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Emergent, linked traits of fluctuation feedback systems
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A variety of nonequilibrium systems display intermittent switching between semistable macroscopic behav-
iors. We identify a certain type of indeterminacy, with episodes of patterned behavior irregularly punctuated by
transitions. It appears that the long-lived patterns are, not coincidentally, also low-fluctuation states. We describe
these linked traits with a small set of examples.
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I. INTRODUCTION

In equilibrium statistical mechanical systems, one can pre-
dict the long-term macroscopic properties even when the
dynamics is a function of many degrees of freedom whose
detailed motion is unknown. To do this, one assigns some
probabilistic weighting to the state space and then averages
over that state space. This approach is justified on the grounds
that, because the number of microscopic bodies is large,
the equilibrium values of macroscopic variables become pro-
hibitively likely in the long-time limit.

Even in nonequilibrium settings, including cases where
there are many degrees of freedom and/or complicated dy-
namics, systems may exhibit regular behavior. Often, this
behavior is of a certain type. We mention here a diverse set
of examples which motivate our thinking in what follows.
A canonical example drawn from evolutionary science is the
phenomenon of punctuated equilibrium, in which ecosystems
exhibit long intervals of relatively stable population networks
interrupted by short intervals of rapid speciation [1,2]. A simi-
larly staccato dynamics can be seen in flux creep experiments
on Type II superconductors where magnetic flux is expelled
from the material in discrete “flux avalanche” events, widely
varying in size, and occurring at irregular intervals. These
represent the rapid rearrangement of current in the sample to
a new steady state in response to a gradually ramped external
field [3,4]. A third example is the emergence of coherent struc-
tures in turbulent fluid systems. In these systems there exist
common spatial structures which live long enough to distin-
guish themselves from the surrounding disordered turbulent
flow [5,6]. Lastly, consider recent active matter experiments
on a so-called “supersmarticle” [7]. There, several simple self-
actuated elements (called smarticles) placed in an anchored
ring quickly find any one of a small number of nearly periodic
patterns which persists for some time before breaking up;
soon, a new one appears [8]. Some of these patterns are clear
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to the eye; for a system of just three smarticles, some five
or six recurrent patterns are observed, visited in apparently
random order over the course of a single experimental run.

Each of the above examples is understood through the rel-
evant biological, electromagnetic, mechanical, or dynamical
system theories. Viewed broadly, however, their behaviors
share a certain commonality, namely, the persistent recurrence
of ordered but intermittent behavioral episodes. In this paper,
we propose that this commonality of behavior can be under-
stood in a general way: it arises from an inherent connection
between the instantaneous degree of internal organization and
the resulting effective fluctuation strength. If there is some
portion of a system which can be considered organized and
some portion which is not, the disorganized portion is the
source of fluctuations. This means that the more of the system
is in an organized state, the less is available as a source of
effective noise.

We identify a class of systems (though we are unable to
say how large this class may be) which display some uncer-
tainty in their behavior but not so much so that the dynamical
structure is totally washed out. These systems display a kind
of intermittent behavior, showing episodes of mostly ordered
dynamics, interrupted by shorter transitional intervals when
disorder predominates. An intermediate timescale emerges
over which the system is predictable in detail, although the
long-term dynamics may only be characterized statistically.
We illustrate this idea through a pair of complementary ex-
amples: a deterministic N-body metronome system and a
modified version of the chaotic Lorenz equations. In the last
section, we explicitly demonstrate the essential elements of
this class of systems through a noise-driven double-well sys-
tem. Finally, we consider how our results might connect to the
recently developed notion of rattling [9,10].

The behavior we refer to here as intermittent is unrelated
to the so-called type I, II, and III intermittency observed
in systems with fixed parameters poised near a bifurcation
[11,12]. In the systems we describe, intermittent behavior
occurs robustly in that it does not required tuning a parameter
close to a bifurcation and is natural in systems with many
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FIG. 1. Metronome setup. A cartoon of the coupled metronome
system. θi is the deflection of the pendulum of metronome i from
vertical. z is the position of the platform the metronomes are sitting
on.

interacting parts. Our systems do not require any specific type
of bifurcation, nor are they necessarily reducible to a low-
dimensional state. Indeed, the high dimensionality is a feature
which can allow random-like behavior even in the absence of
chaos. What we identify is a mechanism for the emergence
of intermittent behavior separate from the intermittency as
developed using bifurcation analysis. We propose that this
mechanism is common.

