnitude. Third, we study the performance
gap between finite CNNs and their corresponding NNGPs on
CIFAR-10.

A. Toy example: Fully connected networks on synthetic data

We trained a two-layer FCN f (x) =∑N
i=1 aiφ(w(i) · x) on

a quadratic target y(x) = xTAx where the x’s are sampled
with a uniform measure from the hyper-sphere Sd−1(

√
d );

see Appendix G 1 for more details. Our settings are such that
there are not enough training points to fully learn the target:
Fig. 2(a) shows that the time averaged outputs (after reaching
equilibrium) f̄DNN(x∗) is much closer to the GP prediction
f̄GP(x∗) than to the ground truth y∗. Otherwise, the conver-
gence of the network output to the corresponding NNGP
as N grows [shown in Fig. 2(c)] would be trivial, since all
reasonable estimators would be close to the target and hence
close to each other.

In Fig. 2(c) we plot in log-log scale (with base 10) the
MSE [normalized by ( f̄DNN)2] between the predictions of the
network f̄DNN and the corresponding GP and FWC predictions
for quadratic and ReLU activations. We find that indeed for
sufficiently large widths (N � 500) the slope of the GP-DNN
MSE approaches −2.0 (for both ReLU and quadratic), which
is expected from our theory, since the leading FWC scales
as 1/N . For smaller widths, higher order terms (in 1/N) in
the Edgeworth series Eq. (7) come into play. For quadratic
activation, we find that our FWC result further reduces the
MSE by more than an order of magnitude relative to the
GP theory. We recognize a regime where the GP and FWC
MSEs intersect at N � 100, below which our FWC actually
increases the MSE, which suggests a scale of how large N
needs to be for our leading FWC theory to hold.

B. Performance gap between finite CNNs
and their corresponding NNGPs

Several papers have shown that the performance on image
classification tasks of SGD-trained finite CNNs can surpass
that of the corresponding GPs, be it NTK [9] or NNGP [14].
More recently, Lee et al. [46] emphasized that this perfor-
mance gap depends on the procedure used to collapse the
spatial dimensions of image-shaped data before the final read-
out layer: flattening the image into a one-dimensional vector
(CNN-VEC) or applying global average pooling to the spatial
dimensions (CNN-GAP). It was observed that while infinite
FCNs and CNN-VEC networks outperform their respective
finite networks, infinite CNN-GAP networks under-perform
their finite-width counterparts, i.e., there exists a finite optimal
width.

One notable margin, of about 17% accuracy on CIFAR10,
was shown in Novak et al. [14] for the case of CNN with
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FIG. 3. DNN-GP MSE (blue) demonstrates convergence to a
slope of −2.0, validating the theoretically expected scaling. DNN-
ground truth (Y) MSE (green) shows finite CNN can outperform
corresponding GP.

no pooling. It was further pointed out there, that the NNGPs
associated with such CNNs, coincide with those of the corre-
sponding locally connected networks (LCNs), namely, CNNs
without weight sharing between spatial locations. Further-
more, the performance of SGD-trained LCNs was found to be
on par with that of their NNGPs. We argue that our framework
can account for this observation. The priors P0[ f ] of a LCN
and CNN-VEC agree on their second cumulant (the covari-
ance), which is the only one not vanishing as N → ∞, but
they need not agree on their higher order cumulants, which
come into play at finite N . In Appendix I we show that U
appearing in our leading FWC, already differentiates between
CNNs and LCNs. Common practice strongly suggests that the
prior over functions induced by CNNs is better suited than that
of LCNs for classification of natural images. As a result we
expect that the test loss of a finite-width CNN trained using
our protocol will initially decrease with N but then increase
beyond some optimal width Nopt, tending towards the loss of
the corresponding GP as N → ∞. This is in contrast to SGD
behavior reported in some works where the CNN performance
seems to saturate as a function of N , to some value better than
the NNGP [14,47]. Notably those works used maximum over
architecture scans, high learning rates, and early stopping, all
of which are absent from our training protocol.

To test the above conjecture we trained, according to our
protocol, a CNN with six convolutional layers and two fully
connected layers on CIFAR10, and used CNN-VEC for the
readout. We used MSE loss with a one-hot encoding into a
10 dimensional vector of the categorical label; further details
and additional settings are given in Appendix G. Figure 3
demonstrates that, using our training protocol, a finite CNN
can outperform its corresponding GP and approaches its
GP as the number of channels increases. This phenomenon
was observed in previous studies under realistic training set-
tings [14], and here we show that it appears also under our
training protocol. We note that a similar yet more pronounced
trend in performance appears here also when one considers
the averaged MSE loss rather the the MSE loss of the average
outputs. Last, we comment that our analysis has focused on
the simplest case with no pooling. It is an interesting open
question if finite-width corrections improve performance for
CNN architectures that include pooling.

V. CONCLUSION

In this work we presented a correspondence between finite-
width DNNs trained using Langevin dynamics (i.e., using
small learning rates, weight-decay and noisy gradients) and
inference on a stochastic-process (the NNSP), which ap-
proaches the NNGP as N → ∞. We derived finite width
corrections, that improve upon the accuracy of the NNGP
approximation for predicting the DNN outputs on unseen test
points, as well as the expected fluctuations around these.

In the limit of a large number of training points n → ∞,
explicit expressions for the DNNs’ outputs were given, involv-
ing no costly matrix inversions. In this regime, the FWC can
be written in terms of the discrepancy of GP predictions, so
that when GP has a small test error the FWC will be small,
and vice versa. In the small n regime, the FWC is small
but grows with n. Our formalism relates to the observation
that finite CNNs (with no pooling layers) outperform their
corresponding NNGPs on image classification tasks [14]. The
weight-sharing property of finite CNNs is absent at the level
of the NNGP but is reflected already in our leading FWCs.
This constitutes one real-world example where the FWC is
well suited to the structure of the data distribution, and thus
improves performance relative to the corresponding GP.

There are several factors that make finite SGD-trained
DNNs used in practice different from their GP counterparts,
e.g., large learning rates, early stopping, etc. [46]. Impor-
tantly, our framework quantifies the specific contribution of
finite-width effects to this difference, distilling it from the
contribution of these other factors. In a future study, it would
be very interesting to consider well-controlled toy models that
can elucidate under what conditions on the architecture and
data distribution does the FWC improve performance relative
to GP.
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APPENDIX A: EDGEWORTH SERIES

In this Appendix we give a recap of the Edgeworth series
expansion of some probability distribution, which is a way to
characterize it in terms of its cumulants. We begin with scalar-
valued RVs and then move on to discuss vector-valued RVs
and finally distributions over function spaces, i.e., stochastic
processes, which are the focus of this work.

1. Edgeworth expansion for a scalar random variable

Consider scalar valued continuous iid RVs {Zi} and assume
WLOG 〈Zi〉 = 0, 〈Z2

i 〉 = 1, with higher cumulants κZ
r for

r � 3. Now consider their normalized sum YN = 1√
N

∑N
i=1 Zi.