II. COUPLED METRONOMES

As a first example, consider a collection of N metronomes
supported on a common mobile platform (see Fig. 1) [13]. We
have in mind the case where N is reasonably large (say, of
order 100). Each metronome has its own natural frequency,
i.e., its frequency when uncoupled to the rest of the system.
If the platform is held stationary, the metronomes are dy-
namically uncoupled, each metronome oscillates periodically,
and the full system dynamics is N-frequency quasiperiodic.
When the platform is free to move, the metronomes interact,
and their motion tends to synchronize. For sufficiently large
coupling (and/or sufficiently small disorder), the system can
fully frequency lock, so that the system displays strictly peri-
odic motion. In what follows, we want to consider the system
somewhat below this fully synchronized threshold. Following
Ref. [14], a set of nondimensional dynamical equations for the
system is

θ̈i = − ωi

ω
sin θi − β

ω

[(
θi

θ0

)2

− 1

]
θ̇i

− ω2
i

g

( m

M + Nm

)
ri cos θi z̈, (1)

z̈ = −1

r

N∑
j

r j (sin θ j )̈, (2)

where θi is the deflection of the ith pendulum, ωi is its natural
frequency, ri is the distance from a metronome’s pivot to its
center of mass, and z is the position of the platform. The ri are
chosen from a narrow uniform distribution around the mean
r = 0.05. The platform has mass M and the pendulum masses
m are identical. Finally, ω is the mean natural frequency.

The van der Pol term in Eq. (1) models the escapement,
which drives the metronome when its phase is close to zero
and damps its motion at large θ to prevent it from overturn-
ing. The parameter β controls the strength of this driving or

FIG. 2. Order parameter. The value of the normalized maximum
Fourier amplitude vs time for different spreads of natural frequen-
cies. Each set of frequencies is chosen by picking the arm lengths ri

from a uniform distribution within a fixed �r about r = 0.05. The
three traces correspond to �r = 0.003 (orange), 0.015 (green), and
0.03 (blue).

dissipation. In our simulations, N = 32, m = 0.1, M = 0.5,
β = 0.01, and θ0 = π/16.

The system behavior depends on the spread of natural
frequencies and the mass of the platform. When the natural
frequencies are sufficiently close together and the platform
is light, the metronomes become synchronized: they are fre-
quency locked, all of the metronome phases move together,
and the platform moves back and forth periodically with large
amplitude. In contrast, when the natural frequencies have a
large spread the metronomes cannot synchronize, and they all
move more or less at their own frequencies. This in turn causes
the motion of the platform to be an erratic superposition of
oscillations. For an intermediate spread of natural frequencies
the system shows indeterminacy, as seen in the green trace in
Fig. 2. For a while the metronomes are partially synchronized
and the platform moves similarly to the synchronized case but
with smaller amplitude. Episodically, the metronome with the
smallest frequency gradually lags falls behind the others and
stabilizes at twice the amplitude and twice the period as the
rest.

These different behaviors are readily distinguishable using
a well-chosen order parameter O(t ). For this purpose, we use
the largest Fourier amplitude of the motion of the platform
normalized so that the maximum possible value is 1. Sym-
bolically, O(t ) = Max(F[z](t ))/P. When the metronomes are
unsynchronized the platform motion is the superposition of
many frequencies, and the Fourier spectrum is flat. When
the metronomes move together, the platform motion is nearly
periodic, so its power is concentrated at one frequency. In
practice, we take the discrete Fourier transform of z(t ) in a
moving time window of length 25 time units with resolution
0.1 time units and take the magnitude of the maximum ampli-
tude over all possible frequencies in that window normalized
by the maximum value P of F[z](t ) when all metronomes
have identical natural frequencies. A time series of the order
parameter for different spreads of natural frequencies is shown
in Fig. 2.
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FIG. 3. Behavior and parameter detail. The two different iden-
tifiable behaviors of the metronome system with intermediate
natural frequency spread. (a) Detailed look at pattern 1, where the
metronomes are all moving together in a partially synchronized
state. (b) Detailed look at pattern 2, where one metronome has a
larger amplitude and period than the others. (c) A zoomed-in look
at the order parameter time series from Fig. 2 with the two episodic
behaviors identified.

The partially ordered regime deserves a closer look. A
typical example is shown in Fig. 3. There are two distinct
behaviors that the system exhibits during a single long run.
Fundamentally, the governing dynamical equations are deter-
ministic: there is no random noise to kick the system from
one “state” to the other. Rather, the fluctuations arise as a
result of the spread in natural frequencies. Because these
frequencies are too spread out for the metronomes to exactly
mutually frequency lock, the motion of the platform is to
some degree irregular, and this motion feeds back to create
an effective noise in the dynamics of each oscillator. It is
this noise that kicks the system back and forth between two
patterns of behavior. Occasionally, the system becomes sub-
stantially synchronized, the platform motion becomes fairly
regular, and so the effective noise feedback is greatly reduced:
this low-fluctuation epoch is self-consistently maintained.

A primary feature of this regime is the emergence of an
intermediate timescale, namely, the switching time between
persistent dynamical states.

III. MODIFIED LORENZ EQUATIONS

As our second example, we consider a modified version
of the Lorenz equations [15], where feedback induces slow
variations in a parameter. We take as governing equations

ẋ = σ (y − x), (3)

ẏ = x(ρ − z) − y, (4)

ż = xy − β, (5)

ρ̇ = δx. (6)

The first three equations are the original Lorenz system. Our
modification makes ρ a variable rather than a parameter. As
modified, this system provides an interesting complement to
the metronome array because the Lorenz system has far fewer
degrees of freedom but it can display complex behavior due
to its chaotic dynamics. The behavior of the Lorenz equations
is most familiar for the parameter values Lorenz focused on
in his original paper, (σ, β, ρ) = (10, 8/3, 28) [15]. In what
follows, we set σ and β to these values, and let ρ evolve ac-
cording to Eq. (6). The parameter δ = 0.1 is small enough that
the parameter turned variable ρ is slowly varying compared
the x, y, and z. To understand the observed dynamics, it will be
helpful to summarize the behavior of the (unmodified) Lorenz
system [only Eqs. (3)–(5)] for different values of fixed ρ. Our
summary is adapted from [16].

There are in general three fixed points: the origin and
(for ρ > 1) two symmetrically located points C1 and C2. For
ρ > 24.7 . . . , all three fixed points are unstable and the sys-
tem is chaotic, except for certain parameter windows. In the
chaotic regime the attractor has the familiar butterfly shape
shown in Fig. 4 (ρ = 25). The trajectory spirals around C1

and C2, switching lobes in a seemingly random manner. The
distribution of possible numbers of orbits before switching
lobes varies with ρ. For instance, when ρ = 28 the maximum
number of consecutive revolutions on one side is 24. The
trajectories get even more limited in the vicinity of a small
number of period doubling windows. (These windows show
an inverse period doubling cascade as ρ increases.) There
is a narrow window near ρ = 100, another narrow window
near ρ = 150, and a third that starts from near ρ = 200 and
continues for arbitrarily large ρ. At the upper end of the pe-
riod doubling window between ρ = 99.524 and ρ = 100.795
there are two stable periodic orbits, each consisting of two
trips around one of the stationary points and one around the
other. At the period doubling window near ρ = 150 the same
phenomenon occurs, but the stable periodic orbits at the upper
end of that window are a pair of figure eights looping around
each of C1 and C2 only once before switching lobes.

Turning now to the modified system [Eqs. (3)–(6)], we dis-
tinguish between the slow parameter turned variable ρ and the
fast variables x, y, z. Due to the feedback between Eq. (6) and
Eq. (4), the slow variable dictates the distribution of trajecto-
ries of the fast variables and vice versa. Numerical simulations
reveal that as the dynamics evolves, there are instances where
the slow variable seems to stall, even though the system is not
close to a fixed point. Typical results are shown in Fig. 5. The
underlying mechanism for the stalling behavior can be found
by viewing the fast dynamics as an effective noise source
driving the slow variable ρ. On the one hand, the long-term
average drift from the (deterministic) motion of x is zero
because the average value of x is zero over long times for all
values of ρ. Nevertheless, since the magnitude of the effective
noise from x is inhomogeneous, the velocity of x in either
direction is reduced in low noise-amplitude regions, causing x
to preferentially dwell in these regions. The particular choice
for Eq. (6) is motivated by having zero average drift, but this
choice is not unique. We could have chosen any odd function
of x or y.