Recall that cumulants are additive, i.e., if Z1, Z2 are indepen-
dent RVs, then κr (Z1 + Z2) = κr (Z1) + κr (Z2) and that the
rth cumulant is homogeneous of degree r, i.e., if c is any
constant, then κr (cZ ) = crκr (Z ). Combining additivity and
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homogeneity of cumulants we have a relation between the
cumulants of Z and Y ,

κr�2 := κY
r�2 = NκZ

r

(
√

N )r
= κZ

r

Nr/2−1
. (A1)

Now, let ϕ(y) := (2π )−1/2e−y2/2 be the PDF of the standard
normal distribution. The characteristic function of Y is given
by the Fourier transform of its PDF P(y) and is expressed via
its cumulants

P̂(t ) := F[P(y)] = exp

( ∞∑
r=1

κr
(it )r

r!

)

= exp

( ∞∑
r=3

κr
(it )r

r!

)
ϕ̂(t ), (A2)

where the last equality holds since we assumed κ1 = 0,

κ2 = 1 and ϕ̂(t ) = e− t2

2 . From the CLT, we know that P(y) →
ϕ(y) as N → ∞. Taking the inverse Fourier transform F−1

has the effect of mapping it → −∂y, thus

P(y) = exp

[ ∞∑
r=3

κr
(−∂y)r

r!

]
ϕ(y) = ϕ(y)

[
1 +

∞∑
r=3

κr

r!
Hr (y)

]
,

(A3)

where Hr (y) is the rth probabilist’s Hermite polynomial, de-
fined by

Hr (y) = (−)rey2/2 dr

dyr
e−y2/2, (A4)

e.g., H4(y) = y4 − 6y2 + 3.

2. Edgeworth expansion for a vector valued random variable

Consider now the analogous procedure for vector-valued
RVs in Rn (see Ref. [41]). We perform an Edgeworth expan-
sion around a centered multivariate Gaussian distribution with
covariance matrix κ i, j ,

ϕ(�y) = 1

(2π )d/2 det(κ i, j )
exp

(
−1

2
κi, jy

iy j

)
, (A5)

where κi, j is the matrix inverse of κ i, j and Einstein summation
is used. The rth-order cumulant becomes a tensor with r
indices, e.g., the analog of κ4 is κ i, j,k,l . The Hermite polyno-
mials are now multi-variate polynomials, so that the first one
is Hi = κi, jy j and the fourth one is

Hi jkl (�y) = e
1
2 κi′ , j′ yi′ y j′

∂i∂ j∂k∂l e
− 1

2 κi′ , j′ yi′ y j′

= HiHjHkHl − HiHjκk,l [6] + κi, jκk,l [3], (A6)

where the postscript bracket notation is simply a convenience
to avoid listing explicitly all possible partitions of the indices,
e.g., κi, jκk,l [3] = κi, jκk,l + κi,kκ j,l + κi,lκ j,k .

In our context we are interested in even distributions where
all odd cumulants vanish, due to the symmetric statistics of the
last-layer weights, so the Edgeworth expansion would read

P(�y) = exp

(
κ i, j,k,l

4!
∂i∂ j∂k∂l + · · ·

)
ϕ(�y)

= ϕ(�y)

(
1 + κ i, j,k,l

4!
Hi jkl + · · ·

)
. (A7)

3. Edgeworth expansion for a function valued random variable

In this subsection we extend the result of the Edge-
worth expansion for vector-valued RVs (i.e., distributions over
finite-dimensional vector spaces) to function-valued RVs (i.e.,
distributions over function space or infinite-dimensional vec-
tor spaces). Loosely speaking, a function f (x) can be thought
of as an infinite dimensional vector with its argument playing
the role of a continuous index. Thus, the cumulants become
“functional tensors,” i.e., multivariate functions of the input x.

Let us recall that in our context we are interested in the
distribution of the outputs of some fully connected neural
network. For simplicity we focus on a two-layer network,
but the derivation generalizes straightforwardly to networks
of any depth. We are interested in the finite N corrections to
the prior distribution P0[ f ], i.e., the distribution of the DNN

output f (x) =∑N
i=1 aiφ(wT

i x), with ai ∼ N (0,
ς2

a
N ) and wi ∼

N (0,
ς2

w

d I ). Because a has zero mean and a variance that scales
as 1/N , all odd cumulants are zero and the 2rth cumulant
scales as 1/Nr−1. This holds true for any DNN having a fully
connected last layer with variance scaling as 1/N . Thus, the
leading FWC to the prior P0[ f ] is

P0[ f ] = 1

Z
e−SGP[ f ]

[
1 + 1

4!

∫
dμ(x1) · · · dμ(x4)U (x1, x2, x3, x4)H[ f ; x1, x2, x3, x4]

]
+ O(1/N2), (A8)

where SGP[ f ] is as in the main text Eq. (8) and the fourth Hermite functional tensor is

H[ f ] =
∫

dμ(x′
1) · · · dμ(x′

4)K−1(x1, x′
1) · · · K−1(x4, x′

4) f (x′
1) · · · f (x′

4)

− K−1(xα, xβ )
∫

dμ(x′
μ)dμ(x′

ν )K−1(xμ, x′
μ)K−1(xν, x′

ν ) f (x′
μ) f (x′

ν )[6]

+ K−1(xα, xβ )K−1(xμ, xν )[3], (A9)

where by the integers in [·] we mean all possible combinations of this form, e.g.,

K−1
αβ K−1

μν = K−1
12 K−1

34 + K−1
13 K−1

24 + K−1
14 K−1

23 . (A10)

The H[ f ] appearing in Eq. (A9) is the functional analog of the multivariate Hermite polynomial Eq. (A6).
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APPENDIX B: FIRST-ORDER CORRECTION
TO POSTERIOR MEAN AND VARIANCE

1. Posterior mean

The posterior mean with the leading FWC action is given
by

〈 f (x∗)〉 =
∫
D f e−S[ f ] f (x∗)∫

D f e−S[ f ]
+ O(1/N2), (B1)

where the action is

S[ f ] = SGP[ f ] + SData[ f ] + SU [ f ],

SData[ f ] = 1

2σ 2

n∑
α=1

( f (xα ) − yα )2, (B2)

and where the O(1/N2) implies that we only treat the first-
order Taylor expansion of S[ f ], and where SGP[ f ], SU [ f ] are
as in the main text Eq. (8). The general strategy is to bring
the path integral

∫
D f to the front, so that we will get just

correlation functions w.r.t. the Gaussian theory (including the

data term SData[ f ]) 〈· · · 〉0, namely, the well-known results [3]
for f̄GP(x∗) = 〈 f (x∗)〉0 and 
GP(x∗) = 〈(δ f (x∗))2〉0, and then
finally perform the integrals over input space. Expanding both
the numerator and the denominator of Eq. (B1), the leading
finite width correction for the posterior mean reads

f̄U (x∗) = 1

4!

(∫
dμ1:4U (x1, x2, x3, x4)〈 f (x∗)H[ f ]〉0

−〈 f (x∗)〉0

∫
dμ1:4U (x1, x2, x3, x4)〈H[ f ]〉0

)
.

(B3)

This, as standard in field theory, amounts to omitting all
terms corresponding to bubble diagrams, namely, we keep
only terms with a factor of 〈 f (x∗) f (x′

α )〉0 and ignore terms
with a factor of 〈 f (x∗)〉0, since these will cancel out. This is a
standard result in perturbative field theory (see, e.g., Zee [48]).

We now write down the contributions of the quartic,
quadratic and constant terms in H[ f ]:

(1) For the quartic term in H[ f ], we have

〈 f (x∗) f (x′
1) f (x′

2) f (x′
3) f (x′

4)〉0 − 〈 f (x∗)〉0〈 f (x′
1) f (x′

2) f (x′
3) f (x′

4)〉0

= 
(x∗, x′
α )
(x′

β, x′
γ ) f̄ (x′

δ )[12] + 
(x∗, x′
α ) f̄ (x′

β ) f̄ (x′
γ ) f̄ (x′

δ )[4]. (B4)

We dub these terms by f̄ 

∗ and f̄ f̄ f̄ 
∗ to be referenced
shortly. We mention here that they are the source of the linear
and cubic terms in the target y appearing in Eq. (11) in the
main text.

(2) For the quadratic term in H[ f ], we have

〈 f (x∗) f (x′
μ) f (x′

ν )〉0 − 〈 f (x∗)〉0〈 f (x′
μ) f (x′

ν )〉0

= 
(x∗, x′
μ) f̄ (x′

ν )[2]. (B5)

We note in passing that these cancel out exactly together
with similar but opposite sign terms/diagrams in the quartic
contribution, which is a reflection of measure invariance. This
is elaborated on in Appendix B 3.

(3) For the constant terms in H[ f ], we will be left only
with bubble diagram terms ∝ ∫ D f f (x∗) which will cancel
out in the leading order of 1/N .

2. Posterior variance

The posterior variance is given by


(x∗) = 〈 f (x∗) f (x∗)〉 − f̄ 2

= 〈 f (x∗) f (x∗)〉0 + 〈 f (x∗) f (x∗)〉U

− f̄ 2
GP − 2 f̄GP f̄U + O(1/N2)

= 
GP(x∗) + 〈 f (x∗) f (x∗)〉U − 2 f̄GP f̄U + O(1/N2).

(B6)

Following similar steps as for the posterior mean, the lead-
ing finite width correction for the posterior second moment at

x∗ reads

〈 f (x∗) f (x∗)〉U

= 1

4!

(∫
dμ1:4U (x1, x2, x3, x4)〈 f (x∗) f (x∗)H[ f ]〉0

−〈 f (x∗) f (x∗)〉0

∫
dμ1:4U (x1, x2, x3, x4)〈H[ f ]〉0

)
.

(B7)

As for the posterior mean, the constant terms in H[ f ]
cancel out and the contributions of the quartic and quadratic
terms are

quartic terms = 
∗α
∗β f̄γ f̄δ[12] + 
∗α
∗β
γδ[12] (B8)

and

quadratic terms = 
∗μ
∗ν[2]. (B9)

The quartic terms exactly cancel out with the −2 f̄GP f̄U
terms and we are left with only quadratic contributions, as in
the main text.

3. Measure invariance of the result

The expressions derived above may seem formidable, since
they contain many terms and involve integrals over input
space which seemingly depend on the measure μ(x). Here
we show how they may in fact be simplified to the compact
expressions in the main text Eq. (11) which involve only
discrete sums over the training set and no integrals, and are
thus manifestly measure-invariant.

For simplicity, we show here the derivation for the FWC
of the mean f̄U (x∗), and a similar derivation can be done for

U (x∗). In the following, we carry out the x integrals, by
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plugging in the expressions from Eq. (6) and coupling them
to U . As in the main text, we use the Einstein summation
notation, i.e., repeated indices are summed over the training
set. The contribution of the quadratic terms is

Aα1,∗K̃−1
α1β1

yβ1 − Aα1α2 K̃−1
α1β1

K̃−1
α2β2

yβ1 Kβ2,∗, (B10)

where we defined

A(x3, x4) :=
∫∫

dμ(x1)dμ(x2)U (x1, x2, x3, x4)K−1(x1, x2).

(B11)
Fortunately, this seemingly measure-dependent expression

will cancel out with one of the terms coming from the f̄ 

∗
contribution of the quartic terms in H[ f ]. This is not a

coincidence and is a general feature of the Hermite polyno-
mials appearing in the Edgeworth series, thus for any order in
1/N in the Edgeworth series we will always be left only with
measure invariant terms. Collecting all terms that survive we
have

1

4!

{
4Ũ ∗

α1α2α3
K̃−1

α1β1
K̃−1

α2β2
K̃−1

α3β3
yβ1 yβ2 yβ3

− 12Ũ ∗
α1α2α3

K̃−1
α2β2

K̃−1
α1β1

yβ1

}
, (B12)

where we defined

Ũ ∗
α1α2α3

:= U ∗
α1α2α3

− Uα1α2α3α4 K̃−1
α4β4

K∗
β4

. (B13)

This is a more explicit form of the result reported in the main
text, Eq. (11).

APPENDIX C: FINITE WIDTH CORRECTIONS FOR MORE THAN ONE HIDDEN LAYER

For simplicity, consider a fully connected network with two hidden layers both of width N , and no biases, thus the
preactivations h(x) and output z(x) are given by

h(x) = σw2√
N

W (2)φ

(
σw1√

d
W (1)x

)
, z(x) = σa√

N
aTφ[h(2)(x)]. (C1)

We want to find the second and fourth cumulants of z(x). Recall that we found that the leading-order Edgeworth expansion
for the functional distribution of h is

PK,U [h] ∝ e− 1
2 h(x′

1 )K−1(x′
1,x

′
2 )h(x′

2 )

(
1 + 1

N
U (x′

1, x′
2, x′

3, x′
4)H[h; x′

1, x′
2, x′

3, x′
4]

)
, (C2)

where K−1(x′
1, x′

2) and U (x′
1, x′

2, x′
3, x′

4) are known from the previous layer. So we are looking for two maps:

Kφ (K,U )(x, x′) = 〈φ[h(x)]φ[h(x′)]〉PK,U [h], Uφ (K,U )(x1, x2, x3, x4) = 〈φ[h(x1)]φ[h(x2)]φ[h(x3)]φ[h(x4)]〉PK,U [h], (C3)

so that the mapping between the first two cumulants K and U of two consequent layers is (assuming no biases)

K (�+1)(x, x′)
σ 2

w(�+1)

= Kφ (K (�),U (�) )(x, x′),

U (�+1)(x1, x2, x3, x4)

σ 4
w(�+1)

= Uφ (K (�),U (�) )(x1, x2, x3, x4) − Kφ (K (�),U (�) )
(
xα1 , xα2

)
Kφ (K (�),U (�) )

(
xα3 , xα4

)
[3], (C4)

where the starting point is the first layer (N (0) ≡ d),

K (1)(x, x′) = σ 2
w(1)

N (0)
x · x′ U (1)(x1, x2, x3, x4) = 0. (C5)