To examine the stalling behavior more closely, we go back
to the original (unmodified) Lorenz system and track the
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FIG. 4. Lorenz trajectories. Trajectories of the unmodified Lorenz system at different values of fixed ρ. Notice the quasiperiodic motion at
ρ = 100 and ρ = 150. These are x-z projections of the full three-dimensional system. σ = 10, β = 8/3.

fluctuations in x as a function of (fixed) ρ. The average of
x over 100 time units starting from different initial conditions,
as a function of ρ, is shown in Fig. 6. Although the mean of
x over a long time for any one value of ρ is zero, the spread
of x averaged over an intermediate timescale varies. A period
doubling window is responsible for the small-amplitude fluc-
tuations shown in Fig. 6 near ρ = 100. As ρ approaches the
top of this period doubling window the system spends fewer
orbits going around one stationary point before switching to
the other, causing the average x over intermediate time to be
closer to 0. In the modified model, this spread plays the role of
a state-dependent noise intensity which drives ρ. Comparison
with Fig. 5 confirms that ρ gets hung up around places of low
fluctuations in x before continuing to diffuse. Note that these
correspond to regimes where there are stable periodic orbits in

FIG. 5. Typical ρ time series. A collection of four ρ trajectories
evolving according to Eqs. (3)–(6). The ranges highlighted by hori-
zontal red lines are the same as in Fig. 6.

the unmodified Lorenz equations. To highlight this point, we
have indicated these regimes by horizontal red lines in both
Fig. 5 and Fig. 6. There is also a somewhat weaker stall near
ρ ∼ 130. While this does not correspond to a period doubling
window, Fig. 6 shows that this is nonetheless a region of low
fluctuations.

In summary, the modified Lorenz system provides an illus-
trative example of a system with multiple possible behaviors
that are manifested on an intermediate timescale and effec-
tively slaved to the value of a slow variable, which in turn
shows intermittent evolution due to feedback with the fast
“fluctuating” degrees of freedom. Even though this is a per-
fectly deterministic system, ρ acts qualitatively like a variable
that has an average drift down a gradient of fluctuation in-
tensity that stalls in places of low fluctuation amplitude until
there is a large enough kick to escape those areas.

IV. DISCUSSION

The short sequence of examples presented in this paper,
taken together, represents a systematic progression in com-
plexity, from many degree of freedom quasiperiodic, to a few
degrees of freedom chaotic, to a single degree of freedom
stochastic. The fundamental ingredients common to these ex-
amples are the decomposition into fast and slow subsystems
along with two-way feedback between them. While ultimately
our primary interest is in the deterministic many degrees of
freedom case, the reduced stochastic model may prove more
tractable. Suppose the collection of trajectories representing
the dynamics of such a system can be coarse grained into
multiple distinct possible behaviors and the amplitude of ef-
fective noise is large enough to drive the dynamics between
different macroscopic patterns. The system spends irregular
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FIG. 6. Fluctuations in x. The fluctuations in x in the unmodified
Lorenz system for different (fixed) ρ values. Places with very low
fluctuations correspond to period doubling windows where the tra-
jectories become periodic. (a) A plot of the average value of x for
fixed ρ over 100 time units after a short transient from random initial
conditions. (b) The standard deviation of x as a function of ρ.

intervals of time exhibiting one pattern before switching to
another. Crucially, the system dwells longer in patterns in
which the exhibited fluctuations are smaller. These features
are not independent: they are two sides of the same coin.
This becomes clear upon considering a limiting case: if one
of the patterned behaviors is exactly periodic, the effective
fluctuations are zero and the system will persist in that pat-
tern indefinitely. This is just what happens in the metronome
array for a sufficiently narrow frequency distribution [13,14].
Similarly, for a pattern that is only nearly periodic, the system
dwells for a long but finite time before drifting into a new
pattern.