The important point to note, is that these functional integrals can be reduced to ordinary finite dimensional integrals. For
example, for the second layer, denote

h :=
(

h1

h2

)
K(1) =

(
K (1)(x1, x1) K (1)(x1, x2)
K (1)(x1, x2) K (1)(x2, x2)

)
, (C6)

we find for K (2)

K (2)(x1, x2)

σ 2
w(2)

=
∫

dhe− 1
2 hTK−1

(1) hφ(h1)φ(h2), (C7)

and for U (2) we denote

h :=

⎛
⎜⎝

h1

h2

h3

h4

⎞
⎟⎠ K(1) =

⎛
⎜⎜⎝

K (1)(x1, x1) K (1)(x1, x2) K (1)(x1, x3) K (1)(x1, x4)
K (1)(x1, x2) K (1)(x2, x2) K (1)(x2, x3) K (1)(x2, x4)
K (1)(x1, x3) K (1)(x2, x3) K (1)(x3, x3) K (1)(x3, x4)
K (1)(x1, x4) K (1)(x2, x4) K (1)(x3, x4) K (1)(x4, x4)

⎞
⎟⎟⎠, (C8)

so that

Uφ (K (1),U (1) )(x1, x2, x3, x4) =
∫

dhe− 1
2 hTK−1

(1) hφ(h1)φ(h2)φ(h3)φ(h4). (C9)

This iterative process can be repeated for an arbitrary number of layers.
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APPENDIX D: FOURTH CUMULANT FOR THRESHOLD POWER-LAW ACTIVATION FUNCTIONS

1. Fourth cumulant for ReLU activation function

The U ’s appearing in our FWC results can be derived for several activations functions, and in our numerical experiments we
use a quadratic activation φ(z) = z2 and ReLU. Here we give the result for ReLU, which is similar for any other threshold power
law activation (see derivation in Appendix D 2), and give the result for quadratic activation in Appendix E. For simplicity, in
this section we focus on the case of a two-layer FCN with no biases, input dimension d and N neurons in the hidden layer, such
that φi

α := φ(w(i) · xα ) is the activation at the ith hidden unit with input xα sampled with a uniform measure from Sd−1(
√

d ),
where w(i) is a vector of weights of the first layer. This can be generalized to the more realistic settings of deeper nets and
un-normalized inputs, where in the former the linear kernel L is replaced by the kernel of the layer preceding the output, and the
latter amounts to introducing some scaling factors.

For φ = ReLU, Cho and Saul [30] give a closed form expression for the kernel which corresponds to the GP. Here we find
U corresponding to the leading FWC by first finding the fourth moment of the hidden layer 〈φ1φ2φ3φ4〉 [see Eq. (9)], taking for
simplicity ς2

w = 1,

〈φ1φ2φ3φ4〉 =
√

det(L−1)

(2π )2

∫ ∞

0
dze− 1

2 zTL−1zz1z2z3z4, (D1)

where L−1 above corresponds to the matrix inverse of the 4 × 4 matrix with elements Lαβ = (xα · xβ )/d which is the kernel
of the previous layer (the linear kernel in the two-layer case) evaluated on two random points. In Appendix D 2 we follow the
derivation in Moran [49], which yields (with a slight modification noted therein) the following series in the off-diagonal elements
of the matrix L:

〈φ1φ2φ3φ4〉 =
∞∑

�,m,n,p,q,r=0

A�mnpqrL�
12Lm

13Ln
14Lp

23Lq
24Lr

34, (D2)

where the coefficients A�mnpqr are

(−)�+m+n+p+q+rG�+m+nG�+p+qGm+p+rGn+q+r

�!m!n!p!q!r!
. (D3)

For ReLU activation, these G’s read

GReLU
s =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2π

s = 0,
−i
2 s = 1,

0 s � 3 and odd,

(−)k (2k)!√
2π2kk!

s = 2k + 2 k = 0, 1, 2, ...,

(D4)

and similar expressions can be derived for other threshold power-law activations of the form φ(z) = �(z)zν . The series Eq. (D2)
is expected to converge for sufficiently large input dimension d since the overlap between random normalized inputs scales as
O(1/

√
d ) and consequently L(x, x′) ∼ O(1/

√
d ) for two random points from the data sets. However, when we sum over Uα1...α4

we also have terms with repeating indices and so Lαβ ’s are equal to 1. The above Taylor expansion diverges whenever the 4 × 4
matrix Lαβ − δαβ has eigenvalues larger than 1. Notably this divergence does not reflect a true divergence of U , but rather the
failure of representing it using the above expansion. Therefore, at large n, one can opt to neglect elements of U with repeating
indices, since there are much fewer of these. Alternatively this can be dealt with by a re-parameterization of the z’s leading to a
similar but slightly more involved Taylor series.

2. Derivation of the previous subsection

In this section we derive the expression for the fourth moment 〈 f1 f2 f3 f4〉 of a two-layer fully connected network with
threshold-power law activations with exponent ν: φ(z) = �(z)zν ; ν = 0 corresponds to a step function, ν = 1 corresponds
to ReLU, ν = 2 corresponds to ReQU (rectified quadratic unit) and so forth.

When the inputs are normalized to lie on the hypersphere, the matrix L is

L =

⎛
⎜⎝

1 L12 L13 L14

L12 1 L23 L24

L13 L23 1 L34

L14 L24 L34 1

⎞
⎟⎠, (D5)
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where the off diagonal elements here have Lαβ = O(1/
√

d ). We follow the derivation in Moran [49], which computes the
probability mass of the positive orthant for a quadrivariate Gaussian distribution with covariance matrix L:

P+ =
√

det(L−1)

(2π )2

∫ ∞

0
dze− 1

2 zTL−1z. (D6)

The characteristic function (Fourier transform) of this distribution is

ϕ(t1, t2, t3, t4) = exp

(
−1

2
tTLt

)

= exp

(
−1

2

4∑
α=1

t2
α

)
exp

(
−
∑
α<β

Lαβtαtβ

)

= exp

(
−1

2

4∑
α=1

t2
α

) ∞∑
�,m,n,p,q,r=0

(−)�+m+n+p+q+rL�
12Lm

13Ln
14Lp

23Lq
24Lr

34

�!m!n!p!q!r!
t�+m+n
1 t�+p+q

2 tm+p+r
3 t n+q+r

4 . (D7)

Performing an inverse Fourier transform, we may now write the positive orthant probability as

P+ = 1

(2π )4

∫
R4+

dz
∫
R4

dt ϕ(t1, t2, t3, t4)e−i
∑4

α=1 zαtα

=
∞∑

�,m,n,p,q,r=0

(−)�+m+n+p+q+rL�
12Lm

13Ln
14Lp

23Lq
24Lr

34

�!m!n!p!q!r!
· · · 1

(2π )4

∫
R4+

dz
∫
R4

dt e
∑4

α=1 (− 1
2 t2

α−izαtα )t�+m+n
1 t�+p+q

2 tm+p+r
3 t n+q+r

4

=
∞∑

�,m,n,p,q,r=0

A�mnpqrL�
12Lm

13Ln
14Lp

23Lq
24Lr

34, (D8)

where the coefficients A�mnpqr are

A�mnpqr = (−)�+m+n+p+q+rG�+m+nG�+p+qGm+p+rGn+q+r

�!m!n!p!q!r!
, (D9)

and the one dimensional integral is

G(ν=0)
s = 1

2π

∫ ∞

0
dz
∫ ∞

−∞
t s exp

(
−1

2
t2 − itz

)
dt . (D10)

We can evaluate the integral over t to get

G(ν=0)
s = 1

(−i)s(2π )1/2

∫ ∞

0

(
d

dz

)s

e−z2/2dz, (D11)

and performing the integral over z yields

G(ν=0)
s =

⎧⎪⎨
⎪⎩

1
2 s = 0,

0 s even and s � 2,
(2k)!

i(2π )1/22kk!
s = 2k + 1 k = 0, 1, 2, ....