An interesting recent experimental system that can be un-
derstood within this framework is the melting and refreezing
of plasma dust “crystals” [17]. In this system, micron-scale
particles are levitated in argon plasma above a negatively
charged aluminum plate. Over a certain range of pressure
and voltage a bistable dynamics is observed where the sys-
tem switches between an orderly two-dimensional crystalline
state and a disorderly gaslike state where the particles move
erratically. The microscopic mechanical mechanism that trig-
gers melting involves initially small oscillations of isolated
particles in the plane perpendicular to the crystalline lat-
tice [18]. Because the particles are not quite identical, they
oscillate at slightly different frequencies. These differing fre-

quencies eventually lead to breaking of the lattice structure
and the onset of an erratic and sustained gaslike state. Gradual
damping results in kinetic energy loss and the eventual return
to the crystalline state, and the cycle repeats, continuing in-
definitely [17]. This is reminiscent of the metronome system
discussed above, where there is a dynamically favored low-
entropy state, but the disorder introduced by the nonuniform
elements intermittently drives the system out of the highly
ordered state.

A. A Reduced Model

The two above examples represent a class of deterministic
systems that are sufficiently complicated that it makes sense to
describe their behavior in terms of regular dynamical patterns
with some effective noise. The statistical nature of the two
examples can be treated similarly even though their complex-
ity arises from different sources. In the case of the metronome
system, the source of effective noise comes from the quenched
distribution of natural frequencies being too wide to allow to-
tal synchronization. In the case of the modified Lorenz system,
the effective noise arises from trajectories quickly spreading
throughout the relevant attractor. In this section, we intro-
duce a reduced model in which these elemental aspects are
made explicit, namely, deterministic macroscopic behavior,
a noise amplitude landscape, and mutual coupling between
them. Specifically, we consider a stereotypic example of a
mechanical particle moving in one dimension in a symmetric
double-well potential, subject to dissipation and noise. The
governing equation of motion is

ẍ = ax(−x2 + γ ) + bξ − cẋ, (7)

where x is the particle position, a, c, and γ are positive con-
stants, ξ is Gaussian white noise with autocorrelation function
δ(t1 − t2), and the noise amplitude b can be a function of
x. Without noise (b = 0), the particle settles into one of the
potential minima, its final state depending on its initial posi-
tion and velocity. For constant noise amplitude (b > 0) the
noise can drive the particle between the wells, on average
spending equal time in each [Fig. 7(a)]. If instead the noise
amplitude is dependent on the position of the particle such that
the amplitude of noise is smaller in one of the wells than the
other, then the particle spends most of its time in the well
with lower noise, making only short excursions into the other
[Fig. 7(b)]. To demonstrate this scenario we use a quadratic
dependence with the minimum at the left well. This makes
explicit the situation where there are two distinct states for
the system created by the deterministic dynamics that are
differentiated by noise amplitude. This is analogous to the
situation in the metronome system above, for example, where
there are two different possible behaviors for the system with
one having lower effective noise. If the system operates in
an intermediate regime—in which the noise is neither very
weak nor very strong, so that the noise and the potential are
equally important—the system displays the same kind of be-
havior seen in the two earlier examples: episodic intermittency
with a preference for lower-fluctuation states. The double-
well system embodies the essential ingredients, eliminating
system-specific details while reproducing the features of the
intermediate-timescale dynamics.
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FIG. 7. Effect of noise gradient. The movement of a particle
governed by Eq. (7). At the top, the deterministic potential is shown
in red, and the noise amplitude b is shown in blue. At the bottom is
the time series for x. The parameters for the deterministic potential
in both cases are a = 6 × 10−6, c = 0.01, and γ = 8. (a) Time series
for uniform noise amplitude (b = 1 × 10−2). The particle spends
substantial time in each well before being kicked to the other.
(b) Time series for nonuniform noise amplitude [b = (x + η)2 + ν

with η = 3 × 10−3 and ν = 7 × 10−3]. The particle spends almost
all of its time in the well with the lower amplitude noise, making
only short excursions into the other well.

B. Rattling

Recently, the concept of “rattling” was proposed as a
general organizing principle to account for the observation
that some systems exhibit a preference for low effective-
noise behaviors [9,10]. Specifically, the degree of rattling is
a scalar measure which quantifies the long-term probability
of a system spending time in a particular region of phase
space by measuring the propensity of trajectories to exit that
region. The claim is that if certain regions in phase space
have a higher “effective temperature,” then trajectories will
be quickly expelled from those regions and the system will
spend less time in those regions on average. It is natural to ask
whether, and to what extent, rattling may be relevant to the
type of dynamics we have focused on in this paper. To this
end, we have applied the definition of rattling provided in
Ref. [10] to the modified Lorenz system.

The central prediction associated with rattling is that the
probability of finding a system in a certain region of phase
space is inversely related to the level of rattling in that region:
that is, systems preferentially dwell in dynamical states of
low rattling. In order to test this prediction, the rattling R and
the long-term steady-state probability distribution pss must be
calculated separately and compared. Both of these objects are
scaler measures over the phase space of the system, and if the
rattling hypothesis holds, then regions of lower R should be
associated with regions of higher pss. The estimations of R and
pss used here are based on the algorithm given in Ref. [10]. We
run the system through 100 long (to tfinal = 1 × 106) integra-
tions starting at random initial conditions. Then we cut these
trials into shorter time windows of �t = 1 to obtain a set of
uit where u1 = x, u2 = y, u3 = z, and u4 = ρ. Then we cal-

FIG. 8. Rattling vs steady-state probability. Each point repre-
sents the average rattling R over a region of phase space against the
probability pss of finding the system in that region. Shown are a total
of 9238 points, each representing one cube of phase space, out of
a possible 20 736 after removing the cubes that the system did not
enter.

culate the matrix Mi jt = 1
�t (ui(t+�t ) − uit )(u j(t+�t ) − u jt ). We

obtain R with Rt = 1
2 ln[Det(Mi jt )]. Separately, we obtain pss

by partitioning phase space into 124 cubes with side length 50
from −300 to 300 in each of the four variables. We then count
the number of uit in each cube, and normalize by the total
number of uit . To associate each phase space cube with an R
value we average the values of Rt within each cube. Applying
this algorithm to the modified Lorenz system [Eqs. (3)–(6)]
yields Fig. 8. The features in Fig. 8 can be identified with
corresponding system behavior. The two stripes at rattling
values near R = 49 and R = 51 are the low fluctuation pat-
terns highlighted in Fig. 5 and Fig. 6. The cloud of points
below those stripes near R = 47 are the periodic trajectories
found at very high values of ρ. These periodic trajectories are
accessible only if the system is initialized at an already high
ρ value. Similarly, in the lower left corner of Fig. 8 there is an
isolated point corresponding to a stable fixed point which is
accessible only if the system is initialized with a low enough
ρ value. In the intermediate range the system spends the vast
majority of time in one of the two patterns represented by
the stripes near R = 49 and R = 51. This suggests treating
the intermediate regime as a two-state system, with state 1
having higher values of ρ and lower values of R, represented
by the lower stripe, and state 2 with lower values of ρ and
higher values of R, represented by the upper stripe. With only
two “patterns,” the system is perhaps too simple to represent a
good test of the low rattling principle. Nevertheless, we verify
that this system is consistent with the principle: in total, it has
an 82% relative probability to be in state 1 and an 18% relative
probability to be in state 2.

In conclusion, we have identified a class of dynamical
systems that intermittently exhibit regular behavior over inter-
mediate timescales, due to the low effective noise amplitude of
those patterns. The persistence of these states is not indefinite,
due to irregularities introduced either by the large number of
degrees of freedom or by chaotic dynamics. These systems
can be understood through a statistical approach that accounts
for the dynamical patterns of the system. Many disparate
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nonequilibrium systems can be understood through this com-
mon lens, from ecologies [1,2], to condensed matter [3,4], to
turbulence [5,6], to robotics [7,10], to dusty plasmas [17,18].
A reduced stochastic model preserves the main dynamical
features of these systems and may provide a means for making
concrete theoretical progress.
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