(D12)

We can now obtain the result for any integer ν by inserting zν inside the z integral:

G(ν)
s = 1

2π

∫ ∞

0
dz zν

∫ ∞

−∞
t s exp

(
−1

2
t2 − itz

)
dt = 1

(−i)s(2π )1/2

∫ ∞

0
zν

(
d

dz

)s

e−z2/2dz. (D13)

Using integration by parts we arrive at the result Eq. (D4) reported in the main text

Gs
ReLU = Gs

(ν=1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2π

s = 0,
−i
2 s = 1,

0 s � 3 and odd,

(−)k (2k)!√
2π2kk!

s = 2k + 2 k = 0, 1, 2, ....

(D14)

Similar expressions can be derived for other threshold power-law activations of the form φ(z) = �(z)zν for arbitrary integer
ν. In a more realistic setting, the inputs x may not be perfectly normalized, in which case the diagonal elements of L are not
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unity. It amounts to introducing a scaling factor for each of the four z’s and makes the expressions a little less neat but poses no
real obstacle.

APPENDIX E: FOURTH CUMULANT FOR QUADRATIC ACTIVATION FUNCTION

For a two-layer network, we may write U , the fourth cumulant of the output f (x) =∑N
i=1 aiφ(wT

i x), with ai ∼ N (0, ς2
a /N )

and wi ∼ N (0, (ς2
w/d )I ) for a general activation function φ as

Uα1,α2,α3,α4 = ς4
a

N

(
V(α1,α2 ),(α3,α4 )+ V(α1,α3 ),(α2,α4 )+ V(α1,α4 ),(α2,α3 )

)
, (E1)

with

V(α1,α2 ),(α3,α4 ) = 〈φα1φα2φα3φα4〉w − 〈φα1φα2〉w〈φα3φα4〉w. (E2)

For the case of a quadratic activation function φ(z) = z2 the V ’s read

V(α1,α2 ),(α3,α4 ) = 2{L11L33(L24)2 + L11L44(L23)2 + L22L33(L14)2 + L22L44(L13)2} + ...4{(L13)2(L24)2 + (L14)2(L23)2}
+ 8(L11L23L34L24 + L22L34L14L13 + L33L12L14L24 + L44L12L13L23) + ...16(L12L13L24L34 + L12L14L23L34

+ L13L14L23L24), (E3)

where the linear kernel from the first layer is L(x, x′) = ς2
w

d x · x′. Notice that we distinguish between the scaled and nonscaled
variances:

σ 2
a = ς2

a

N
; σ 2

w = ς2
w

d
. (E4)

These formulas were used when comparing the outputs of the empirical two-layer network with our FWC theory Eq. (11). One
can generalize them straightforwardly to a network with M layers by recursively computing K (M−1) the kernel in the (M − 1)th
layer (see, e.g., Cho and Saul [30]), and replacing L with K (M−1).

APPENDIX F: AUTOCORRELATION TIME
AND ERGODICITY

As mentioned in the main text, the network outputs
f̄DNN(x∗) are a result of averaging across many realizations
(seeds) of initial conditions and the noisy training dynamics,
and across time (epochs) after the training loss levels off. Our
NNSP correspondence relies on the fact that our stochastic
training dynamics are ergodic, namely, that averages across
time equal ensemble averages. Actually, for our purposes it
suffices that the dynamics are ergodic in the mean, namely,
that the time-average estimate of the mean obtained from a
single sample realization of the process converges in both the
mean and in the mean-square sense to the ensemble mean:

lim
T̃ →∞

E[〈 f DNN(x∗; t )〉T̃ − μ(x∗)] = 0,

lim
T̃ →∞

E[(〈 f DNN(x∗; t )〉T̃ − μ(x∗))2] = 0, (F1)

where μ(x∗) is the ensemble mean on the test point x∗ and the
time-average estimate of the mean over a time window T̃ is

〈 f DNN(x∗; t )〉T̃ := 1

T̃

∫ T̃

0
f DNN(x∗; t )dt ≈ 1

T̃

t j=T̃∑
t j=0

f DNN(x∗; t j ).

(F2)
This is hard to prove rigorously but we can do a numerical
consistency check using the following procedure: Consider
the time series of the network output on the test point x∗
for the ith realization as a row vector and stack these row
vectors for all different realizations into a matrix F , such
that Fi j = f DNN

i (x∗; t j ). (1) Divide the time series data in the
matrix F into nonoverlapping submatrices, each of dimension

nseeds × nepochs. (2) For each of these submatrices, find f̂ (x∗),
i.e., the empirical dynamical average across that time window
and across the chosen seeds; (3) Find the empirical variance
σ 2

emp(x∗) across these f̂ (x∗); (4) Repeat (1)–(3) for other com-
binations of nepochs, nseeds. If ergodicity holds, then we should
expect to see the following relation:

σ 2
emp(x∗) = σ 2

m

τ

nepochsnseeds
, (F3)

where τ is the autocorrelation time of the outputs and σ 2
m is

the macroscopic variance. The results of this procedure are
shown in Fig. 4, where we plot on a log-log scale the empirical
variance σ 2

emp versus the number of epochs nepochs used for
time averaging in each set (and using all 500 seeds in this
case). Performing a linear fit on the average across test points
(black x’s in the figure) yields a slope of approximately −1,
which is strong evidence for ergodic dynamics.

APPENDIX G: NUMERICAL EXPERIMENT DETAILS

1. FCN experiment details

We trained a two-layer FCN on a quadratic target y(x) =
xTAx where the x’s are sampled with a uniform measure
from the hyper-sphere Sd−1(

√
d ), with d = 16 and the matrix

elements are sampled as Ai j ∼ N (0, 1) and fixed for all x’s.
For both activation functions, we used a training noise level
of σ 2 = 0.2, training set of size n = 110 and a weight decay
of the first layer γw = 0.05. Notice that for any activation φ,
K scales linearly with ς2

a = σ 2
a N = (T/γa) · N , thus to keep

K constant as we vary N we need to scale the weight decay
of the last layer as γa ∼ O(N ). This is done to keep the prior
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FIG. 4. Ergodicity check. Empirical variance σ 2
emp(x∗) vs the

number of epochs used for time averaging on a (base 10) log-log
scale, with η = 0.003 and N = 200. The colored circles represent
different test points x∗ and the black x’s are averages across these.

distribution in accord with the typical values of the target as
N varies, so that the comparison is fair.

We ran each experiment for 2×106 epochs, which includes
the time it takes for the training loss to level off, which is
usually on the order of 104 epochs. In the main text we showed
GP and FWC results for a learning rate of η = 0.001. Here we
report in Fig. 5 the results using η ∈ {0.003, 0.001, 0.0005}.
For a learning rate of η = 0.003 and width N � 1000 the
dynamics become unstable and strongly oscillate, thus the
general trend is broken, as seen in the blue markers in Fig. 5.

FIG. 5. Regression task with fully connected network: (un-
normalized) MSE vs width on log-log scale (base 10) for quadratic
activation and different leaning rates. The learning rates η = 0.001,

0.0005 converge to very similar values (recall this is a log scale),
demonstrating that the learning rate is sufficiently small so that the
discrete-time dynamics is a good approximation of the continuous-
time dynamics. For a learning rate of η = 0.003 (blue) and width
N � 1000 the dynamics become unstable, thus the general trend is
broken, so one cannot take η to be too large.

The dynamics with the smaller learning rates are stable, and
we see that there is a convergence to very similar values up to
an expected statistical error.

2. CNN experiment details and additional settings

The CNN experiment reported in the main text was carried
as follows.

Dataset. In the main text Fig. 3 we used a random sample
of 10 train-points and 2000 test points from the CIFAR10
dataset, and in Appendix H we report results on 1000 train-
points and 1000 test points, balanced in terms of labels. To
use MSE loss, the ten categorical labels were one-hot encoded
into vector of zeros and one.

Architecture. We used six convolutional layers with ReLU
nonlinearity, kernel of size 5×5, stride of 1, no-padding, no-
pooling. The number of input channels was three for the input
layer and C for the subsequent five CNN layers. We then
vectorized the outputs of the final layer and fed it into an
ReLU activated fully connected layer with 25C outputs, which
were fed into a linear layer with ten outputs corresponding to
the ten categories. The loss we used was MSE loss.

Training. Training was carried using full-batch SGD (GD)
at varying learning-rates around 5×10−4, Gaussian white
noise was added to the gradients to generate σ 2 = 0.2 in the
NNGP-correspondence, layer-dependent weight decay and
bias decay which implies a (normalized by width) weight vari-
ance and bias variance of σ 2

w = 2 and σ 2
b = 1, respectively,

when trained with no-data. During training we saved, every
1000 epochs, the outputs of the CNN on every test point.
We note in passing that the standard deviation of the test
outputs around their training-time-averaged value was about
0.1 per CNN output. Training was carried for around half a
million epochs which enabled us to reach a statistical error of
about 2×10−4, in estimating the mean-squared-discrepancy
between the training-time-averaged CNN outputs and our
NNGP predictions. Notably our best agreement between the
DNN and GP occurred at 112 channels where the MSE was
about 7×10−3. Notably the variance of the CNN (the average
of its outputs squared) with no data, was about 25.

Statistics. To train our CNN within the regime of the NNSP
correspondence, sufficient training time (namely, epochs) was
needed to get estimates of the average outputs f̄E (xα ) =
f̄ (xα ) + δ fα since the estimators’ fluctuations, δ fα , scale as
(τ/ttraining)−1/2, where τ is an autocorrelation time scale.
Notably, apart from just random noise when estimating the
relative MSE between the averaged CNN outputs and the GP,
a bias term appears equal to the variance of δ fα averaged over
all α’s as indeed

ntest∑
α=1

[ f̄E (xα ) − fGP(xα )]2 =
ntest∑
α=1

[ f̄ (xα ) − fGP(xα )]2

− 2
ntest∑
α=1

[ f̄E (xα ) − fGP(xα )]δ fα

+
ntest∑
α=1

(δ fα )2. (G1)
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FIG. 6. MSE between our CNN with C = 48 and its NNGP as a
function of three learning rates.

In all our experiments this bias was the dominant source of
statistical error. One can estimate it roughly given the number
of uncorrelated samples taken into f̄E (xα ) and correct the
estimator. We did not do so in the main text to make the data
analysis more transparent. Since the relative MSEs go down
to 7×10−3 and the fluctuations of the outputs quantified by

α = (δ fα )2 are of the order 0.12, the amount of uncorrelated
samples of CNN outputs we require should be much larger
than 0.12/(7×10−3) ≈ 1.43. To estimate this bias in practice
we repeated the experiment with 3–7 different initialization
seeds and deduced the bias from the variance of the results.
For comparison with NNGP (our DNN-GP plots) the error
bars were proportional to the variance of δ fα . For comparison
with the target, we took much larger error bars equal to the
uncertainty in estimating the expected loss from a test set of
size 1000. These latter error bars where estimated empirically
by measuring the variance across ten smaller test sets of size
100.

Last, we discarded the initial “burn-in” epochs, where the
network has not yet reached equilibrium. We took this burn-in
time to be the time it takes the train-loss to reach within 5% of
its stationary value at large times. We estimated the stationary
values by waiting until the DNNs train loss remained constant
(up to trends much smaller than the fluctuations) for about
5×105 epochs. This also coincided well with having more or
less stationary test loss.

Learning rate. To be in the regime of the NNSP cor-
respondence, the learning rate must be taken small enough
such that discrepancy resulting from having discretization
correction to the continuum Langevin dynamics falls well
below those coming from finite-width. We find that higher
C require lower learning rates, potentially due to the weight
decay term being large at large width. In Fig. 6 we report the
relative MSE between the NNGP and CNN at learning rates
of 0.002,0.001,0.0005 and C = 48 showing good convergence
already at 0.001. Following this we used learning rates of
0.0005 for C � 48 and 0.00025 for C > 48, in the main figure.

Comparison with the NNGP. Following Novak et al. [14],
we obtained the Kernel of our CNN. Notably, since we did
not have pooling layers this can be done straightforwardly
without any approximations. The NNGP predictions were
then obtained in a standard manner [3].

APPENDIX H: FURTHER NUMERICAL
RESULTS ON CNNs

Here we report two additional numerical results follow-
ing the CNN experiment we carried out (for details see
Appendix G). Figure 7(b) is the same as Fig. 7(a), apart from
the fact that we subtracted our estimate of the statistical bias
of our MSE estimator described in Appendix G.

Concerning the experiment with 10 training points. Here
we used the same CNN as in the previous experiment. The
noise level was again the same and led to an effective σ 2 = 0.1
for the GP. The weight decay on the biases was taken to be
ten times larger leading to σ 2

b = 0.1 instead of σb = 1.0 as
before. For C � 80 we used a learning rate of η = 5×10−5

after verifying that reducing it further had no appreciable
effect. For C � 80 we used η = 2.5×10−5. For c � 80 we
used 6×10+5 training epochs and we averaged over 4 different
initialization seeds. For C > 80 we used between 10 and 16
different initialization seeds. We reduced the aforementioned
statistical bias in estimating the MSE from all our MSEs.
This bias, equal to the variance of the averaged outputs, was
estimated based on our different seeds. The error bars equal
this estimated variance which was the dominant source of
error.

APPENDIX I: THE FOURTH CUMULANT
CAN DIFFERENTIATE CNNs FROM LCNs

Here we show that while the NNGP kernel K of a CNN
without pooling cannot distinguish a CNN from an LCN, the
fourth cumulant, U , can. For simplicity let us consider the
simplest CNN without pooling consisting of the following
parts: (1) a 1D image with one color and channel (Xi) as
input i ∈ {0, . . . , L − 1}; (2) a single convolutional layer with
some activation φ acting with stride 1 and no-padding using
the conv-kernel T c

x where c ∈ {1, . . . ,C} is a channel number
index and x ∈ {0, . . . , 2l} is the relative position in the image.
Notably, in an LCN this conv-kernel will receive an additional
dependence on x̃, the location on Xi on which the kernel
acts; (3) a vectorizing operation taking the C outputs of each
convolutional around a point x̃ ∈ {l, . . . , L − l}, into a single
index y ∈ {0, . . . ,C(L − 2l )}; (4) a linear fully connected
layer with weights W o

cx̃ where o ∈ {0, . . . , #outputs} are the
output indices.

Consider first the NNGP of such a random DNN with
weights chosen according to some iid Gaussian distribution
P0(w), with w including both W o

cx̃ and T c
x . Denoting by zo(x)

the o’th output of the CNN, for an input x we have (where we
denote in this section 〈· · · 〉 := 〈· · · 〉P0(w))

Koo′
(x, x′) ≡ 〈zo(x)zo′

(x′)
〉

= δoo′
∑

c,c′,x̃,x̃′

〈
W o

cx̃W
o′

c′ x̃′
〉〈
φ
(
T c

x (x̃)Xx+x̃−l
)

× φ
(
T c′

x (x̃′)Xx+x̃′−l
)〉
. (I1)

The NNGP kernel of an LCN is the same as that of a CNN.
This stems from the fact that 〈W o

cx̃W
o

c′ x̃′ 〉 yields a Kronecker
δ function on the x̃, x̃′ indices. Consequently, the difference
between LCN and CNN, which amounts to whether T c

x (x̃)
is the same (CNN) or a different (LCN) random variable
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FIG. 7. CNNs trained on CIFAR10 in the regime of the NNSP correspondence compared with NNGPs MSE test loss normalized by target
variance of a deep CNN (solid green) and its associated NNGP (dashed green) along with the MSE between the NNGP’s predictions and CNN
outputs normalized by the NNGP’s MSE test loss (solid blue, and on a different scale). We used balanced training and test sets of size 1000
each. For the largest number of channels we reached, the slope of the discrepancy between the CNN’s GP and the trained DNN on the log-log
scale was −1.77, placing us close to the perturbative regime where a slope of −2.0 is expected. Error bars here reflect statistical errors related
only to output averaging and not due to the random choice of a test-set. The performance deteriorates at large N = #Channels as the NNSP
associated with the CNN approaches an NNGP.

than T c
x′ �=x(x̃′), becomes irrelevant as the these two are never

averaged together.
For simplicity, we turn to the fourth cumulant of the same

output, given by

〈zo(x1) · · · zo(x4)〉 − 〈zo(xα )zo(xβ )〉〈zo(xγ )zo(xδ )〉[3]

= 〈zo(x1) · · · zo(x4)〉 − K (xα, xβ )K (xγ , xδ )[3], (I2)

with the second term on the left-hand side (LHS) implying
all pair-wise averages of zo(x1)..zo(x4). Note that the first term
on the LHS is not directly related to the kernel, thus it has a
chance of differentiating a CNN from an LCN. Explicitly, it
reads ∑

c1..c4 x̃1..x̃4

〈
W o

c1 x̃1
· · ·W o

c4 x̃′
4

〉〈
φ
(
T c1

x1
(x̃1)Xx1+x̃1−l

) · · ·
× φ

(
T c4

x4
(x̃4)Xx4+x̃′

4−l

)〉
(I3)

The average over the four W ’s yields nonzero terms of the
type W o

cx̃W
o

cx̃W
o

c′ x̃′W o
c′ x̃′ with either x̃ = x̃′ (type 1), x̃ �= x̃′ and

c �= c′ (type 2), or x̃ �= x̃′ and c = c′ (type 3).
The type 1 contribution cannot differentiate an LCN form

a CNN since, as in the NNGP case, they always involve only
one x̃. The type 2 contribution also cannot differentiate since
it yields

∑
c �=c′;x̃ �=x̃′

〈
W o

cx̃W
o

cx̃

〉〈
W o

c′ x̃′W o
c′ x̃′
〉〈
φ
(
T c

x (x̃)Xx+x̃−l
)

× φ
(
T c

x (x̃)Xx+x̃−l
)
φ
(
T c′

x′ (x̃′)Xx′+x̃′−l
)
φ
(
T c′

x′ (x̃′)Xx′+x̃′−l
)〉
(I4)

Examining the average involving the four T ’s, one finds that
since T c

x (x̃) is uncorrelated with T c′
x′ (x̃′) for both LCNs and

CNNs, it splits into∑
c �=c′;x̃ �=x̃′

〈
W o

cx̃W
o

cx̃

〉〈
W o

c′ x̃′W o
c′ x̃′
〉〈
φ
(
T c

x (x̃)Xx+x̃−l
)
φ
(
T c

x (x̃)Xx+x̃−l
)〉

× 〈φ(T c′
x′ (x̃′)Xx′+x̃′−l

)
φ
(
T c′

x′ (x̃′)Xx′+x̃′−l
)〉

(I5)

where as in the NNGP, two T ’s with different x̃ are never
averaged together and we only get a contribution propor-
tional to products of two K’s. We note in passing that these
type 2 terms yield a contribution that largely cancels that of
K (xα, xβ )K (xγ , xδ )[3], apart from a “diagonal” contribution
(x̃ = x̃′).

We turn our attention to the type 3 term given by∑
c;x̃ �=x̃′

〈
W o

cx̃W
o

cx̃

〉〈
W o

cx̃′W o
cx̃′
〉〈
φ
(
T c

x (x̃)Xx+x̃−l
)

× φ
(
T c

x (x̃)Xx+x̃−l
)
φ
(
T c

x′ (x̃′)Xx′+x̃′−l
)
φ
(
T c

x′ (x̃′)Xx′+x̃′−l
)〉
(I6)

Examining the average involving the four T ’s, one now finds
a sharp difference between an LCN and a CNN. For an LCN,
this average would split into a product of two K’s since T c

x (x̃)
would be uncorrelated with T c

x (x̃′). For a CNN however, T c
x (x̃)

is the same random variable as T c
x (x̃′) and therefore the aver-

age does not split giving rise to a distinct contribution that
differentiates a CNN from an LCN. Notably, it is small by a
factor of 1/C owing to the fact that it contains a redundant
summation over one c-index while the averages over the four
W ’s contain a 1/C2 factor when properly normalized.

APPENDIX J: BACKGROUND ON THE EQUIVALENT
KERNEL (EK)

In this Appendix we generally follow Ref. [3], see also
Ref. [45] for more details. The posterior mean for GP regres-
sion 6 can be obtained as the function which minimizes the
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functional

J[ f ] = 1

2σ 2

n∑
α=1

(yα − f (xα ))2 + 1

2
‖ f ‖2

H, (J1)

where ‖ f ‖H is the RKHS norm corresponding to kernel K .
Our goal is now to understand the behavior of the minimizer
of J[ f ] as n → ∞. Let the data pairs (xα, yα ) be drawn from
the probability measure μ(x, y). The expectation value of the
MSE is

E

[
n∑

α=1

(yα − f (xα ))2

]
= n

∫
(y − f (x))2dμ(x, y) (J2)

Let g(x) ≡ E[y|x] be the ground truth regression function
to be learned. The variance around g(x) is denoted σ 2(x) =∫

(y − g(x))2dμ(y|x). Then writing y − f = (y − g) + (g −
f ) we find that the MSE on the data target y can be broken
up into the MSE on the ground truth target g plus variance
due to the noise∫

(y − f (x))2dμ(x, y)

=
∫

(g(x) − f (x))2dμ(x) +
∫

σ 2(x)dμ(x) (J3)

Since the right term on the RHS of Eq. (J3) does not depend
on f we can ignore it when looking for the minimizer of the
functional which is now replaced by

Jμ[ f ] = n

2σ 2

∫
(g(x) − f (x))2dμ(x) + 1

2
‖ f ‖2

H. (J4)

To proceed we project g and f on the eigenfunc-
tions of the kernel with respect to μ(x) which obey∫

μ(x′)K (x, x′)ψs(x′) = λsψs(x). Assuming that the kernel is
nondegenerate so that the ψ’s form a complete orthonormal
basis, for a sufficiently well-behaved target we may write
g(x) =∑s gsψs(x), where gs = ∫ g(x)ψs(x)dμ(x), and sim-
ilarly for f . Thus, the functional becomes

Jμ[ f ] = n

2σ 2

∑
s

(gs − fs)2 + 1

2

∑
s

f 2
s

λs
. (J5)

This is easily minimized by taking the derivative w.r.t. each fs

to yield

fs = λs

λs + σ 2/n
gs. (J6)

In the limit n → ∞ we have σ 2/n → 0, thus we expect that
f would converge to g. The rate of this convergence will
depend on the smoothness of g, the kernel K and the mea-
sure μ(x, y). From Eq. (J6) we see that if nλs � σ 2 then fs

is effectively zero. This means that we cannot obtain infor-
mation about the coefficients of eigenfunctions with small
eigenvalues until we get a sufficient amount of data. Plug-
ging the result Eq. (J6) into f (x) =∑s fsψs(x) and recalling
gs = ∫ g(x′)ψs(x′)dμ(x′) we find

f (x) =
∑

s

λsgs

λs + σ 2/n
ψs(x)

=
∫ ∑

s

λsψs(x)ψs(x′)
λs + σ 2/n︸ ︷︷ ︸
h(x,x′ )

g(x′)dμ(x′). (J7)

This is Eq. (13) from the main text. The term h(x, x′) it the
equivalent kernel. Notice the similarity to the vector-valued
equivalent kernel weight function h(x∗) = (K + σ 2I )−1k(x∗)
where K denotes the n × n matrix of covariances between the
training points with entries K (xμ, xν ) and k(x∗) is the vector
of covariances with elements K (xμ, x*). The difference is that
in the usual discrete formulation the prediction was obtained
as a linear combination of a finite number of observations
yi with weights given by hi(x) while here we have instead a
continuous integral.

APPENDIX K: CORRECTIONS TO EK

Here we derive finite-N correction to the equivalent kernel
result. Using the tools developed by Cohen et al. [4], the repli-
cated partition function relevant for estimating the predictions
of the network [ f (x∗)] averaged (〈· · · 〉n) over all draws of
datasets of size n′ with n′ taken from a Poisson distribution
with mean n is given by

Zn =
∫

D f e−SGP[ f ]− n
2σ2

∫
dμx ( f (x)−y(x))2

(1 + SU [ f ])

+ O(1/N2), (K1)

with SGP[ f ] and SU [ f ] given in Eq. (8). We comment that the
above expression is only valid for obtaining the leading-order
asymptotics in n. Enabling generic n requires introducing
replicas explicitly (see Cohen et al. [4]). Notably, the above
expression coincides with that used for a finite dataset, with
two main differences: all the sums over the training set
have been replaced by integrals with respect to the mea-
sure, μx, from which data points are drawn. Furthermore,
σ 2 is now accompanied by n. Following this, all the dia-
grammatic and combinatorial aspects shown in the derivation
for a finite dataset hold here as well. For instance, let us
examine a specific contribution coming from the quartic
term in H[ f ]: Ux1..x4 K−1

x1x′
1
· · · K−1

x4x′
4

f (x′
1) · · · f (x′

4), and from
the diagram/Wick-contraction where we take the expectation
value of 3 of the 4 f ’s in this quartic term, to arrive at an
expression which is ultimately cubic in the targets y,

Ux1,x2,x3,x4 K−1
x1x′

1
〈 f (x′

1)〉∞K−1
x2x′

2
〈 f (x′

2)〉∞K−1
x3x′

3
〈 f (x′

3)〉∞K−1
x4x′

4

× 
∞(x′
4, x∗), (K2)

where we recall that 〈 f (x)〉∞ = Kxx′K̃−1
x′x′′y(x′′) and


∞(x1, x2) = Kx1,x2 − Kx1,x′K̃−1
x′,x′′Kx′′,x2 being the posterior

covariance in the EK limit, where K̃xx′ f (x′) = Kxx′ f (x′) +
(σ 2/n) f (x). Using the fact that K−1

xx′ Kx′x′′ gives a δ function
w.r.t. the measure, the integrals against K−1

xαx′
α

can be easily
carried out yielding(

Ux1,x2,x3,x∗ − Ux1,x2,x3,x4 K̃−1
x4,x′

4
Kx′

4,x∗
)
K̃−1

x1,x′
1
K̃−1

x2,x′
2
K̃−1

x3,x′
3
y(x′

1)y

× (x′
2)y(x′

3). (K3)

Introducing the discrepancy operator δ̃xx′′ := δxx′′ −
Kxx′K̃−1

x′x′′ = σ 2

n K̃−1
xx′′ , we can write a more compact expression,(

n

σ 2

)3

δ̃x∗,x4Ux1,x2,x3,x4 δ̃x1,x′
1
δ̃x2,x′

2
δ̃x3,x′

3
y(x′

1)(x′
2)y(x′

3). (K4)
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This with the additional 1/4! factor times the combinatorial
factor of 4 related to choosing the “partner” of f (x∗) in the
Wick contraction, yields an overall factor of 1/6 as in the main

text, Eq. (14). The other term therein, which is linear in y, is a
result of following similar steps with the f̄ 

∗ contributions
that do not get canceled by the quadratic part in H[ f ].
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